微带天线设计
- 格式:doc
- 大小:572.50 KB
- 文档页数:10
微波仿真论坛_HFSS设计微带天线
一、前言
微带天线,即微带感应力天线,是一种先进的电磁发射天线,它采用微细空心管及其他微带元件,广泛应用于宽带、多址无线通信、脉冲定位系统、脉冲探测系统等许多应用中。
以HFSS为工具,设计微带感应力天线,能够更加直观地分析微带天线的性能,从而帮助我们了解微带天线的传输特性,并根据实际应用需求实现天线高效性能设计。
二、微波仿真HFSS的设计步骤:
1、首先,选择好所采用的HFSS软件,确定需要分析的微带感应力天线的构型,并建立计算模型。
2、根据相关理论,计算出微带天线的基本参数,如振子长度、空心管半径和微带宽度等,以及天线的振荡频率、相位阶跃和频带宽等。
3、设置相应的仿真网格,根据天线实际的构形,划分仿真区域,确定网格大小和步长,以达到较高的空间分辨率,从而获得更准确的仿真结果。
4、设置仿真参考电路,根据计算出的微带天线振子长度、空心管半径和微带宽度等,及其传输特性,利用HFSS软件设置好参考模型,以及仿真频率。
5、开启仿真计算,间接计算和直接计算,从而获得微带感应力天线的S参数,用于评估微带天线的性能。
---------------------------------------------------------------范文最新推荐------------------------------------------------------ Vivaldi基于CST的超宽带微带天线设计摘要天线,在任何无线电系统组成中,都是必不可少的组件。
随着无线电通信技术的发展,天线在各个领域得到了广泛的应用。
超宽带技术是当今最具竞争力和发展前景的技术之一。
其具有许多窄带系统无法比拟的优点,例如:高数据速率、低系统成本和抗多径效应,抗干扰性强、频谱覆盖范围广、距离分辨率高、对现有系统干扰小等。
由于无线电的应用频段被不断地扩展,进而促进了超宽带电磁学的产生。
在超宽带频段内,时域特性的研究表明,时域电磁波是人类非常重要的资源,作为超宽带无线电系统中不可缺少的一员,超宽带天线的研究也因此变得相当有意义。
本论文主要研究了关于超宽带微带天线的设计。
首先1/ 30介绍了天线及微带天线的基本理论,然后重点研究了超宽带天线,Vivaldi天线,详细分析设计了Vivaldi天线的传统模型,以及改进模型,并利用CST STUDIO SUITE 2010软件仿真,分析了Vivaldi天线可以使用的工作频率范围、性能以及尺寸等。
5558关键词天线,超宽带,CST,Vivaldi天线毕业设计说明书外文摘要TitleTheCST-basedUltra-WidebandMicrostrip AntennaDesignAbstractAntenna, in the composed of any radio system, are essential components. With the development of radio communication technology, the antenna has been widely applied in various fields.---------------------------------------------------------------范文最新推荐------------------------------------------------------The ultra-wideband technology is one of the most competitive and promising technologies. It has many incomparable advantages of narrowband systems, such as: high data rate, low system cost and the effect of anti-multipath, strong interference, a wide range of the spectrum covering , high resolution, small interference to existing systems.4.1.2 超宽带天线设计的难点134.1.3 扩展天线带宽的方法134.1.4 超宽带天线类型确定144.2 vavildi天线理论154.2.1 Vivaldi天线国内外应用情况154.2.2 Vivaldi天线类型163/ 304.3传统vavildi天线的仿真设计174.3.1传统Vivaldi天线结构模型174.3.2微带线-槽线馈电式Vivaldi天线设计174.3.3微带线-槽线馈电式Vivaldi天线仿真结果及分析244.4对拓Vivaldi天线的仿真设计264.4.1对拓Vivaldi天线结构原理264.4.2对拓Vivaldi天线尺寸的确定274.4.3对拓Vivaldi天线仿真结果及分析29结束语34致谢35---------------------------------------------------------------范文最新推荐------------------------------------------------------ 参考文献361.绪论1.1选题背景及研究意义随着社会的发展,科技的进步,无论是军事通信还是民用通信系统,不仅要求高质量地传输语言、文字、图像、数据等信息,而且要求设备宽带化、小型化、共用化。
