光纤通信原理和应用及其发展趋势
- 格式:doc
- 大小:523.00 KB
- 文档页数:6
光纤通信技术的发展及趋势关键词:光纤通信技术发展历史现状发展趋势摘要:本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。
1、导言目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。
作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。
自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。
2、光纤通信技术的发展历史总结近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。
光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。
光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。
光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。
上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0.2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。
现代光纤通信技术及其应用随着现代社会信息的迅速发展,通信技术也在不断更新和发展。
光纤通信技术作为其中的一个重要分支,已经成为了现代通信领域中不可或缺的一部分。
本文将着重介绍光纤通信技术的基本原理、发展历程以及在现代社会中的广泛应用。
一、光纤通信技术的基本原理光纤通信技术是一种将光信号作为信息的传输介质的技术。
光是电磁波的一种,它的波长远远短于无线电波,因此具有更高的频率和更强的能量。
光纤通信技术利用这种特性,将电信号通过调制后转换为光信号,通过光纤传输,再将光信号转换成电信号,实现数据传输和通信的过程。
光纤通信系统主要由三部分组成:光源、传输介质和检测器。
光源产生的光信号进入光纤中,经过光纤的传输后到达接收端,接收器将光信号转换为电信号,最终输出数字信号。
整个过程中光源、光纤和检测器的性能都会影响通信质量的好坏。
二、光纤通信技术的发展历程光纤通信技术的发展可以追溯到19世纪,当时科学家就已经发现了光可以通过玻璃管进行传输。
20世纪初,民用电话开始普及,传输距离越来越长,信号失真的问题也越来越严重。
1960年代,美国贝尔实验室的科学家率先提出了光纤通信技术的概念,并于1970年代将其实现。
1980年代,光纤通信技术开始商业化运营,迅速发展,逐渐替代了传统的无线电通信和有线电缆通信等传输方式。
到了21世纪,光纤通信技术已经成为了全球通信领域的主要技术之一。
目前,世界上许多国家都在大力推进光纤通信技术的发展,提高通信的质量和速度,为现代化建设和信息化发展提供强有力的支持。
三、光纤通信技术在现代社会中的广泛应用随着互联网的兴起,光纤通信技术在信息领域的应用越来越广泛。
目前,光纤通信技术已经被应用于许多领域,例如:1. 互联网通信光纤通信技术被广泛应用于互联网通信领域,极大地提高了互联网传输的速度和带宽。
同时,由于光纤通信技术具有抗干扰能力强、传输损耗小等特点,使得互联网通信更加稳定可靠。
2. 医疗行业光纤通信技术在医疗行业中的应用主要集中在光纤内窥镜和光学成像领域。
光纤通信的起源与发展摘要:本文主要简单介绍光纤通信的起源,分析光纤通信的基本原理和在生活中的应用。
光纤通信在近年来发展迅速并对人类社会产生巨大影响,本文将简述这一发展,光纤的历史,研究现状,并对光纤通信的未来前景进行了展望。
关键词:光纤通信;起源;发展;趋势1.光纤通信的起源早在三千多年前人们就开始利用光进行通信,利用火光来传递信息,例如出现在中国古代的烽火台。
光通信是人类最早应用的通讯方式之一,但是由于视距的限制、大气衰减、地形等各种因素的阻挡,光通讯的发展极其缓慢。
光通信的真正飞跃是在光纤出现之后,它显示出了无可比拟的优越性。
