光纤通信原理和应用及其发展趋势

  • 格式:doc
  • 大小:523.00 KB
  • 文档页数:6

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤通信原理和应用及其发展趋势

摘要:简述光纤通信的发展历史及其优点,介绍了光纤的结构与导光原理、光纤通信在各个方面的应用以及其发展趋势。

关键词:光纤通信优点原理应用

1 引言

光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式。光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光导纤维通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤通信作为一门新兴技术,在近30年来迅猛发展,给世界通信技术乃至国民经济、国防事业和人民生活带来了巨大变革。

2 发展历史

1966年,英籍华人高锟(C·K·Kao)预见利用玻璃可以制成衰减为20dB/km的通信光导纤维(简称光纤)。当时,世界上最优秀的光学玻璃衰减达l000dB/km左右。1970年,美国康宁公司首先研制成衰减为20dB/km 的光纤。从此,光纤就进入了实用化的发展阶段,世界各国纷纷开展光纤通信的研究。

光纤的主要作用是引导光在光纤内沿直线或弯曲的途径传播。为了实现长距离的光纤通信,必须减小光纤的衰减。C·K·Kao 早就指出降低玻璃内的过渡金属杂质离子是降低光纤衰减的主要因素。另一方面,玻璃内的OH离子对衰减也有严重的影响。到了1976年,人们设法降低OH含量后发现衰减的长波长窗口有:1.31μm、1.55μm。1980年,光纤衰减已降低到0.2dB/km (1.55μm),接近理论值。这样,使得进行长距离的光纤通信成为可能。与此同时,为促进光纤通信系统的实用化,人们又及时地开发出适用于长波长的光源、激光器、发光管、光检测器。应运而生的光纤成缆。光无源器件和性能测试及工程应用仪表等技术日臻成熟。这都为光纤光缆作为新的通信传输媒介奠定了良好的基础。

1976年,美国西屋电气公司在亚特兰大成功地进行了世界上第一个44.736Mbit/s且传输110km的光纤通信系统的现场实验,使光纤通信向实用化迈出了第一步。1981年以后,用光纤通信技术大规模地制成商品并推向市场。历经近20年突飞猛进的发展,光纤通信速率由1978年的45Mbit/s提高到目前的40Gbit/s。

我国自70年代初就开始了光纤通信技术的研究。1977年,武汉邮电研究院研制成功中国第一根阶跃折射率分布的、波长为0.85μm多模光纤。后来又研制成单模光纤和特殊光纤以及光通信设备。现在,我国光纤通信产业已初具规模,能够生产光纤光缆、光电器件、光端机及其他工程应用方面的配套仪表器件等。由此可见,中国已具有大力发展光纤通信的综合实力。

3 光纤通信的优点

(1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的

于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到10Gbps。

(2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

4 光纤的结构与导光原理

4.1 光纤的结构

光纤是传光的纤维波导或光导纤维的简称。其典型结构是多层同轴圆柱体,自内向外为纤芯、包层和涂覆层。

核心部分是纤芯和包层,其中纤芯由高度透明的材料制成,是光波的主要传输通道;包层的折射率略小于纤芯,使光的传输性能相对稳定。纤芯粗细、纤芯材料和包层材料的折射率,对光纤的特性起决定性影响。涂覆层包括一次涂覆、缓冲层和二次涂覆,起保护光纤不受水汽的侵蚀相机械的擦伤,同时又增加光纤的柔韧性,起着延长光纤寿命的作用。

4.2 光纤中的射线光学理论

光波长很短,但相对光纤的几何尺寸要大得多,因此从射线光学理论的观点出发,研究光纤中的光射线,可以直观认识光在光纤中的传播机理和一些必要的概念。下面用射线光学理论对阶跃型及渐变型多模光纤的传输特性进行分析。射线光学的基本关系式是有关其反射和折射的菲涅耳(Fresnel)定律。

首先,我们来看光在分层介质中的传播,如下图所示。图中介质1的折射率为n1,介质2 的折射率为n2,设n1>n2。当光线以较小的角入射到介质界面时,部分光进入介质2 并产生折射,部分光被反射。它们之间的相对强度取决于两种介质的折射率。

由菲涅耳定律可知

反射定律(1)

折射定律(2)

在n1>n2时,逐渐增大,进入介质2的折射光线进一步趋向界面,直到趋于90°。此时,进入介质2的光强显著减小并趋于零,而反射光强接近于入射光强。当=90°极限值时,相应的角定义为临界角,由于sin90°=1,所以临界角当>时,入射光线将

产生全反射。应当注意,只有当光线从折射率大的介质进入折射率小的介质,即n1>n2时,在界面上才能产生全反射。

(3)

接下来分析一下全反射,全反射现象是光纤传输的基础。光纤的导光特性基于光射线在纤芯和包层界面上的全反射,使光线限制在纤芯中传输。光纤中有两种光线,即子午光线和斜射光线。子午光线是位于子午面(过光纤轴线的平面)上的光线,而斜射光线是不经过光纤轴线传输的光线。下图所示阶跃型的光纤,纤芯折射率为n1,包层的折射率为n2,且n1>n2,空气折射率为n0。在光纤内传输的子午光线,简称内光线,遇到纤芯与包层的分界面的入