基于近零折射率超材料的微带天线的设计和研究一、近零折射率超材料的魔力说起“近零折射率”,你或许会觉得有点抽象,甚至有点让人摸不着头脑。
简单来说,它就是一种可以让光或电磁波在传播时,变得像“傻傻的”一样,不太按照常理来走的材料。
听起来是不是有点神奇?简单点说,当光线穿过这种材料时,它的传播速度和方向可以跟我们平时接触到的普通材料完全不同。
这就是为什么它叫“近零折射率”了,因为折射率接近于零,光波的行为简直可以说是被“解放”了。
这种特性在很多领域都有潜力,特别是在无线通信和微波天线的设计上。
而微带天线呢,大家可能会想,这个是不是就跟你家电视机、手机上用的天线差不多?其实它们是同一个家族的,差别就在于微带天线是专门设计来处理高频信号的,它们体积小、轻巧,广泛应用在现代通信系统中。
你要知道,随着技术的发展,微带天线的要求也越来越高。
比如说,要有更高的性能、更好的方向性、还有更小的体积。
传统的微带天线虽然已经够聪明了,但总觉得还可以更聪明一点。
这个时候,近零折射率的超材料就来了,简直是微带天线的“超级英雄”。
二、近零折射率超材料与微带天线的结合你可能会问了,为什么不直接用普通材料来做天线呢?其实普通材料的折射率固定了,光线或者电磁波的传播速度和方向就容易被限制。
尤其是当我们在高频通信中要求更快、更强的信号时,这种限制就暴露了出来。
而近零折射率超材料能带来“超乎常规”的传输能力,电磁波在它里面穿行时,就好像“腾云驾雾”,没那么容易被干扰。
更有意思的是,这种材料还可以控制电磁波的传播方向和方式,帮助微带天线更好地接收和发送信号。
想象一下,我们把这种超材料融入微带天线,简直是给天线加装了一个“高科技大脑”。
这种天线不仅能够提高信号的接收能力,而且还能在特定方向上集中能量,让信号传播得更远、更清晰。
你可能不知道,微带天线的工作频率通常是很高的,所以它对材料的要求也特别严格。
传统材料往往处理不了这么高频的信号,结果就是信号质量不稳定、甚至衰减得特别快。
外形小、成本低的天线可用于许多现代通信系统中。
微带贴片天线代表一系列的小型天线,它们具有等角性质和已与通信系统的印刷电路集成在一起的优点。
通过采用简单明了的传输线模型,建立微带线嵌入馈电(inset-fed)贴片天线的精确模型并对之进行分析已成为可能。
另外,通过应用曲线拟合公式,也可以确定50Ω输入阻抗所需的精确嵌入长度。
馈电机制在微带贴片天线设计中扮演了重要角色。
微带天线可以由同轴探针或嵌入的微带线来馈电,同轴探针馈电在有源天线应用中具有优势,而微带线馈电则是适合于开发高增益微带阵列天线。
对于这两种情况,探针的位置或嵌入的长度都将决定输入阻抗的大小。
已通过各种各样的模型,包括传输线模型和空腔模型,以及通过全波分析对同轴探针馈电的贴片天线分输入阻抗特性进行了分析。
无论从实验上还是从理论上,都证明了同轴探针馈电贴片天线的输入阻抗特性遵守三角函数:cos2[π(y0/L)],其中,L等于贴片长度,y0等于从边缘沿着贴片长度L方向的馈电位置。
另一方面,从实验上也证明在低介电常数材料上,嵌入馈电的探针天线的输入阻抗表现为以下函数的4阶特性:cos4[π(y0/L)]。
幸运的是,现已开发出一种简单的分析方法,该方法利用传输线模型来获得嵌入馈电微带贴片天线的输入阻抗。
利用这种方法,在使用现代薄介电电路板材料时,可引用曲线拟合公式来确定嵌入长度,以便实现50Ω的输入阻抗。
图1是嵌入馈电微带贴片天线的图示。
参数εr、h、L、W、w< SUB >f< /SUB >和y0分别代表基板的介电常数、厚度、贴片长度、贴片宽度、馈线宽度和馈线嵌入距离。
嵌入馈电微带贴片天线的输入阻抗主要取决于嵌入距离y0,并在某种程度上取决于嵌入宽度(馈线与贴片导线之间的间距)。
嵌入长度的变化不会在谐振频率上产生任何改变,但是嵌入宽度的变化却会导致谐振频率的改变。
因此,在下面的讨论中,贴片导线与馈线之间的间距是保持不变,等于馈线宽度。
现代电子技术Modern Electronics TechniqueJul.2023Vol.46No.142023年7月15日第46卷第14期0引言随着时代的发展,向大容量、高速率方向发展的无线通信技术成为了该领域的主要目标[1‐2]。
作为通信系统中的关键模块,超宽带[3‐4](UWB )天线可以极大提高无线通信系统的信道容量、频谱效率和工作带宽范围,有着广阔的应用前景。
具有三维结构的倒锥天线,结构对称性高,能够实现43∶1的阻抗带宽[5],但是其体积大,馈电结构稳定性差。
因此,具有低成本、易小型化及易加工等优势的微带单极子天线,逐渐成为无线通信领域的焦点[6]。
基于印刷电路板(PCB )的微带单极子天线,在贴片上采用分形结构,比如六边型[7]、雪花型[8]或者勋章型[9]等,增加贴片的周长来提升带宽。
相比于线形结构,圆形结构周长更大,且对称性高,带宽更宽。
文献[10]中,利用椭圆型辐射贴片实现了24.1∶1的宽带阻抗匹配。
DOI :10.16652/j.issn.1004‐373x.2023.14.001引用格式:李想,曹建银,姚晨阳,等.小型化超宽带叶型微带单极子天线设计[J].现代电子技术,2023,46(14):1‐6.小型化超宽带叶型微带单极子天线设计李想1,3,曹建银2,姚晨阳2,3,丁振东2,王昊2,3,陶诗飞2(1.电磁空间认知与智能控制技术实验室,北京100191;2.南京理工大学,江苏南京210094;3.南湖实验室,浙江嘉兴314002)摘要:针对目前超宽带(UWB )微带单极子天线带宽较窄以及尺寸较大等缺点,文中提出一种基于共面波导(CPW )馈电的小型化超宽带微带单极子天线。
