纳米抗菌材料的研究进展
- 格式:pdf
- 大小:223.87 KB
- 文档页数:8
消毒工艺是生活饮用水处理中的一项重要工艺,目标是灭活水中多种病原微生物,对于保障人类的安全和健康有着重要意义。
各个国家均对饮用水的抗菌消毒予以高度重视。
传统的氯化消毒工艺过程中,氯会与水中天然有机物反应生成三卤甲烷和非挥发性的卤代有机物等消毒副产物(DBPs)。
其他的化学消毒工艺如二氧化氯、臭氧消毒等,也可能会使水中生成氯酸盐、亚氯酸盐、溴酸盐等DBPs。
DBPs对人体具有致癌、致畸、致突变的“三致”作用,严重威胁人们健康。
因此,在消毒过程避免DBPs的生成是亟待解决的难题。
而作为一种新型的抗菌消毒材料,纳米银在抗菌方面的优越性,引起了众多学者的研究。
1.纳米材料简介纳米材料是指三维空间中至少一维的尺寸介于1~100 nm之间的材料。
由于尺寸处于纳米级别,纳米材料表现出一些特有的效应,如表面效应、体积效应、量子尺寸效应和宏观量子隧道效应。
此外,纳米材料往往具有非常大的比表面积以及较高的化学活性。
这些性质有利于其抗菌能力的发挥。
常作为抗菌剂的纳米材料主要有两类:碳系纳米材料和纳米金属材料。
碳系纳米材料包括碳纳米管、氧化石墨烯等。
碳纳米材料对水中溶壁微球菌、变异链球菌、沙门氏菌属等均具有抗菌作用。
氧化石墨烯对于大肠杆菌具有很强的灭活能力。
纳米金属材料包括纳米银、纳米铁、纳米氧化锌等。
纳米金属材料由于特有的界面效应,其表面原子缺少临近的配位原子导致化学活性极强,也因此提高了对于细菌的亲和力,易于杀死细菌。
纳米铁即可在氧和无氧的条件下高效的灭活细菌。
纳米银作为最具前景的纳米金属材料之一,其抗菌方面的应用得到了越来越多的关注。
2.纳米银的抗菌研究2.1纳米银抗菌的优势在众多的纳米材料之中,纳米银(nAg)脱颖而出,被广泛研究主要得益于以下特性。
nAg的抗菌活性极高。
银的杀菌能力是锌的上千倍。
银离子对多种革兰氏阴性菌、革兰氏阳性菌、霉菌等均有广谱、强烈的杀灭作用,这是其作为抗菌材料被研究的基础。
许多学者就nAg对细菌的抗菌性能进行了深入研究。
纳米银材料抗菌机理及应用研究自然界中,金属银拥有卓越的抗菌能力。
因此,随着现代医疗、生活水平的提高,银逐渐被广泛应用于医疗用品、日用品、环保材料等领域。
目前广泛应用的银材料主要包括纳米银、银离子等类型。
其中纳米银材料是一种具有优良抗菌性能的生物医用材料,其独特的抗菌机理以及广泛的应用前景引起了人们的高度关注。
纳米银材料抗菌机理纳米银具有优越的抗菌活性,是因为其特殊的抗菌机理。
纳米银粒子表面带有大量的自由电子,这些自由电子能够与菌体的DNA、RNA等分子进行反应,使其结构发生改变,从而抑制了菌体的生长和繁殖。
此外,纳米银还能与菌体表面的蛋白质、酶等官能基团结合,破坏了其功能性结构,破坏了菌体的代谢和生理活动,最终达到杀灭或抑制菌体的目的。
而且,纳米银粒子本身的高表面积、多孔性等特点,也能让它们更容易与菌体产生接触、吸附和渗透作用,加速抗菌效果的产生。
纳米银材料应用研究纳米银材料已经被广泛应用于医疗、环保、日用等领域。
例如,在医疗领域中,纳米银材料可以应用于各种医疗用品制造,如医用敷料、人体假体、手术器械等;在日用领域中,纳米银也可以被应用于制造各种抗菌饰品、生活用品、厨具等;在环保领域中,纳米银可应用于防霉、防腐、除臭等方面,如制造高效空气净化器、饮水机等。
目前纳米银的应用领域广泛,但在未来的研究中还有许多值得关注和攻克的难点。
例如,如何提高纳米银在价格上的竞争力;如何应对纳米银在潜在毒性等方面带来的安全隐患;如何进一步挖掘纳米银材料在抗菌领域的应用潜力等问题。
总之,纳米银是一种非常重要的抗菌材料,其天然的抗菌性能加上人造的加工技术应用,使得它在应用领域具有广泛的前景。
未来,需要对其进行更加深入的理论和实践研究,以进一步推动纳米银材料在生产、生活等领域的广泛应用。
262024年1月上 第01期 总第421期科技创新驱动China Science & Technology Overview0引言近年来,一系列抗菌药物已被开发作为化学抗菌策略,如外用消毒剂、重金属离子/氧化物、季铵盐等。
尽管上述方法具备克服对细菌产生耐药性机理的优势,但碘化合物等系列的外用消毒剂存在一些不良反应。
例如,酸中毒、甲状腺功能亢进;重金属离子/氧化物具有广谱抗菌性,但可对特定种类的哺乳动物细胞形成毒性;季铵盐化合物具有高效的抗菌作用,但在长时间应用后也会形成耐药性。
纳米酶是指一种具有酶催化活性的纳米材料,当前已成为一种极具潜力的可替代抗菌剂,涵盖了碳材料、金属材料、金属氧化物或硫化物、金属配合物等,如血红素-石墨烯纳米片、金纳米粒子、磁性Fe 3O 4纳米粒子、金属有机骨架(MOFs)材料等。
金属与金属氧化物纳米粒子能够释放出抗菌的金属离子;抗菌组分修饰在MOFs 表面通过特定环境刺激可控释放抗菌药物直接与细菌作用。
具有类蛋白酶活力的纳米材料能够利用各种方式杀伤病菌,不同于市场常用的抗生素,纳米酶很难诱导病菌产生耐药性[1]。
目前,不同类型的酶样活性的数百种纳米材料已被开发应用于生物医学领域,例如免疫测定、生物传感器、抗菌剂以及体内临床诊断和治疗。