真正的光纤通信出现在1966年,英籍华人高锟 (C·K·Kao)预见利用玻璃可以制成衰减为20dB/km的通信光导纤维(简称光纤)。
当时,世界上最优秀的光学玻璃衰减达l000dB/km左右。
1970年,美国康宁公司首先研制成衰减为20dB/km 的光纤。
从此,光纤就进入了实用化的发展阶段,世界各国纷纷开展光纤通信的研究。
光纤是用来导光的透明质纤维,一根实用化光纤是由多层透明介质组成的,简单来说,光纤就是用玻璃纤维制造出比头发更细的光纤,取代铜导线作为长距离的通讯线路。
这个理论是世界通信技术的一次改革。
如今,光纤通信已经成为信息社会的神经系统。
光纤通信的应用和人们的日常生活息息相关,渗透到我们生活中的方方面面。
2.光纤通信原理光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
当光线以一定角度从光密介质射向光疏介质时,就会发生光线在界面上的全反射,光线重新折回光密介质中,光纤就是利用全反射的原理将光从一端传至另一端的。
构成光纤的材料有两种,高折射率和低折射率的两种透明聚合物,而且低折射率的材料必须完整地包住高折射率的材料,即皮材必须包覆住芯材。
光通信发展趋势
光通信是一种利用光学的原理进行信息传输的技术,其具有高速、大带宽、低延迟等优点,逐渐成为了现代通信领域的重要技术之一。
光通信的发展趋势如下:
1. 高速和大容量:光通信系统的传输速率一直在不断提高,传统的光纤通信系统已经实现了100Gbps的传输速率,而新一代的光通信系统如400Gbps和1Tbps的传输速率也已经开始商用化。
同时,光通信系统也在不断扩展其容量,以满足越来越大的数据传输需求。
2. 极短的延迟:光信号的传输速度非常快,因此光通信系统具有非常低的延迟。
在需要实时传输的应用领域,如金融交易、云计算等,光通信系统将扮演越来越重要的角色。
3. 非线性光学和调制技术:非线性光学和调制技术能够提高光通信系统的性能。
利用非线性光学效应,可以实现更高的传输速率和更长的传输距离。
而调制技术则可以使光信号能够在更复杂的信道中传输,提高光通信系统的适应性和稳定性。
4. 光纤网络:随着互联网的快速发展,全球范围内的光纤网络正在不断扩展。
光纤网络具有高速、大容量的特点,已经成为互联网的主要传输方式之一。
未来,光纤网络将进一步延伸到更偏远的地区,以实现全球范围内的高速互联。
5. 光通信与无线通信的融合:光通信和无线通信之间的融合将成为未来的发展方向。
光纤作为传输介质,可以为无线通信提
供更大的带宽和更快的传输速率,以满足日益增长的无线数据需求。
同时,光通信系统也可以与5G和其他无线通信技术结合,提供更强大的通信能力。
总而言之,光通信作为一种高速、大容量的通信技术,其发展趋势将继续朝着更高速、更大容量、更低延迟、更稳定和更灵活的方向发展。
光通信技术的原理和应用随着社会信息化进程的不断加快,通信技术的发展也愈加迅速。
在众多通信技术中,光通信技术因其高速度、大容量和低衰减等优势逐渐成为人们关注的焦点之一。
今天,我们将深入探讨光通信技术的原理和应用,以期更好地了解这一领域的前沿发展。
一、光通信技术的原理光通信技术,顾名思义,就是利用光来进行信息转移和传输的一种通信技术。
其基本原理是利用激光器产生的光束进行信息传输。
在光通信技术中,一般采用的光源是半导体激光器,这种激光器可以在电磁场的作用下产生连续谱的光线,其波长可以调节,波长范围在850nm到1550nm之间。
由于不同材料对光的吸收和反射不同,因此光线在光纤中传输时会发生很多的损耗和波动。
为了避免这种情况的发生,通常采用光纤放大器进行光信号的增强,从而达到更为稳定的传输效果。
除了光源和光纤,光通信技术还需要进行编解码、调制等处理。
其中,光调制器是将输入的电信号转化为光信号的重要部分,通过调制光的强度、频率和相位等参数,识别信息传输的码元。
二、光通信技术的应用光通信技术在日常生活中应用广泛,如网络通信、光纤传输、卫星通信等等。
下面将简单介绍其中的几个典型应用场景。
1、光纤通信光纤通信是当前最为重要的光通信技术应用之一,也是光通信技术竞争最为激烈的领域之一。