该天线由叶型的辐射贴片(其上挖去3个圆形贴片)、梯形地板和环形三叉戟共面馈电组成,可实现1~18GHz 的超宽带频率覆盖。
使用HFSS 软件对天线的结构和尺寸进行分析,得出最终的天线尺寸仅为40mm×75mm×0.5mm 。
微带贴片天线阵列的研究与设计随着无线通信技术的快速发展,天线作为无线通信系统的重要组件,其性能和设计受到了广泛。
微带贴片天线作为一种常见的平面天线,具有体积小、重量轻、易于集成等优点,被广泛应用于现代通信系统中。
本文将重点探讨微带贴片天线阵列的研究与设计。
微带贴片天线的基本原理是利用微带线来传输信号,并在贴片表面形成电磁场,从而实现电磁波的辐射和接收。
微带贴片天线的应用范围广泛,如移动通信、卫星通信、雷达等领域。
为了满足现代通信系统的需求,微带贴片天线阵列的研究与设计成为了关键。
微带贴片天线阵列的研究与设计方法包括理论分析、实验测试和数据分析。
理论分析是研究微带贴片天线阵列的基础,通过建立模型来分析天线的辐射特性和性能参数。
常用的分析方法包括电磁场理论和有限元法等。
实验测试是研究微带贴片天线阵列的重要环节,通过测试数据来验证理论分析的正确性。
实验测试包括天线性能参数的测量和辐射特性的测试等。
数据分析是对实验测试结果进行处理和解释的过程,通过对比不同数据来优化天线阵列的设计。
实验结果表明,微带贴片天线阵列具有优良的性能特点和优势。
微带贴片天线阵列的辐射性能较强,能够实现方向性和增益的控制。
微带贴片天线阵列的带宽较宽,有利于实现多频段通信。
微带贴片天线阵列易于集成和制造,具有较低的成本和较高的可靠性。
这些优点使得微带贴片天线阵列在未来通信领域中具有广泛的应用前景。
本文通过对微带贴片天线阵列的研究与设计,总结了其性能特点和优势,并指出了微带贴片天线阵列在技术创新和应用推广方面的意义。
微带贴片天线阵列作为一种重要的平面天线,具有广泛的应用前景。
在未来的研究中,可以进一步探索微带贴片天线阵列的高效设计和优化方法,提高其性能和可靠性,以满足不断发展的无线通信需求。
随着无线通信技术的快速发展,天线作为通信系统中关键的组成部分,其性能和设计受到了广泛。
特别是高性能宽带双极化微带贴片天线,其在无线通信领域具有广泛的应用前景。
超宽带微带天线的仿真与设计摘要:天线是无线电系统组成中必需的组件,它是接收以及辐射无线电波的装置。
超宽带(Ultra Wide Band,UWB)技术是一种近几年发展迅速的无线通信技术,也被叫做UWB技术。
它通过接收和发送极窄的脉冲来完成数据的传输,并且信号的带宽达到了GHz级别。
本文在阐述相关理论基础上,从一款天线入手,经过加载缝隙或者开槽设计了一种通过微带线馈电的超宽带天线。
通过使用电磁仿真软件HFSS对天线仿真,得到天线的S11、VSWR、极化方向图等参数。
并且验证了该天线覆盖的频段满足超宽带天线的设计要求。
关键字:超宽带技术;微带天线;仿真1 引言随着科学技术的不断进步,无线通信领域也随之快速发展。
无线频谱的资源是有限的,但是,人们对通信系统要求却日益增加。
因此,将可用频带拓宽就变得十分重要,而UWB技术的各种特性可以很好地解决这些问题,所以对超宽带天线的研究就变得非常有意义。
最初出现的超宽带无线电技术可以追溯到1960年左右,它当时主要是被应用于雷达检测、精确定位等其他领域,并不像当前的超宽带无线电技术被广泛地运用在通信领域。
美国国防部于1989年首次使用“超宽带”这个术语。
1992年,美国联邦通信委员会通过了一项议案。
该项议案重新定义了“超宽带”,并将3.1GHz到10.6GHz间的频段分配给了通信系统使用,允许了“超宽带”技术进入民用领域。
在此之前,该技术只有军方才能使用。
超宽带的定义方式分为绝对带宽和相对带宽两种,公式如下绝对带宽:BW=(1.1)相对带宽:(1.2)与分别表示-10dB带宽的上、下截止频率。
2基础理论概述2.1超宽带天线的性能参数下面介绍能够表征超宽带天线的一些常用性能参数,例如带宽、增益、极化等。
极化:天线的极化通俗来说指的天线工作时电流前进的方向,主要可以分为线极化和圆极化两种。
带宽:天线工作时所对应的频率范围就是天线的带宽。
一般情况下可以分为以下三种,分别是输入阻抗带宽、方向图带宽和相对带宽。
实验三微带天线的仿真设计与优化一、设计目标设计一个谐振频率为2.45GHz的微带天线,讨论微带贴片的尺寸对谐振频率的影响,并分析馈电点位置对输入阻抗的影响,最后给出优化设计的天线尺寸和优化后的天线性能(给出S11、Smith圆图、E面增益方向图和三维增益方向图的仿真结果)。
二、设计步骤1、添加和定义设计变量:将天线的相应变量定义好,如图:2、设计建模(1)创建微带天线的模型:创建介质基片:创建一长方体模型用以表示介质基片,模型的底面位于xoy平面,中心位于坐标原点,设置模型的材质为“FR4_epoxy”、透明度为0.6、颜色为深绿色,并将其命名为“Substrate”;模型的长度、宽度和厚度分别为2*W0、2*L0和H(模型的顶点坐标设置为(-L0,-WO,0),在XSize、YSize和ZSize分别输入2*L0、2*W0和H)。