纳米酶不仅具备调控活性氧自由基的能力,还可以有效杀灭各种革兰氏阳性和阴性的病原细菌,及其顽固性细菌膜;具备较好的化学稳定性、生物相容性、可回收再利用等优势,在提高创伤愈合能力和环保抗污方面都有着巨大的应用前景[2]。
1纳米酶的分类2007年,阎锡蕴课题组最先发现Fe 3O 4纳米颗粒具有天然辣根过氧化物酶(HRP)的活性,可以催化底物与双氧水的反应。
随后研究人员发现还有一些纳米材料,比如富勒烯、金纳米颗粒、铁磁体纳米颗粒等也具有类天然酶的活性,这些具有天然酶活性的纳米材料被称为纳米酶。
按照催化底物的不同,现有的纳米酶可分为超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、氧化酶(OXD)等。
2021,40(2)河南大学学报(医学版)㊃147㊀㊃文章编号:1672-7606(2021)02-0147-05光热纳米材料在抗菌领域的研究进展杨莹莹,冯闪,马陇豫,孙梦瑶,张审,刘超群∗河南大学药学院,河南开封475004摘㊀要:细菌感染威胁着人类健康,特别是耐药菌导致的疾病,临床上的发病率和死亡率极高,如耐甲氧西林金黄色葡萄球菌(MRSA)是临床上最可怕的致病菌(超级细菌)之一,可导致败血症和急性心内膜炎㊂目前耐药菌的快速变异和新抗生素开发的严重滞后,迫切需要对新型抗菌剂的研究㊂具有光热效应的纳米材料将光能转化为热能,使局部温度升高,可破坏细菌细胞膜㊁导致蛋白质变性㊂因其独特的抗菌机制,产生耐药菌的可能性较小,可以作为抗生素的替代品㊂光热纳米材料分为三类,包括金属类㊁碳类和聚合物类纳米材料㊂本文对近几年来具有光热效应的抗菌纳米材料领域的研究进展进行综述,并讨论其特点及未来的发展方向㊂关键词:纳米材料;光热效应;抗菌活性;金属类纳米材料;碳类纳米材料;聚合物类纳米材料中图分类号:R318.08㊀㊀㊀㊀㊀㊀文献标志码:A㊀收稿日期:2021⁃02⁃16㊀基金项目:河南省重点研发与推广专项(212102310231);河南省高等学校重点科研项目(21A430006);河南省青年科学基金(20230041006)㊀作者简介:杨莹莹(1997⁃),女,硕士研究生㊂研究方向:纳米材料的生物医学应用㊂㊀∗通信作者:刘超群(1989⁃),男,博士,讲师㊂研究方向:钠米材料的生物医学应用㊂ResearchprogressofphotothermalnanomaterialsinantibacterialYANGYingying FENGShan MALongyu SUNMengyao ZHANGShen LIUChaoqun∗SchoolofPharmacy HenanUniversity Kaifeng475004 ChinaAbstract Bacterialinfectionisthreateninghumanhealth especiallythediseasescausedbydrug⁃resistantbacteria withhighclinicalmorbidityandmortality.Forexample methicillinresistantstaphylococcusaureus MRSA isoneofthemostfearedpathogensintheclinical superbacteria whichcanleadtosepsisandacuteendocarditis.Atpresent therapidmutationofdrug⁃resistantbacteriaandtheseriouslaginthedevelopmentofnewantibioticsmakeiturgenttostudynewantimicrobialagents.Nanomaterialswithphotothermaleffectconvertlightenergyintoheat whichcanincreaselocaltemperature anddestroybacterialcellmembraneandcauseproteindenaturation.Becauseofitsuniqueantibacterialmechanism drug⁃resistantbacteriaarelesslikelytobeproducedandcanbeusedasasubstituteforantibiotics.Photothermallyenablednanomaterialsareclassifiedintothreegroups includingmetal⁃ carbon⁃ andpolymer⁃basednanomaterials.Inthisreview wesummarizetheresearchprogressofantibacterialnanomaterialswithphotothermaleffectinrecentyears anddiscusstheircharacteristicsandfuturedevelopmentdirection.Keywords nanomaterial photothermal antibacterialactivity metal⁃basednanomaterials carbon⁃basednanomaterials