光纤通信指的是基于光纤传输数据的一种通信方式,其原理是通过光纤将数据进行传输。
与传统的铜缆相比,光纤通信拥有更高的传输能力和更低的传输损失,因此也被广泛应用于高速宽带网络、无线网络等场景中。
2、光通信卫星光通信卫星是指利用卫星进行高速通信的一种技术。
相比于传统的微波通信卫星,光通信卫星有着更高的通信速度和更低的传输延迟。
光通信卫星可以加速通信速度,降低通信信号衰减和随机误差的影响,因此在未来的通信领域有着广阔的应用前景。
3、无线光通信无线光通信是利用可见光通信、红外线通信等技术进行信息传输的一种无线通信技术。
相比传统无线通信技术,无线光通信有着更高的传输带宽和更广的传输范围,不仅可以用于照明功能,也可以用于环境信息采集、智能家居、无人驾驶等领域的应用。
光纤通信技术的发展历程,应用方向及未来发展趋势
光纤通信技术是指利用光纤作为传输介质进行信息传输的技术。
该技术的发展历程可以追溯至20世纪60年代初期,当时科学家们开始研究光的传输特性并提出了使用光纤进行通信的想法。
随着技术的发展和突破,光纤通信开始进入实用化阶段。
1977年,一家名为Corning Glass Works的公司成功地开发出了低损耗的光纤,使得光纤通信技术得以大规模应用。
此后,光纤通信技术得到了快速的发展,并催生了众多相关产业的兴起。
目前,光纤通信技术广泛应用于通信、互联网、医疗、军事等众多领域。
其主要优势在于传输速度快、带宽大、抗干扰能力强、数据安全性高等。
同时,光纤通信技术也在不断地发展和完善,未来有望实现更加高速、高效、可靠的传输。
未来发展趋势方面,光纤通信技术将在以下几个方面有所突破: 1.高速传输技术的发展:随着信息量的不断增大,光纤通信技术需要不断提高传输速度。
目前,科学家们正在研究利用光子晶体等材料来实现更高速的传输技术。
2.技术的智能化发展:未来光纤通信技术将越来越具有智能化特征,例如光纤传感技术可以应用于智能家居、智能交通等领域。
3.新型光纤材料的研究:科学家们正在研究开发新型光纤材料,例如光纤光栅等,以提高光纤通信技术的应用范围和效率。
总的来说,光纤通信技术的发展历程和应用方向非常广泛,未来的发展趋势也是非常光明的。
我们有理由相信,在不久的将来,光纤
通信技术将会更好地服务于人类社会的各个领域。
光纤通信的工作原理与优势在现代信息社会中,光纤通信已经成为了最常用的数据传输方式之一。
相比传统的电信传输方式,光纤通信具有更快的传输速度、更广的带宽以及更低的信号损耗等诸多优势。
本文将从光纤通信的工作原理和优势两个方面进行论述,以便更好地理解其技术原理以及应用价值。
一、光纤通信的工作原理光纤通信是基于光的传播和调制原理进行数据传输的技术。
其工作原理可以简单概括为光信号的产生、传输、接收和解调四个过程。
1. 光信号的产生光信号的产生通常使用激光器来实现。
激光器产生的光束具有较高的单色性和方向性,能够有效地传输信号。
2. 光信号的传输光信号通过光纤进行传输。
光纤是由具有高折射率的材料制成的细长柔性材料,内部是由纯净的玻璃或者塑料纤维组成。
光信号通过光纤的全反射原理,在光纤内部进行高速传输。
3. 光信号的接收光纤传输的信号在接收端通过光电探测器进行接收。
光电探测器可以将光信号转化为电信号,以方便后续的处理。
4. 光信号的解调接收到的光信号通过解调器进行解调,将其转化为原始数据信号。
二、光纤通信的优势光纤通信相较于传统的电信传输方式,在数据传输的速度、带宽、信号损耗以及安全性等方面具有显著的优势。
1. 高速传输光纤通信采用了光信号的传输,具有极高的传输速度。
其传输速度可以达到光速的30%~40%,远远快于传统的电信传输方式。
2. 大带宽光纤通信的带宽远远大于传统的电信传输方式。
光纤通过多路复用技术可以实现多个信号同时传输,大大增加了数据的传输容量。
3. 低信号损耗光信号在光纤内部的传输过程中,由于光纤的特殊结构和全反射原理,几乎不会出现信号的衰减和损耗。
相比之下,传统的电信传输方式会面临信号衰减和干扰的问题,导致传输距离受限。
4. 高安全性光纤通信的传输信号是通过光的方式进行传输的,无法被窃听和干扰。
与传统的电信传输方式相比,光纤通信更加安全可靠,可以保护用户的隐私和数据的安全。