在z=plength的平面上创建一个中心位于z轴,长度和宽度用a1和b1表示的矩形面,并将其命名为Aperture,颜色设为深蓝色,顶点位置坐标为(-a1/2,-b1/2,plength)。
创建辐射贴片:在介质基片的上表面创建一个中心位于坐标原点,长度和宽度分别为W0和L0的矩形平面(顶点坐标设置为(-L0/2,-WO/2,H),在XSize和YSize分别输入L0和W0),设置模型的透明度为0.4、颜色为铜黄色,并将其命名为“Patch”。
创建参考地:在介质基片的底面创建一个中心位于坐标原点,大小与介质基片的底面相同的矩形面(顶点坐标设置为(-L0,-WO,0),在XSize和YSize分别输入2*L0、2*W0),设置模型的透明度为0.4、颜色为铜黄色,并将其命名为“GND”。
创建同轴馈线的内芯:创建一个圆柱体作为同轴馈线的内芯,圆柱体底部圆心位于X轴并且与坐标原点的距离为L1,半径为0.6mm,高度为H(圆心坐标(L1,0mm,0mm),Radius为0.6mm,Height为H),设置模型的材质为理想导体(“pec”)、颜色为铜黄色,并将其命名为“Feed”。
用ADS 设计微带天线一、原理本微带天线采用矩形微带贴片来进行设计。
假设要设计一个在2.5GHz 附近工作的微带天线。
我采用的介质基片,εr= 9.8, h=1.27mm 。
理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。
并且带宽相对较高。
由公式:2/1212-⎪⎭⎫⎝⎛+=r r f c W ε=25.82mm贴片宽度经计算为25.82mm 。
2/11212121-⎪⎭⎫ ⎝⎛+-++=w h r r e εεε=8.889;()()()()8.0/258.0264.0/3.0412.0+-++=∆h w h w h le e εε∆l=0.543mm ;可以得到矩形贴片长度为:l f c L er ∆-=22ε=18.08mm馈电点距上边角的距离z 计算如下:)2(cos 2)(cos 2)(501022z R z Gz Y er in ⨯===λεπβ22090W R r λ=(0λ<<W 条件下)得到:z=8.5966mm利用ADS 自带的计算传输线的软件LineCalc 来计算传输线的宽度,设置如下:计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。
二、计算基于ADS系统的一个比较大的弱点:计算仿真速度慢。
特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。
判断计算值是否能符合事实。
sonnet中的仿真电路图如下:S11图象如下:可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。
但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。
主要的近似是下面公式引起22090W R r λ=(0λ<<W 条件下)因为计算的时候没有符合0λ<<W 的条件(W=25.82mm ,而λ0=120mm ,相对之下,它们间的差距不是非常大),因此会引起和事实的不符。
由于较为符合设想的结果,下面是本人利用ADS 软件来进行天线的计算: 首先,打开一个layout 文件,设定其单位如下:然后打开Momentum/Substrate/Create/Modify,参数设置如下:再设置Metallization Layers上参数如下;原始图画如下:各个参数定义如图,经过仿真,得到如下图象:得到了和sonnet仿真类似的图象,此时在2.5GHz下,S11=Z0(3.118+j4.771)然后进行远区场的模拟(在2.5GHz时候):主要的功率增益,方向性系数和效率图如下:在0度的时候,天线增益为4.142dB,方向性为5.702dB。
微带双频天线的研究与设计的开题报告一、选题背景随着无线通信技术的不断发展和应用范围的不断扩大,微带天线的应用越来越广泛。
而双频微带天线能够同时满足多种通信频段的需求,因此在实际应用中具有很大的价值。
本次研究将利用微带双频天线设计,实现这一目的,为广大用户的通信需求提供更好的解决方案。
二、研究目的本研究的目的是设计和制作一种双频微带天线,以实现在多种通信频段下的无线通信。
主要研究内容包括:1、选取合适的微带天线结构设计,并进行仿真分析。
2、通过自制微带天线实验平台,进行天线的测试和性能评估。
3、在实现双频通信的基础上,对天线的宽带性能、方向性以及辐射模式进行优化和完善。
三、研究内容1、微带天线的基本结构和工作原理的研究。
2、基于仿真分析,选取适合多频段使用的微带天线结构。
3、制作微带天线的实验平台,根据实验数据进行性能评估。
4、对天线的性能进行优化和完善,以得到更好的通信效果。
四、研究方法1、参考相关文献,了解微带天线的基本结构和工作原理,掌握天线的设计流程。
2、利用相关软件进行仿真分析,实现对微带天线结构的优化。
3、开发微带天线实验平台,用于天线的测试和性能评估。
4、根据实验数据,对天线的性能进行优化和完善。
五、研究意义1、设计制作一种性能稳定、优秀的双频微带天线,为无线通信技术的进一步发展提供技术支持。
2、研究微带天线的基本结构和工作原理,加深对微带天线技术的理解和掌握。
3、为无线通信设备设计提供技术支持,提高设备的可靠性、性能和稳定性,应用价值显著。
六、预期成果1、设计制作一种双频微带天线,满足多种通信频段的需求。