polymer⁃basednanomaterials㊀㊀目前,由细菌引起的感染性疾病,尤其是耐药菌,已成为全球性重大健康问题之一,引起了人们的广泛关注[1]㊂一项研究[2⁃3]表明,如果不能控制耐药菌感染,每年将导致1000多万患者死亡,损失高㊃148㊀㊃JournalofHenanUniversity(MedicalScience)2021,40(2)达100万亿美元㊂为解决细菌感染带来的危害,目前常用的抗菌方法,包括抗生素㊁重金属离子㊁抗菌肽和季铵盐化合物[4⁃5]㊂其中抗生素是一种有效的抗菌药物,在临床上有广泛的应用㊂但抗生素的滥用导致的细菌耐药,已成为当今医学领域和人类生存环境面临的一个严重问题[6]㊂金属离子长期以来被用作不同形式的杀菌化学品,并显示出抗广谱细菌的抗菌性能,但是,它们会对哺乳动物细胞产生毒性[7]㊂抗菌肽是一种新型高效抗菌药物,但是存在合成困难㊁纯化复杂㊁成本高等问题,限制了它们的广泛应用[8]㊂季铵类化合物具有高效㊁方便的抗菌作用,但长期使用后也会引起耐药性[9]㊂基于上述问题,利用纳米材料及其复合材料的光处理方法是近年研究的热点[10⁃11]㊂在这些纳米材料中,光热疗法(photothermaltherapy,PTT)具有高效的靶向选择性㊁远程可控性㊁最小侵袭性及良好的生物安全性等优点㊂此外,PTT不引起细菌耐药性,并且具有广泛的抗菌谱[12⁃13]㊂用于治疗细菌感染的PTT纳米材料有三类:金属类纳米材料[14⁃15]㊁碳类纳米材料[16⁃17]㊁聚合物类纳米材料[18]㊂本文就这三种纳米材料的合成原理㊁抗菌机理及抗菌领域应用的研究进展进行综述㊂1㊀金属类纳米材料金属类纳米材料包括纳米金㊁纳米铂和二硫化钼等,在近红外激光照射后,激发态通过非辐射衰变以热量的形式释放能量[19]㊂金属类纳米材料在近红外窗口的吸收波长和强度取决于纳米材料的形貌和尺寸[20⁃21]㊂产生了多种金属纳米结构,如纳米棒[22⁃23]㊁纳米星[24]㊁纳米线[25⁃26]㊁纳米花[27]等㊂由于纳米金在近红外窗口具有强烈的局部表面等离子体共振(LSPR)效应㊁可调控的尺寸和形貌㊁良好的生物相容性,使其成为金属类光热纳米材料的代表㊂Wang[28]等采用中间层转换法制备了包覆在金纳米棒上的海胆型Bi2S3,解决半导体Bi2S3快速的光诱导电子空穴复合和近红外光的低吸收限制了活性氧的产生和光热转换效率的问题㊂实验结果表明,Au@Bi2S3核-壳结构的纳米材料具有较强的光热转换效率和产生更多的ROS,通过光热效应和光动力协同抗菌,对大肠杆菌和金黄色葡萄球菌均有较好的抗菌活性㊂金银纳米材料因其独特的光学特性而备受关注,由于具有易于表面功能化的优点,在成像㊁给药和PTT等领域得到了广泛的应用[29⁃30]㊂金银纳米材料也被开发为抗菌剂,与光热效应构建联合抑菌平台㊂Wu[31]等人研究了一种镀硅的金-银纳米笼(Au⁃Ag@SiO2NCs),在近红外激光照射下,将金纳米材料的光热效应与银离子的持续释放联合进行抗感染治疗㊂实验结果表明,Au⁃Ag@SiO2NCs浓度为50mg/mL,近红外光照射10min后从20.7ħ上升到57.4ħ,具有良好的光热性质㊂体外和体内实验表明制备的纳米材料在近红外激光照射下能有效抑制金黄色葡萄球菌(S.aureus)和大肠杆菌(E.coli)㊂将SiO2涂层应用于金银纳米材料表面,提高其生物相容性,使银离子的实现缓释,体外治疗12h仍然具有杀菌效果㊂Qiao[32]等人提出了一种复合结构的含铜中空纳米壳(AuAgCu2ONS),作为光热治疗剂用于皮肤慢性感染和伴有耐药细菌感染的不愈合性角膜炎㊂光热性质实验结果表明AuAgCu2ONS具有良好的光热效应,光热转换效率为57%,同时具有良好的光稳定性,在激光照射五次循环后,光热转换效率不变㊂通过(808nm,1.5W/cm2,10min)近红外激光照射,用平板计数法与ESBLE.coli和MR⁃SA孵育来评估AuAgCu2ONS的光热抗菌性能㊂结果表明,AuAgCu2ONS具有较强的抗菌能力,用26.4μg/mL的浓度即可有效杀灭两种菌株㊂二硫化钼(MoS2)纳米片是一种新兴的二维材料,它具有优异的光热性能,此外它较大的比表面积可用于负载药物㊂由于其特殊的物理和化学特性,可应用于生物成像[33]㊁癌症[34⁃35]和抗菌[36⁃37]治疗等多种生物医学领域㊂为解决MoS2在缓冲溶液中易聚集现象,Huang[38]等人将带正电荷的季化壳聚糖对MoS2纳米薄片进行改性,制备了含抗生素的联合抗菌平台㊂由于抗生素⁃光热联合治疗,通过体内体外实验表明在适宜的温度(45ħ)和低抗生素浓度下抗MRSA感染㊂2㊀碳类纳米材料碳类纳米材料在近红外区具有较强的光吸收性和稳定性,即使经过长时间照射,其光吸收性能也不会衰减,所以碳基纳米材料在光热抗菌方面有着广阔的应用前景㊂主要包括碳纳米管㊁富勒烯㊁石墨烯和碳量子点等㊂碳纳米管(CNTs)具有优异的光热转换性能,且体积小㊁表面积大,可与生物分子㊁细胞产生独特的相互作用,增强伤口敷料的生物活性,促进伤口愈合[39]㊂He[40]等人以N⁃羧乙基壳聚糖(CEC)和末端苯甲醛F127/碳纳米管(PF127/CNT)为基础,制备了具有优异的光热和导电性能的水凝胶㊂实验结果表明,CNTs使水凝胶具有光热特性,可