结论光纤通信作为一种高速、大带宽、低损耗的数据传输方式,在现代信息社会中发挥着重要的作用。
浅论光纤通信技术的特点和发展趋势光纤通信技术是一种高速、可靠、安全的通信方式,其在现代通信系统中得到广泛应用。
光纤通信技术具有明显的特点,其发展趋势也在不断变化。
一、光纤通信技术的特点1.传输速度快光纤通信传输速度快,通信速率可达Gbps级别,远高于传统的电信网络。
这使得光纤通信技术在高速数据传输和多媒体信息传输方面具有极大的优势。
2.传输距离远光纤通信技术的传输距离可以达到几十公里甚至上百公里,比传统的电信网络传输距离更远。
这使得光纤通信技术在长距离通信方面得到广泛应用。
3.抗干扰能力强光纤通信技术的抗干扰能力非常强,不受电磁干扰、雷击等外界因素的影响,可以保证通信信号的稳定性和可靠性。
4.保密性好光纤通信技术具有良好的保密性,其通信信号无法被窃听和干扰,可以保证通信的安全性和保密性。
二、光纤通信技术的发展趋势1.光纤通信技术将逐渐向高速、大容量的方向发展。
随着互联网的发展,数据传输量越来越大,对通信带宽的要求也越来越高。
未来的光纤通信技术将更加注重提升通信速度和容量,以满足大容量数据传输的需求。
2.光纤通信技术将逐渐向智能化、自动化的方向发展。
未来的光纤通信系统将更加注重智能化和自动化,通过人工智能和自动化技术,实现光纤通信系统的自我管理和优化,以提高通信质量和效率。
3.光纤通信技术将逐渐向绿色、环保的方向发展。
未来的光纤通信系统将更加注重环保和绿色发展,通过优化设备结构和降低能耗,实现光纤通信系统的节能与环保,以满足社会可持续发展的需求。
4.光纤通信技术将逐渐向多元化、集成化的方向发展。
未来的光纤通信系统将更加注重多元化和集成化,通过将不同的通信服务集成在一起,实现通信服务的多元化和一体化,以提高用户体验和通信效率。
光纤通信技术具有很强的优势和发展潜力,未来的光纤通信系统将会更加智能化、高效化、绿色化和集成化,以满足人们日益增长的通信需求。
光纤通信的概念随着信息技术的快速发展,人们对于通信的需求也越来越高。
而光纤通信作为一种高速、稳定、可靠的通信方式,已经成为了现代通信领域的重要组成部分。
本文将从光纤通信的概念、原理、应用、发展等方面进行阐述。
一、光纤通信的概念光纤通信是一种利用光纤作为传输介质,将信息以光信号的形式传输的通信方式。
光纤通信的本质是将信息信号转换成光信号,然后通过光纤进行传输,最后再将光信号转换成信息信号。
光纤通信的优点在于传输速度快、传输距离远、传输质量高、抗干扰能力强等。
二、光纤通信的原理光纤通信的核心在于光纤的传输原理。
光纤通信采用的是全内反射原理,即当光线从一种密度较高的介质射向密度较低的介质时,光线会被全部反射回来。
在光纤中,光线被反射的次数越多,传输距离就越远,传输质量也就越好。
因此,光纤通信的传输质量与光纤的品质和制作工艺有着密切的关系。
三、光纤通信的应用光纤通信的应用非常广泛,涉及到电信、网络、广播电视、医疗、工业、军事等多个领域。
其中,电信领域是光纤通信的主要应用领域,包括电话、宽带、移动通信等。
网络领域也是光纤通信的重要应用领域,包括数据中心、云计算、物联网等。
广播电视领域则是光纤通信的新兴应用领域,通过光纤的高速传输和高清画质,可以实现更加高效、精准的广播电视服务。
四、光纤通信的发展随着信息技术的不断发展,光纤通信也在不断的发展和完善。
首先,光纤通信的传输速度和传输距离不断提高,传输速度已经达到了数十个Gbps,传输距离也已经超过了数百公里。
其次,光纤通信的应用领域不断扩展,应用范围不断拓宽。
最后,光纤通信的技术不断革新,新型光纤材料和制作工艺不断涌现,使得光纤通信的质量和性能不断提高。
总之,光纤通信作为一种高速、稳定、可靠的通信方式,已经成为了现代通信领域的重要组成部分。
随着信息技术的不断发展,光纤通信的应用前景将会更加广阔,也将会为人们的生活和工作带来更多的便利和效益。
光纤通信原理及应用光纤通信是一种利用光纤作为传输介质进行信息传输的通信技术。
其原理是利用光的全反射特性,将信息以光的形式在光纤中传输。
光纤通信具有传输带宽大、传输距离远、传输损耗低等优点,广泛应用于电信、互联网、广播电视等领域。