2、比较不同设计参数对天线性能的影响。
3、实验数据的收集和分析,为天线的优化和完善提供依据。
4、撰写并发表学术论文,分享研究成果,为后续研究提供参考。
七、研究进度安排1、研究计划的完成时间:本次研究计划用时6个月。
2、具体的研究进度安排:第1-2个月:研究微带天线的基本结构和工作原理,开展相关文献的收集和阅读。
信息工程大学毕业设计(论文)任务书(地方学生)课题名称 微带缝隙天线设计所在院、系(队) 信息工程学院九系四队专 业 通信工程学 号 20055401125申请学位级别 工学学士指导教师单位 二系一教指导教师姓名 邢锋技 术 职 务 副教授二○○ 九 年 五 月李 麟 09-06-09, 17:07课题名称微带缝隙天线设计其他指导老师姓名、单位课题主要任务与要求:1.了解微带天线的概念和分类;2.了解微带缝隙天线的概念、分类以及性能。
3. 设计一款微带缝隙天线模型,并通过软件仿真得到其各项属性, 方向图等。
备注系(或教研室)审批意见:签(章)年月日学院训练部审批意见:签(章)年月日指导教师评语:签(章)年月日答辩小组意见:负责人签(章)年月日学院答辩委员会意见:负责人签(章)年月日学院训练部审核意见:盖章年月日微带缝隙天线设计摘要通信系统的发展带来了天线行业的勃勃生机,在众多的天线类型中微带天线已成为当前研究的前沿之一,很具有研究前景与实用意义。
特别是微带缝隙天线,以其重量轻、剖面薄、平面结构且易与载体共形,馈电网络可与天线结构一起制成等优点已经引起天线工作者的广泛关注。
本文简要介绍了微带天线和微带缝隙天线的分类、分析方法、主要参数,然后提出了一种三角形缝隙微带天线。
在介质基板的一面一个三角形缝隙,另一面采用一个等腰三角形微带线进行馈电。
通过仿真给出了天线的s参数,VSWR和方向图。
该天线的阻抗带宽达到了120% ,覆盖了2.6—11.7GHZ的频率范围,增益值达到了5.8dB。
关键词:微带天线,微带缝隙天线,三角形缝隙微带天线设计Microstrip Slot Antenna DesignAbstractThe development of Communication System has brought exuberant vital force of The Antenna Industry. In lots kinds of antenna, the Microstrip antenna has already been one of the most foreland research, with foreground and practical significance. Especially, the Microstrip slot antenna has attract attention of antenna operators with it’s characters: light, thin section, plane structure, conform with carrier easy, feeding network can be made with the antenna structure. This thesis has given a brief introduce on the classes, analysis methods and the main parameters of Microstrip antenna and Microstrip slot antenna, then has proposed a kind of triangular-shape slot Microstrip antenna. A triangular-shape slot exists on a side of the substrate, and it can feed with an equilateral triangular-patch on the other side. Parameter S, VSWR and the Direction Plot of the antenna are given by the simulation. The impedance bandwidths of the proposed antenna approach 120%, covering 2.6—11.7GHZ, and the plus get to 5.8dB.Keywords: Mrcrostrip antenna, Microstrip slot antenna, triangular-shape slot Microstrip antenna.目录第一章绪论 (1)1.1引言 (1)1.2微带天线的发展 (1)1.3微带天线的特点 (2)1.4微带天线的应用 (2)第二章微带天线 (3)2.1 微带天线的分类 (3)2.2 微带天线的辐射机理 (4)2.3 微带天线的分析方法 (4)2.4 微带天线的主要电参数 (5)2.4.1 输入导纳 (5)2.4.2 辐射电阻和品质因数 (6)2.4.3 带宽 (6)2.4.4 方向性系数、增益和天线效率 (7)2.5 激励方法 (7)2.5.1 微带馈电 (7)2.5.2 同轴线馈电 (8)第三章微带缝隙天线 (10)3.1 矩形缝隙天线 (10)3.1.1 输入阻抗 (11)3.1.2 方向图 (13)3.2 环形缝隙天线 (14)3.3 锥形缝隙天线天线 (15)第四章三角缝隙宽缝微带天线 (16)4.1 天线设计与性能 (16)4.2 软件仿真 (17)4.3 结论 (19)参考文献 (20)致谢 (21)第一章 绪论1.1 引言要对微带天线做一个准确的定义是困难的,因为它有很多种形式[1]。