显著提高其体外/体内抗菌活性㊂在ZOI试验中,2021,40(2)河南大学学报(医学版)㊃149㊀㊃CEC/PF/CNT水凝胶具有较好的缓释性能和抗菌活性㊂通过小鼠皮肤创面感染模型进一步证明,在近红外激光照射下,CEC/PF/CNT水凝胶有较强的抗菌作用,促进创面愈合㊂由于石墨烯具有优异的光热转换能力㊁较大的表面积和表面易于修饰的特性,近年来在光热抗菌领域得到了广泛的研究㊂特别是石墨烯㊁氧化石墨烯(GO)㊁还原氧化石墨烯(rGO)等一系列石墨烯类纳米材料㊂Fan[41]等人制备了MOF衍生掺杂ZnO的石墨烯二维材料,通过局部大量Zn2+离子穿透㊁物理切割和热疗杀死,协同破坏细菌被膜和细胞内物质㊂实验结果表明,极低的纳米材料浓度具有强大的局部杀菌效果,短时间的光热处理,有助于对皮肤创面进行快速㊁安全的杀菌,不会损伤正常皮肤组织㊂细菌感染伤口处于低氧微环境,低氧微环境不仅能促使细菌生长,而且还会促进它们对药物和治疗方法的耐药性,从而导致生物膜的形成㊂临床上为促进细菌感染伤口的愈合,通过高压氧疗法来改善低氧微环境,将气态氧输送到全身,但对患者易造成氧中毒㊁费用负担等㊂载氧载体如微/纳米气泡(MNBs)能够将局部氧气输送到低氧微环境中,但易出现氧气未到达伤口部位而过早的释放㊂Janne⁃sari[42]等人提出还原氧化石墨烯/CuO2纳米复合材料的制备,该复合材料更易控制氧气的释放,且释放时间更长㊂实验表明,将氧化铜(作为氧气的固体来源)与还原氧化石墨烯纳米片结合的情况下,通过局部温度升高和增多活性氧种类产生广谱抗菌作用(包括革兰氏阳性金黄色葡萄球菌㊁革兰氏阴性大肠杆菌和耐药MRSA细菌)㊂Yu[11]等人为解决细菌感染伤口的低氧微环境抑制光动力治疗的抗菌效果,提出一种不依赖局部组织氧浓度清除耐药菌的方法㊂使用乙二醇壳聚糖修饰聚多巴胺(PDA)包覆的羧基石墨烯纳米片(CG),使其成为水溶性壳聚糖衍生物,将AIBI作为自由基源,将其负载材料上㊂在近红外光的照射下,PDA@CG的光热效应使局部温度升高,导致AIBI分解生成烷基自由基(R),造成细菌损伤㊂通过体内体外抗菌实验表明,在常氧和低氧条件下,产生的烷基自由基均具有较强的抗菌效果㊂3㊀聚合物类纳米材料有机共轭聚合物是一类具有π⁃π共轭骨架的大分子,具有制备成本低㊁尺度易调控㊁稳定性好㊁优异的光热转换能力等优点,是光热材料中研究的热点㊂Zhou[43]等人提出了一种在近红外激光照射下由季铵盐修饰的共轭聚合物同时具有PDT和PTT效应,实现了单光源双光治疗的治疗方法㊂共轭聚合物侧链上的季铵基团与带负电荷的细菌膜相互作用,提高局部抗菌效率,共轭主链能同时产生活性氧(ROS)和热量,对细菌造成损伤㊂在近红外光照射(808nm,1.0W㊃cm-2,8min),40μg㊃mL-1的实验条件下,共轭聚合物能有效地杀死金黄色葡萄球菌和耐药大肠杆菌㊂为能有效杀死白色念珠菌则需更高浓度共轭聚合物㊂聚多巴胺(PDA)是贻贝分泌的类似蛋白结构的聚合物,制备方法简单㊁附着力强㊁生物相容性好,易于修饰于材料表面提高其分散性,也是一种优良的光热材料㊂Yu[44]等人将聚多巴胺(PDA)包覆氧化铁纳米复合材料(Fe3O4@PDA)作为光热材料,将第三代树突状聚氨基胺(PAMAM⁃G3)接枝在Fe3O4@PDA表面,然后将NO负载其复合材料上㊂将制备的纳米复合材料在近红外激光照射下表现出可控的NO释放性能㊂光热效应和NO协同抗对大肠杆菌和金黄色葡萄球菌,显著降低了细菌活力和生物膜生物量㊂聚苯胺(PANI)由于亚胺氮原子的掺杂,在近红外区有较强的吸收,能够在近红外光照下产生大量的热量来对抗细菌和肿瘤细胞㊂Hsiao[45]将PANI接枝在壳聚糖(CS)上作为侧链,可以在水环境中自组装成胶束,并在局部pH值升高的驱动下转化为胶体凝胶,这些自掺杂的聚苯胺胶束作为光热剂,利用近红外光照射触发反应㊂在体内实验中,复合材料注射溶液最终分布在酸性脓肿上,遇到健康组织的边界时,就会形成胶体凝胶㊂由于PANI侧链,胶体凝胶在近红外光照射下(808nm,0.5W/cm2)产生热疗,导致细菌热裂解,修复感染创面而不留下残留的植入材料㊂减少对周围健康组织不必要的热损伤㊂4㊀结语金属类㊁碳类和聚合物类复合材料的光热抗菌效果优于单独使用相同材料的光热抗菌效果,除产生热量外,复合材料还具有某些特性,如酶活性(蛋白酶)㊁ROS生成㊁促进离子释放(银离子)以及复合材料表面电荷与细菌细胞壁电荷之间的静电吸引㊂这些特性与PTT结合,有利于破坏细菌细胞膜,提高抗菌效果㊂通过对纳米材料进行修饰,达到多种治疗手段联合治疗的目的,如光热和化疗联合㊁光热和光动力治疗联合等㊂光热纳米材料的发展为治疗㊃150㊀㊃JournalofHenanUniversity(MedicalScience)2021,40(2)耐药菌引起的感染提供了机会,应用于临床仍有许多问题需要解决㊂首要问题是生物安全性,尽管文献中报道的大部分纳米材料没有细胞毒性,但是这些材料是否可生物降解㊁是否会引起潜在的毒副作用等问题需要进一步研究㊂参考文献:[1]ANDERSSONDI,HUGHESD.Antibioticresistanceanditscost:isitpossibletoreverseresistance?[J].NatRevMicrobiol,2010,8(4):260⁃271.