光纤通信的基本原理是利用光的全反射现象传输信号。
光纤是由聚合物或玻璃制成的细长柔性材料,其内部包含一个或多个光导芯和包围在外的光导壳。
光导芯是信号的传输通道,而光导壳是用来补偿传输中的损耗和散射的。
光纤通信的工作原理是通过光的全反射实现信号的传输。
当光从光纤一段射入时,由于光的折射率大于光外界的折射率,光在光纤内部会发生全反射,并沿着光导芯的轨道传输。
利用光的全反射特性,光信号可以在光纤中长距离地传输而不会发生衰减。
当光信号到达光纤的另一端时,通过光电探测器将光信号转换成电信号,从而实现光纤通信。
光纤通信具有传输带宽大、传输距离远、传输损耗低等优点,使其在通信领域得到广泛应用。
首先,光纤通信具有较宽的传输带宽。
由于光的频率范围较宽,光纤可以同时传输多个不同频率的信号,从而实现高容量的信息传输。
其次,光纤通信的传输距离较远。
由于光纤的传输损耗较低,光信号可以在光纤中长距离地传输,适用于跨越长距离的通信需求。
此外,光纤通信的传输损耗较低。
相比于其他传输介质,光在光纤中传输时几乎不会发生衰减,可以实现更高质量的信号传输。
光纤通信在现代社会中具有广泛的应用。
首先,光纤通信在电信领域中得到广泛应用。
光纤网络提供了高速、稳定的互联网接入,使人们可以更方便地进行网络通信、浏览网页、观看视频等。
其次,光纤通信在广播电视领域中应用广泛。
通过光纤网络,广播电视信号可以以高清晰、高质量的形式传输到用户终端,提供更好的观看体验。
此外,光纤通信还在医疗、军事、交通等领域中得到应用,为这些行业提供了高效可靠的通信手段。
总之,光纤通信是一种利用光纤作为传输介质进行信息传输的通信技术。
其利用光的全反射特性实现信号的传输。
浅谈光纤通信技术及其发展摘要:本文作者主要对光纤通信技术相关问题进行具体分析,并对其未来发展趋势谈出了自己的看法,仅供参考。
关键词:光纤通信信息技术光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。
光导纤维通信简称光纤通信。
可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。
实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。
随着信息科学技术的飞速发展,光纤通信技术越来越受到人们的重视,并逐步地开始普及。
究竟什么是光纤通信呢?简单地说,光纤通信就是利用光作为信息载体、以光纤作为传输的通信方式。
和以往的通信方式不同,光纤的材料是玻璃的,因其是电气绝缘体,不需要担心接地回路,所以光纤之间的串绕非常小;光纤通信系统的通信载体是光波,它的频率要比以往的电波高得多,再加上光纤又比同轴电缆或导波管的损耗低得多,光纤通信的容量要比微波通信大几十倍,光纤的芯很细,由多芯组成光缆的直径也很小,因此光纤通信的传输系统所占空间较小,很好地解决了地下管道拥挤的问题;另外,光波在光纤中传输,还不会因为光信号泄漏而担心传输的信息被人窃听,可谓好处多多。
1、光纤通信的发展历程1966年,美籍华人高锟同霍克哈姆发表了关于传输介质新概念的论文,这篇论文具有划时代的意义,它奠定了利用光纤进行通信的基础,指明了利用光纤进行通信的可能性。
1970年,美国康宁公司成功了研制出了损耗20dB/km的石英光纤。
促使光纤通信研究的进一步发展。
1976年,NTT公司继续将光纤损耗度降低,达到了0.47dB/km。
1977年,美国首先推出了用多模光纤进行光纤通信实验。
实现了第一代光纤通信系统。
1981年,实现了第二代光纤通信系统。
1984年,实现了第三代光纤通信系统。
80年代后期,实现了第四代光纤通信系统。
而后,利用光波分复用提高速率,利用光波来增长传输距离的系统,即第五代光纤通信系统。
2、光纤通信技术的特点2.1 大容量、高速度光纤通信的第一特点就是容量大,光纤比铜线或电缆有大得多的传输带宽,虽然现在的单波长光纤通信系统由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势,但是经过一系列的技术处理,单波长光纤通信系统的传输容量也在大幅增加,目前,光纤的传输速率一般在2.5Gbps 到10Gbps,还有很大的扩展空间。