C波段微带天线(题目4)1.设计要求中心频点5GHz;增益优于4dB;阻抗带宽为100MHz (S11<-20dB);在工作频点范围内满足:3dB波瓣宽度>80°;3dB轴比波瓣宽度>80°;轴比带宽为200MHz (AR<3dB, at θ=0 and φ=0);2.天线原理微带天线是在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成的天线。
微带天线分 2 种:①贴片形状是一细长带条,则为微带振子天线。
②贴片是一个面积单元时,则为微带天线。
如果把接地板刻出缝隙,而在介质基片的另一面印制出微带线时,缝隙馈电,则构成微带缝隙天线。
以矩形微带天线为例,用传输线模型分析法介绍它的辐射原理。
设辐射元的长为L,宽为W,介质基片的厚度为h,现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路。
根据微带传输线理论,由于基片厚度h<<λ,场沿h方向均匀分布。
在最简单的情况下,场沿宽度w方向也没有变化,而仅在长度方向(l≈λ/2)有变化。
在两开路端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同相叠加,而两垂直分量所产生的场反相相消。
因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙。
缝的电场方向与长边垂直,并沿长边w均匀分布。
缝的宽度为△l≈h,长度为w,两缝间距为l≈λ/2。
这就是说,微带天线的辐射可以等效为由两个缝隙所组成的二元阵列。
最初模型,采用切角微扰的形式实现圆极化,同轴线探针馈电,如下所示天线厚度和介电常数的计算式中,c 是真空中的光速;n=1,3,5,…(TEn 模),或n = 2,4,6…(TMn 模)。
贴片宽度的计算贴片长度的计算 式中:211212121-⎪⎭⎫ ⎝⎛+-++=w h r r e εεε ()()()()8.0/258.0264.0/3.0412.0+-++=∆h w h w hL e e εε 3.天线设计 初始参数设置1/2122r r c W f ε-+⎛⎫= ⎪⎝⎭22r ecL lf ε=-∆w 为方形贴片的长度(宽度=长度),初值13.5mm 。
GPS圆极化微带天线设计1.1微带天线简介微带天线是在一块厚度远小于工作波长的介质基片的一面敷以金属辐射片7面全部敷以金属薄膜层做接地板而成°GP茨线通常使用平面天线和螺旋形天线。
近年来微带天线由于具有重量轻,体积小,易于实现圆极化。
而GP功能在个人行动通讯设备特别是手机中的普及,更使得GP头线的小型化研究成为十分热门的话题。
1.2GPS微带天线结构与原理上图是一个简单的微带天线结构,由辐射元,介质层和参考地三部分组成。
与天线性能相关的参数为辐射元的长度L,辐射元的宽度W,介质层的厚度h,介质的相对介质电常数& r ,介质的长度和宽度。
1.3辐射机理理论上可以采用传输线模型来分析其性能,假设辐射贴片的长度近似的为半波长,宽度为w,介质基片厚度为h,工作波长为入;我们可以将辐射贴片,介质基片和接地板视为一段长度为入/2的低阻抗微带传输线,在传输线的两端断开形成开路。
由于介质基片厚度hvv入,故电路沿着h方向基本没有变化。
最简单的情况可以假设电场沿着宽度w方向也没有变化。
那么在只考虑主模激励(TM10 模)的情况下辐射基本上可以认为是由辐射贴片开路的边缘引起的。
在两开路的电场可以分解为相对于接地板的垂直分量和水平分量,由于辐射贴片长度约为半个波长,所以两垂直分量方向相反,水平分量方向相同。
因此,两开路端的水平分量电场可以等效为无限大平面上同相激励的那个缝隙,缝隙的宽度为厶L (近似等于基片厚度h),长度为w,等效缝隙相距为半波长,缝隙的电场沿着w方向均匀分布,电场方向垂直于w。
1.4微带天线贴片尺寸估算考虑到边缘缩短效应后,实际的辐射单元长度 L 应为L 二—c-2 △ L 式中e 是有效介电常数,△ L 是等效辐射缝隙长度, f ” e 同轴线馈电点的位置,宽度方向上馈电点的位置一般在中心点, 在长度方向上边 缘处(x= L/2 )的输入阻抗最高。
由以下的公式计算出输入阻抗为 50欧姆的馈 电点位置: L12HFSS 设计环境概述2.1模式驱动求解。
vivaldi天线设计公式
Vivaldi天线是一种非常流行的微带天线,这种天线主要由斜向放置的马蹄形耦合槽和一个与之相邻的倒角贴片组成。
Vivaldi天线不仅能够实现宽频、高增益和双极化等特性,而且还具有一定的辐射方向性。
由于其在电磁兼容性设计和应用中具有独特的优点,因此在近年来得到了广泛的应用。
Vivaldi天线的设计需要结合一定的天线理论知识,首先需要知道电磁波的传播方式和天线结构的基本形式。
然后需要根据天线的工作频段和应用场景确定天线的设计参数,例如马蹄形耦合槽的大小、倒角贴片的尺寸和天线板的厚度等。
接下来,需要使用天线仿真软件对天线的性能进行分析和优化,找出最优的天线设计方案。
Vivaldi天线的设计过程中,需要用到贴片天线的相关理论和方法,同时还需要考虑到天线的尺寸和结构对天线性能的影响。