[2]SHANKARPR.Bookreview:tacklingdrug⁃resistantinfec⁃tionsglobally[J].ArchPharmaPract,2016,7(3):110⁃111.[3]CHENZW,WANGZZ,RENJS,etal.Enzymemimicryforcombatingbacteriaandbiofilms[J].AccChemRes,2018,51(3):789⁃799.[4]WUQ,QIQF,ZHAOC,etal.Ahybridproteolyticandantibacterialbifunctionalfilmbasedonamphiphiliccarbo⁃naceousconjugatesoftrypsinandvancomycin[J].JMaterChemB,2014,2(12):1681⁃1688.[5]TIANTF,SHIXZ,CHENGL,etal.Graphene⁃basednanocompositeasaneffective,multifunctional,andrecy⁃clableantibacterialagent[J].ACSApplMaterInterfaces,2014,6(11):8542⁃8548.[6]DAIXM,ZHAOY,YUYJ,etal.Singlecontinuousnear⁃infraredlaser⁃triggeredphotodynamicandphotothermalablationofantibiotic⁃resistantbacteriausingeffectivetarge⁃tedcoppersulfidenanoclusters[J].ACSApplMaterInter⁃faces,2017,9(36):30470⁃30479.[7]CAOFF,JUEG,ZHANGY,etal.Anefficientandbe⁃nignantimicrobialdepotbasedonsilver⁃infusedMoS2[J].ACSNano,2017,11(5):4651⁃4659.[8]NGUYENLT,HANEYEF,VOGELHJ.Theexpandingscopeofantimicrobialpeptidestructuresandtheirmodesofaction[J].TrendsBiotechnol,2011,29(9):464⁃472.[9]LIUCQ,WEIZH,HUOZY,etal.Constructingacon⁃tact⁃activeantimicrobialsurfacebasedonquarternizedam⁃phiphiliccarbonaceousparticlesagainstbiofilms[J].ACSApplBioMater,2020,3(8):5048⁃5055.[10]ZHANGC,HUDF,XUJW,etal.Polyphenol⁃assistedexfoliationoftransitionmetaldichalcogenidesintonanosheetsasphotothermalnanocarriersforenhancedanti⁃biofilmactivity[J].ACSNano,2018,12(12):12347⁃12356.[11]YuXZ,HEDF,ZhangXM,etal.Surface⁃adaptiveandinitiator⁃loadedgrapheneasalight⁃inducedgeneratorwithfreeradicalsfordrug⁃resistantbacteriaeradication[J].ACSApplMaterInterfaces,2019,11(2):1766⁃1781.[12]ZHANGY,SUNPP,ZHANGL,etal.Silver⁃infusedporphyrinicmetal⁃organicframework:surface⁃adaptive,on⁃demandnanoplatformforsynergisticbacteriakillingandwounddisinfection[J].AdvFunctMater,2019,29(11):1808594.[13]WANGXC,LUF,LIT,etal.Cu2Snanoflowersforskintumortherapyandwoundhealing[J].ACSNano,2017,11(11):11337⁃11349.[14]AGOSTINODA,TAGLIETTIA,DESANDOR,etal.Bulksurfacescoatedwithtriangularsilvernanoplates:an⁃tibacterialactionbasedonsilverreleaseandphoto⁃thermalEffect[J].Nanomaterials,2017,7(1):7.[15]LANDISRF,GUPTAA,LEEYW,etal.Cross⁃linkedpolymer⁃stabilizednanocompositesforthetreatmentofbacterialbiofilms[J].ACSNano,2017,11(1):946⁃952.