光纤传输原理_光纤的发展及应用详解
光纤是一种纤细的、柔软的固态玻璃物质,它由纤芯、包层、涂覆层三部分组成,可作为光传导工具。
光纤的纤芯主要采用高纯度的二氧化硅(SiO2),并掺有少量的掺杂剂,提高纤芯的光折射率n1;包层也是高纯度的二氧化(SiO2),也掺有一些的掺杂剂,以降低包层的光折射率n2, n1>n2,发生全反射;涂覆层采用丙烯酸酯、硅橡胶、尼龙,增加机械强度和可弯曲性。
光纤传输原理
全反射原理:因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。
而且,折射光的角度会随入射光的角度变化而变化。
当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。
不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。
光纤通讯就是基于以上原理而形成的。
按照几何光学全反射原理,射线在纤芯和包层的交界面产生全反射,并形成把光闭锁在光纤芯内部向前传播的必要条件,即使经过弯曲的路由光线也不射出光纤之外。
光纤技术的起源与发展
1966年,美籍华人高锟和霍克哈姆发表论文,光纤的概念由此产生。
1970年,美国康宁公司首次研制成功损耗为20dB/km的光纤,光纤通信时代由此开始。
1977年美国在芝加哥首次用多模光纤成功地进行了光纤通信试验。
当时8.5微米波段的多模光波为第一代光纤通信系统。
随即在1981年、1984年以及19世纪80年代中后期,光。
光纤通信技术的演进与发展光纤通信技术是网络通信中的一项重要技术,通过光纤传输信号,可以达到高速、稳定、安全的通信方式。
随着科技的发展和人们对通信质量的要求不断提高,光纤通信技术也在不断演进和发展。
一、光纤通信技术的起源和发展光纤通信技术的起源可以追溯到19世纪末期的爱迪生发明的光电效应,但真正实现光纤通信的是20世纪60年代诞生的光纤。
20世纪70年代,光纤技术得到了进一步的发展,并开始应用于通信领域。
1980年,美国贝尔实验室成功实现了光纤通信的商用化,标志着光纤通信技术正式进入了商用阶段。
二、光纤通信技术的基本原理光纤通信技术是利用光纤把光信号转换成电信号传输的一种通信方式。
光纤由长而细的玻璃纤维或塑料纤维制成,内部充满纯净的玻璃或塑料。
在光纤的两端有光源和接收器,光源发出的光信号会被光纤内部反射,并从另一端传到接收器,最终通过接收器转换成电信号传输。
三、光纤通信技术的演进和发展1. 多波长分析复用技术多波长分析复用技术可以在同一个光纤内传输多个信号,即多路信号共享一条光纤。
该技术可以大大提高光纤的传输能力,使得网络传输速度更快。
2. WDM技术波分多路复用技术(WDM)是一种新型的光纤传输技术,它可以在一根光纤内传输数十个波长不同的光信号,进一步提高了光纤的传输能力。
WDM技术的出现,大大促进了光纤通信技术的发展。
3. FTTH技术FTTH技术(光纤到家)是一种将光纤延伸到用户家中的技术,可以为用户提供高速、稳定、安全的通信服务。
FTTH技术是光纤通信技术的一个重要发展方向,随着FTTH技术的不断完善和推广,用户可以享受到更加优质的通信服务。
四、光纤通信技术的未来发展光纤通信技术在未来的发展中,主要体现在以下几个方面:1.提高光纤传输速度随着科技的发展,未来的光纤通信技术将不断提高传输速度,提高数据传输效率。
2.提高光纤通信的无线化程度在未来的发展中,光纤通信将逐渐实现无线化,用户可以实现更便捷的使用方式。
光纤通信原理及应用
光纤通信是一种利用光纤作为传输介质的通信技术,它具有传输速度快、信息容量大、抗干扰能力强等优点,因此在现代通信领域得到了广泛的应用。
本文将介绍光纤通信的原理及其在各个领域的应用。
首先,我们来了解一下光纤通信的原理。
光纤通信是利用光纤作为传输介质,通过光的全反射来传输信息的一种通信方式。
光纤内部的光信号可以通过多次的全反射来传输,因此可以实现长距离的传输,而且光信号的传输速度非常快,能够满足现代通信对于高速传输的需求。