在实际应用中,还需要考虑到各种干扰源和电磁兼容性问题,确保天线的稳定性和性能。
总之,Vivaldi天线的设计需要结合天线理论、仿真分析和实际应用等方面的知识,同时需要充分考虑各种因素对天线性能的影响,才能实现较好的天线性能和应用效果。
08通信陆静晔04微带天线设计一、实验目的:● 利用电磁软件Ansoft HFSS 设计一款微带天线⏹ 微带天线的要求:工作频率为2.5GHz ,带宽(S11<-10dB )大于5%。
● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。
二、实验原理:微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。
微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。
图1-1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。
与天线性能相关的参数包括辐射源的长度L 、辐射源的宽度W 、介质层的厚度h 、介质的相对介电常数和损耗正切、介质层的长度LG 和宽度WG 。
图1-1所示的微带贴片天线是采用微带线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层 与辐射源相连接。
对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能。
矩形贴片微带天线的工作主模式是模,意味着电场在长度L 方向上有/2的改变,而在宽度W 方向上保持不变,如图1-2(a )所示,在长度L 方向上可以看作成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘由于终端开路,所以电压值最大电流值最小。
从图1-2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。
图1-1图1-2 矩形微带天线俯视图和侧视图假设矩形贴片的有效长度设为,则有(1-1)式中,表示导波波长,有(1-2)式中,表示自由空间波长;表示有效介电常数,且= (1-3)式中,表示介质的相对介电常数;h表示介质层厚度;W表示微带贴片的厚度。
由此,可计算出矩形贴片的实际长度L,有(1-4)式中,c 表示真空中的光速;表示天线的工作频率;表示图1-2(a)中所示的等效辐射缝隙的长度,且有(1-5)矩形贴片的宽度W可以由下式计算:(1-6)对于同轴线馈电的微带贴片天线,在确定了贴片长度L和宽度W之后,还需要确定同轴线馈电的位置,馈电的位置会影响天线的输入阻抗。
在微波应用中通常会使用50,对于图1-3所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心,以()表示馈电的位置坐标。
图1-3 同轴线馈电的微带天线对于模式,在W方向上电场长度不变,因此理论上W方向上的任一点都可以作为馈电,对于避免激发模式,在W方向上馈电的位置一般取在中心点,即(1-7)在L方向上电场有的改变,因此在长度L方向上,从中心点到两侧,阻抗逐渐变大,输入阻抗等于50时的馈点位置可以由下式计算(1-8)式中,=(1-9)上述分析都是基于参考地平面是无限大的基础上的,然而实际设计中,参考地都是有限面积的,理论分析证明了当参考地平面比微带贴片大出6h的距离时,计算结果就可以达到足够的准确,因此设计中参考地的长度和宽度只要满足一下两式即可,即(1-10)(1-11)三、实验步骤:1、设计指标和天线几何结构参数计算本实验的矩形微带天线中心频率为 2.5GHz,选用的介质板材为Rogers R04003,其相对介电常数=3.38,厚度h=5mm,天线使用同轴线馈电。
微带线的三个关键参数如下:工作频率f0=2.5GHz;介质板材的介电常数=3.38;介质层厚度h=5mm。
(1)、矩形贴片的宽度W把,f0=2.5GHz,=3.38代入式(1-1),可以计算出微带天线矩形贴片的宽度,即W=0.04054m=40.6mm(2)、有效介电常数把h=5mm,W=40.6mm,=3.38代入式(1-6),可以计算出微带天线矩形贴片的宽度,即=2.95(3)辐射缝隙的长度把h=5mm,W=40.6mm,=2.95代入式(1-5),可以计算出微带天线辐射缝隙的长度,即=2.34mm(4)矩形贴片的长度L把,f0=2.5GHz,=2.95,=2.34mm代入式(1-4),可以计算出微带天线矩形贴片的长度,即L=30.2mm(5)参考地的长度和宽度把h=5mm,W=40.6mm,L=30.2mm分别代入式(1-10)和式(1-11),可以计算出微带天线参考地的长度和宽度,即mm(6)同轴线馈点的位置坐标(Xf,Yf)把=3.38,W=40.6mm,L=30.2mm分别代入式(1-7),式(1-8)和(1-9),可以计算出微带天线同轴线馈点的位置坐标(Xf,Yf),即Xf=8.9mm Yf=0mm2、HFSS设计和建模概述本天线实例是使用同轴线馈电的微带结构,HFSS工程可以选择模式驱动求解类型。
在HFSS中如果需要计算远区辐射场,必须设置辐射边界表面或者PML 边界表面,这里使用辐射边界条件。
为了保证计算的准确性,辐射边界表面距离辐射源通常需要大于1/4个波长。
因为使用了辐射边界表面,所以同轴线馈线的信号输入输出端口位于模型内部,因此端口激励方式需要定义为集总端口激励。