[16]LINJF,LIJ,GOPALA,etal.Synthesisofphoto⁃exci⁃tedChlorine6conjugatedsilicananoparticlesforenhancedanti⁃bacterialefficiencytoovercomemethicillin⁃resistantStaphylococcusaureus[J].ChemCommun,2019,55(18):2656⁃2659.[17]YANGY,MAL,CHENGC,etal.Nonchemotherapicandrobustdual⁃responsivenanoagentswithon⁃demandbacterialtrapping,ablation,andreleaseforefficientwounddisinfection[J].AdvFunctMater,2018,28(21):1705708.[18]CALOE,KHUTORYANSKIYVV.Biomedicalapplica⁃tionsofhydrogels:areviewofpatentsandcommercialproducts[J].EurPolymJ,2015,65:252⁃267.[19]HUDF,ZOULY,LIBC,etal.Photothermalkillingofmethicillin⁃resistantstaphylococcusaureusbybacteria⁃tar⁃getedpolydopaminenanoparticleswithnano⁃localizedhy⁃perpyrexia[J].ACSBiomaterSciEng,2019,5(10):5169⁃5179.[20]CHENGCH,LINKJ,HONGCT,etal.Plasmon⁃acti⁃vatedwaterreducesamyloidburdenandimprovesmemoryinanimalswithAlzheimer sDisease[J].SciRep,2019,9(1):13252.[21]YANGCP,FANGSU,TSAIHY,etal.Newlypre⁃paredsurface⁃enhancedRamanscattering⁃activesubstratesforsensingpesticides[J].JElectroanalChem,2020,861:113965.[22]YEXC,ZHENGC,CHENJ,etal.Usingbinarysurfac⁃tantmixturestosimultaneouslyimprovethedimensionaltunabilityandmonodispersityintheseededgrowthofgoldnanorods[J].NanoLett,2013,13(2):765⁃771.[23]QUYENTTB,CHANGCC,SUWN,etal.Self⁃focu⁃singAu@SiO2nanorodswithrhodamine6Gashighlysen⁃sitiveSERSsubstrateforcarcinoembryonicantigendetec⁃2021,40(2)河南大学学报(医学版)㊃151㊀㊃tion[J].JMaterChemB,2014,2(6):629⁃636.[24]LIUXL,WANGJH,LIANGS,etal.TuningplasmonresonanceofgoldnanostarsforEnhancementsofnonlinearopticalresponseandramanscattering[J].JPhysChemC,2014,118(18):9659⁃9664.[25]MURPHSEH,MURPHCJ,LEACHA,etal.Apossi⁃bleorientedattachmentgrowthmechanismforsilvernanowireformation[J].CrystGrowthDes,2015,15(4):1968⁃1974.[26]WUCY,CHENGHY,OUKL,etal.Real⁃timesen⁃singofhepatitisBvirusXgeneusinganultrasensitivenanowirefieldeffecttransistor[J].JPolymEng,2014,34(3):273⁃277.[27]WANGL,LIUCH,NEMOTOY,etal.Rapidsynthesisofbiocompatiblegoldnanoflowerswithtailoredsurfacetextureswiththeassistanceofaminoacidmolecules[J].RSCAdvances,2012,2(11):4608⁃4611.[28]WANGWN,PEIP,CHUZY,etal.Bi2S3coatedAunanorodsforenhancedphotodynamicandphotothermalan⁃tibacterialactivitiesunderNIRlight[J].ChemEngJ,2020,397:125488.