此外,光纤通信还具有抗干扰能力强的特点,能够在复杂的环境中稳定地传输信息。
光纤通信在各个领域都有着广泛的应用。
在通信领域,光纤通信可以实现高速、大容量的数据传输,因此被广泛应用于互联网、电话、电视等通信领域。
在医疗领域,光纤通信可以实现医学影像的传输,为医生提供更准确的诊断信息。
在工业领域,光纤通信可以实现工业自动化控制系统的数据传输,提高工业生产的效率和精度。
在科研领域,光纤通信可以实现科学仪器之间的数据传输,为科学研究提供更多的数据支持。
总的来说,光纤通信作为一种先进的通信技术,具有传输速度快、信息容量大、抗干扰能力强等优点,因此在各个领域都有着广泛的应用前景。
随着科技的不断进步,相信光纤通信技术将会在未来发展出更多的应用,为人们的生活和工作带来更多的便利。
word文档 可自由编辑 光纤通信原理和应用及其发展趋势 摘要:简述光纤通信的发展历史及其优点,介绍了光纤的结构与导光原理、光纤通信在各个方面的应用以及其发展趋势。
关键词:光纤通信 优点 原理 应用 1 引言 光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式。光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光导纤维通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤通信作为一门新兴技术,在近30年来迅猛发展,给世界通信技术乃至国民经济、国防事业和人民生活带来了巨大变革。
2 发展历史 1966年,英籍华人高锟 (C·K·Kao)预见利用玻璃可以制成衰减为20dB/km的通信光导纤维(简称光纤)。当时,世界上最优秀的光学玻璃衰减达l000dB/km左右。1970年,美国康宁公司首先研制成衰减为20dB/km 的光纤。从此,光纤就进入了实用化的发展阶段,世界各国纷纷开展光纤通信的研究。 光纤的主要作用是引导光在光纤内沿直线或弯曲的途径传播。为了实现长距离的光纤通信,必须减小光纤的衰减。C·K·Kao 早就指出降低玻璃内的过渡金属杂质离子是降低光纤衰减的主要因素。另一方面,玻璃内的OH离子对衰减也有严重的影响。到了 1976年,人们设法降低OH含量后发现衰减的长波长窗口有:1.31μm、1.55μm。1980年,光纤衰减已降低到 0.2dB/km (1.55μm),接近理论值。这样,使得进行长距离的光纤通信成为可能。与此同时,为促进光纤通信系统的实用化,人们又及时地开发出适用于长波长的光源、激光器、发光管、光检测器。应运而生的光纤成缆。光无源器件和性能测试及工程应用仪表等技术日臻成熟。这都为光纤光缆作为新的通信传输媒介奠定了良好的基础。 1976年,美国西屋电气公司在亚特兰大成功地进行了世界上第一个44.736Mbit/s且传输110km的光纤通信系统的现场实验,使光纤通信向实用化迈出了第一步。1981年以后,用光纤通信技术大规模地制成商品并推向市场。 历经近20年突飞猛进的发展, 光纤通信速率由1978年的45Mbit/s提高到目前的40Gbit/s。 我国自70年代初就开始了光纤通信技术的研究。1977年,武汉邮电研究院研制成功中国第一根阶跃折射率分布的、波长为 0.85μm多模光纤。后来又研制成单模光纤和特殊光纤以及光通信设备。现在,我国光纤通信产业已初具规模,能够生产光纤光缆、光电器件、光端机及其他工程应用方面的配套仪表器件等。由此可见,中国已具有大力发展光纤通信的综合实力。
3 光纤通信的优点 (1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的 word文档 可自由编辑
于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到10Gbps。 (2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 (3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。 (4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。 除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。