天线的中心频率2.5GHz,因此设置HFSS的求解频率为2.5GHz,同时添加1.5G—3.5GHz的扫描设置,分析天线在1.5G—3.5GHz频段内的回波损耗或者电压驻波比。
如果天线的回波损耗或者电压驻波比扫描结果显示谐振频率没有落在2.5GHz,还需添加参数扫描分析,并进行优化设计,改变微带贴片的尺寸和同轴线馈点的位置,以达到良好的天线性能。
(1)求解类型:模式驱动求解(2)建模操作模型原型:长方形,圆柱体,矩形面,圆面模型操作:相减操作(3)边界条件和激励边界条件:理想导体边界,辐射边界端口激励:集总端口激励(4)求解设置求解扫频:2.5GHz扫频设置:快速扫描,频率范围为1.5GHz—3.5GHz(5)Optimetrics参数扫描分析优化设计(6)数据后处理:S参数扫描曲线,VSWR,Smith圆图,天线方向图,天线参数3、创建微带天线模型(1)创建参考地在Z=0的XOY面上创建一个顶点位于(-45mm,-45mm),大小为90mm90mm的矩形面作为参考地,命名为GND,并为其分配理想导体边界条件。
(2)创建介质板层创建一个长宽高为80mm80mm5mm的长方形作为介质板层,介质板层的底部位于参考地上(即z=0的XOY面上),其顶点坐标为(-40,-40, 0),介质板的材料为R04003,介质板层命名为Substrate。
(3)创建微带贴片在z=5的XOY面上创建一个顶点坐标为(-15.1mm,-20.3mm,5mm),大小为30.2mm40.6mm的矩形面作为微带贴片,命名为Patch,并为其分配理想导体边界条件。
(4)创建同轴馈线的内芯创建一个圆柱体作为同轴馈线的内芯,圆柱体的半径为0.5mm,长度为5mm,圆柱体底部圆心坐标为(8.9mm,0, 0),材料为理想导体,同轴馈线命名为Feed。
(5)创建信号传输端口面同轴馈线需要穿过参考地面,传输信号能量。
因此,需要在参考地面GND 上开一个圆孔允许能量传输,圆孔的半径为1.5mm,圆心坐标为(8.9mm,0, 0),并将其命名为Port。
(6)创建辐射边界表面创建一个长方体,其顶点坐标为(-80,-80,-35),长方形的长宽高为160mm160mm75mm,长方体模拟自由空间,因此材质为真空,长方体命名为Air,创建好这样的一个长方体之后,设置其四周表面为辐射边界条件。
(7)设置激励端口设置同轴线信号端口面(即圆面Port)的激励方式为集总端口激励。
(8)添加和使用变量添加设计变量Length,初始值为30.2mm,用以表示激带贴片的长度:添加设计变量Width,初始值为40.6mm,用以表示微带贴片的宽度:添加设计变量Xf,初始值为8.9mm,用以表示同轴馈线的圆心点的x轴坐标。
4、求解设置本章设计的微带贴片天线中心频率在2.5GHz,因为设置HFSS的求解频率(即自适应网格剖分频率)为2.5GHz;同时添加1.5~3.5GHz的扫描设置,选择快速(Fast)扫频类型,分析天线在1.5~3.5GHz频段的回波损耗或者电压驻波比。
5、设计检查和运行仿真分析通过前面的操作,我们已经完成了模型创建和求解设置等HFSS设计的前期工作,接下来就可以运行仿真计算,并查看分析结果了。
在运行仿真计算之前,通常需要进行设计检查,检查设计的完整性和正确性。
6、查看天线谐振点查看天线信号端口回波损耗(即S11)的扫频分析结果,给出天线的谐振点。
生成如图所示的S11在1.5~3.5GHz的扫面曲线报告。
从图中可以看出,当频率为2.4GHz时,S11最小,S11最小值约为-16.75dB。
四、优化设计由图所示的S11扫频曲线报告可知,根据以上计算的尺寸设计出的微带天线谐振频点在2.4GHz,与期望的中心频率2.4GHz相比,存在一定的误差。
所以需要进行优化设计,使天线的谐振频率落在2.5GHz上。
根据理论分析可知,矩形微带天线的谐振频率由微带贴片的长度和宽度决定,贴片尺寸越小谐振频率越高,接下来我们首先使用参数扫描分析功能进行参数扫描分析,分析谐振频率点分别随着微带贴片长度Length和宽度Width的变化关系;然后进行优化设计,优化微带贴片长度Length和宽度Width,使天线的谐振频率落在2.5GHz.1、变量Length的扫描分析从S11曲线报告可以看出,当微带贴片的宽度固定时,微带天线的谐振频率点随着微带贴片的长度Length的减小而变大。
当Length=28.5时,谐振频点约为2.5GHz.2、变量Width的扫描分析从S11曲线报告可以看出,当微带贴片的长度固定时,微带贴片宽度Width 的改变对矩形微带天线谐振频率点的影响很小。
五、查看优化后天线性能由以上优化设计结果可知,当Length=28.5mm,Width=40.6mm时天线的谐振频点在2.5GHZ。
以下将变量设置为上述优化值,仿真结果如下:1、查看S11参数Length=28.5 Width=40.6 时S11的扫频曲线由S11扫频曲线报告可以看出,当Length=28.5mm,Width=40.6mm时天线的谐振频点在2.5GHZ,此时S11=-17.2dB。
2、查看S11参数的Smith圆图结果S11的Smith圆图结果在标记2.5GHZ处,天线的归一化阻抗为(0.6995-0.0043j) 。
3、查看电压驻波比电压驻波比报告图在VSWR的报告图的 2.45GHZ和 2.55GHZ位置做标记,可见在2.45GHZ--2.55GHZ频段,VSWR<1.98。