[29]CHENJY,WANGDL,XIJF,etal.Immunogoldnanocageswithtailoredopticalpropertiesfortargetedpho⁃tothermaldestructionofcancercells[J].NanoLett,2007,7(5):1318⁃1322.[30]HUANGSN,DUANSF,WANGJ,etal.Folic⁃Acid⁃Mediatedfunctionalizedgoldnanocagesfortargeteddeli⁃veryofanti⁃miR⁃181bincombinationofgenetherapyandphotothermaltherapyagainsthepatocellularcarcinoma[J].AdvFunctMater,2016,26(15):2532⁃2544.[31]WUSM,LIAH,ZHAOXY,etal.Silica⁃coatedgold⁃silvernanocagesasphotothermalantibacterialagentsforcombinedanti⁃infectivetherapy[J].ACSApplMaterIn⁃terfaces,2019,11(19):17177⁃17183.[32]QIAOY,HEJ,CHENWY,etal.Light⁃activatablesy⁃nergistictherapyofdrug⁃resistantbacteria⁃infectedcuta⁃neouschronicwoundsandnonhealingkeratitisbycuprifer⁃oushollownanoshells[J].ACSNano,2020,14(3):3299⁃3315.[33]LIUT,SHISX,LIANGC,etal.IronoxidedecoratedMoS2nanosheetswithdoublePEGylationforchelator⁃freeradiolabelingandmultimodalimagingguidedphotothermaltherapy[J].ACSNano,2015,9(1):950⁃960.[34]ZHUXB,JIXY,KONGN,etal.Intracellularmecha⁃nisticunderstandingof2DMoS2Nanosheetsforanti⁃exo⁃cytosisenhancedsynergisticcancertherapy[J].ACSNano,2018,12(3):2922⁃2938.[35]YADAVV,ROYS,SINGHP,etal.2DMoS2⁃basednanomaterialsfortherapeutic,bioimaging,andbiosensingapplications[J].Small,2019,15(1):e1803706.[36]YINWY,YUJ,LUFT,etal.Functionalizednano⁃MoS2withperoxidasecatalyticandnear⁃infraredphoto⁃thermalactivitiesforsafeandsynergeticwoundantibacte⁃rialapplications[J].ACSNano,2016,10(12):11000⁃11011.[37]GAOQ,ZHANGX,YINWY,etal.FunctionalizedMoS2nanovehiclewithnear⁃infraredlaser⁃mediatednitricoxidereleaseandphotothermalactivitiesforadvancedbac⁃teria⁃infectedwoundtherapy[J].Small,2018,14(45):1802290.[38]HUANGY,GAOQ,LIX,etal.OfloxacinloadedMoS2nanoflakesforsynergisticmild⁃temperaturephotothermal/antibiotictherapywithreduceddrugresistanceofbacteria[J].NanoRes,2020,13(9):2340⁃2350.[39]YOUGBARES,MUTALIKC,KRISNAWATIDI,etal.Nanomaterialsforthephotothermalkillingofbacteria[J].Nanomaterials,2020,10(8):1123.[40]HEJH,ShiMG,LIANGYP,etal.Conductiveadhe⁃siveself⁃healingnanocompositehydrogelwounddressingforphotothermaltherapyofinfectedfull⁃thicknessskinwounds[J].ChemEngJ,2020,394:124888.[41]FANX,YANGF,HUANGJB,etal.Metal⁃organic⁃framework⁃derived2Dcarbonnanosheetsforlocalizedmultiplebacterialeradicationandaugmentedanti⁃infectivetherapy[J].NanoLett,2019,19(9):5885⁃5896.