4 光纤的结构与导光原理 4.1 光纤的结构 光纤是传光的纤维波导或光导纤维的简称。其典型结构是多层同轴圆柱体,自内向外为纤芯、包层和涂覆层。
核心部分是纤芯和包层,其中纤芯由高度透明的材料制成,是光波的主要传输通道;包层的折射率略小于纤芯,使光的传输性能相对稳定。纤芯粗细、纤芯材料和包层材料的折射率,对光纤的特性起决定性影响。涂覆层包括一次涂覆、缓冲层和二次涂覆,起保护光纤不受水汽的侵蚀相机械的擦伤,同时又增加光纤的柔韧性,起着延长光纤寿命的作用。 word文档 可自由编辑
4.2 光纤中的射线光学理论 光波长很短,但相对光纤的几何尺寸要大得多,因此从射线光学理论的观点出发,研究光纤中的光射线,可以直观认识光在光纤中的传播机理和一些必要的概念。下面用射线光学理论对阶跃型及渐变型多模光纤的传输特性进行分析。射线光学的基本关系式是有关其反射和折射的菲涅耳(Fresnel)定律。 首先,我们来看光在分层介质中的传播,如下图所示。 图中介质1的折射率为n1,介
质2 的折射率为n2,设n1>n2。当光线以较小的角入射到介质界面时,部分光进入介质 2 并产生折射,部分光被反射。它们之间的相对强度取决于两种介质的折射率。
由菲涅耳定律可知 反射定律 (1)
折射定律 (2) 在n1>n2时,逐渐增大,进入介质2的折射光线进一步趋向界面,直到趋于90°。此时,进入介质2的光强显著减小并趋于零,而反射光强接近于入射光强。当=90° 极限值时,相应的角定义为临界角,由于sin90°=1,所以临界角当 >时,入射光线将产生全反射。应当注意,只有当光线从折射率大的介质进入折射率小的介质,即n1>n2时,在界面上才能产生全反射。
(3) 接下来分析一下全反射,全反射现象是光纤传输的基础。 光纤的导光特性基于光射线在纤芯和包层界面上的全反射,使光线限制在纤芯中传输。光纤中有两种光线,即子午光线和斜射光线。子午光线是位于子午面(过光纤轴线的平面)上的光线,而斜射光线是不经过光纤轴线传输的光线。下图所示阶跃型的光纤,纤芯折射率为n1,包层的折射率为n2,且n1>n2,空气折射率为n0。在光纤内传输的子午光线,简称内光线,遇到纤芯与包层的分界面的入 word文档 可自由编辑
射角大于时,才能保证光线在纤芯内产生多次全反射,使光线沿光纤传输。 5光纤通信的应用及其发展趋势 5.1 应用领域 光纤通信的应用领域是很广泛的,主要用于市话中继线,光纤通信的优点在这里可以充分发挥,逐步取代电缆,得到广泛应用。还用于长途干线通信过去主要靠电缆、微波、卫星通信,现以逐步使用光纤通信并形成了占全球优势的比特传输方法;用于全球通信网、各国的公共电信网(如我国的国家一级干线、各省二级干线和县以下的支线);它还用于高质量彩色的电视传输、工业生产现场监视和调度、交通监视控制指挥、城镇有线电视网、共用天线(CATV)系统,用于光纤局域网和其他如在飞机内、飞船内、舰艇内、矿井下、电力部门、军事及有腐蚀和有辐射等中使用。 光纤传输系统主要由:光发送机、光接收机、光缆传输线路、光中继器和各种无源光器件构成。要实现通信,基带信号还必须经过电端机对信号进行处理后送到光纤传输系统完成通信过程。 它适合于光纤模拟通信系统中,而且也适用于光纤数字通信系统和数据通信系统。在光纤模拟通信系统中,电信号处理是指对基带信号进行放大、预调制等处理,而电信号反处理则是发端处理的逆过程,即解调、放大等处理。在光纤数字通信系统中,电信号处理是指对基带信号进行放大、取样、量化,即脉冲编码调制(PCM )和线路码型编码处理等,而电信号反处理也是发端的逆过程。对数据光纤通信,电信号处理主要包括对信号进行放大,和数字通信系统不同的是它不需要码型变换。
5.2 发展趋势 5.2.1向超高速系统的发展 目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。
5.2.2向超大容量WDM系统的演进 采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分