[42]JANNESARIM,AKHAVANO,MADAAHHOSSEINIHR,etal.Graphene/CuO2nanoshuttlewithcontrollablere⁃leaseofoxygennanobubblespromotinginterruptionofbac⁃terialrespiration[J].ACSApplMaterInterfaces,2020,12(32):35813⁃35825.[43]ZHOUSR,WANGZJ,WANGYX,etal.Near⁃infra⁃redlighttriggeredsynergisticphototherapyforantimicro⁃bialtherapy[J].ACSAppliedBioMaterials,2020,3(3):1730⁃1737.[44]YUSM,LIGW,LIUR,etal.DendriticFe3O4@Poly(dopamine)@PAMAMnanocompositeascontrollableNO⁃Releasingmaterial:AsynergisticphotothermalandNOantibacterialstudy[J].AdvFunctMater,2018,28(20):1707440.[45]HSIAOCW,CHENHL,LIAOZX,etal.Effectivephotothermalkillingofpathogenicbacteriabyusingspa⁃tiallytunablecolloidalgelswithnano⁃localizedheatingsources[J].AdvFunctMater,2015,25(5):721⁃728.[责任编辑㊀李麦产]。
纳米材料在抗菌材料中的性能与应用研究随着科学技术的不断发展,纳米材料的研究与应用已成为当前科学界的热点之一。
在医疗领域中,纳米材料的应用也引起了广泛的关注。
其中,纳米材料在抗菌材料中的性能与应用研究备受关注。
抗菌材料是一种能抑制或杀灭细菌、真菌、病毒等微生物生长的材料。
常见的抗菌材料包括银离子材料、聚合物材料和纳米材料等。
然而,由于长期使用抗生素和消毒剂的滥用,导致许多微生物对常见的抗菌材料产生了抗药性。
因此,开发新型的抗菌材料以应对抗药性微生物的需求变得尤为重要。
纳米材料作为一种具有独特结构和性能的材料,在抗菌材料中表现出许多优势。
首先,纳米材料具有较大比表面积,这意味着纳米材料相同质量下的表面积较大,有利于与微生物的作用。
其次,纳米材料具有尺寸效应和量子效应,这使得纳米材料具有独特的物理和化学性质。
最后,纳米材料具有显著的固体和液体相互作用的效果,这使得纳米材料与微生物之间的相互作用更加复杂和多样化。
纳米银是纳米材料中最常用的抗菌材料之一。
银具有广谱抗菌作用,能够杀灭多种细菌、病毒和真菌。
纳米银具有较大的比表面积和独特的物理化学性质,能够与微生物的细胞膜、细胞壁和细胞内的蛋白质发生反应,破坏其结构和功能,从而抑制或杀灭微生物。
除了纳米银,一些其他的纳米材料也被广泛研究用于抗菌材料中。
例如,纳米氧化锌、纳米二氧化钛和纳米碳材料等都显示出一定的抗菌活性。
这些材料具有独特的光催化性质,可以利用紫外光或可见光产生活性自由基,破坏微生物的细胞膜和细胞内的核酸、蛋白质等重要生物分子,从而实现抗菌效果。
此外,纳米材料还可以通过调控材料的表面形貌和结构来实现抗菌性能的提升。
例如,利用纳米材料的疏水性能和抗菌剂之间的相互作用,可以制备出具有超疏水性能的抗菌材料。
这种材料能够使微生物无法附着在其表面上,从而实现抗菌效果。
纳米材料在抗菌材料中的应用不仅局限于医疗领域,还具有广泛的应用前景。
例如,在食品包装领域,纳米材料可以用于制备具有抗菌性的食品包装膜,有效地抑制食品中的微生物生长,延长食品的保鲜期。
纳米银在高分子材料中的抗菌性能研究摘要:纳米银作为一种强有效的抗菌剂,已被广泛应用于高分子材料中。
本文综述了纳米银在不同高分子材料中的抗菌性能研究,对其应用领域和机制进行了详细探讨。
结果表明,纳米银能够显著提高高分子材料的抗菌性能,可有效对抗多种细菌,并具有长效的抗菌效果。
然而,应用纳米银也面临一些挑战,如环境风险和生物毒性等。
因此,未来的研究需要深入探索纳米银在高分子材料中的抗菌机制,同时关注其环境安全性,以推动其更广泛而安全的应用。
1. 引言随着抗菌耐药性的增加和公共卫生意识的提高,寻找新型高效抗菌材料成为当今研究的热点。
纳米银由于其较大的比表面积和独特的物理化学性质,被广泛认为是一种潜力巨大的抗菌剂。
纳米银的应用领域众多,尤其在高分子材料中的抗菌性能研究引起了广泛关注。
本文旨在总结纳米银在高分子材料中的抗菌性能研究,探讨纳米银在高分子材料中的应用前景。
2. 纳米银的抗菌性能纳米银具有很强的抗菌活性,可以抑制多种细菌的生长,包括耐药菌株。
纳米银通过释放银离子和直接与细菌交互作用的方式表现出抗菌性能。
研究发现,纳米银能够破坏细菌的细胞膜和核酸,干扰其代谢过程,从而导致细菌的死亡。
此外,纳米银还能抑制细菌的生物膜形成,阻断其在高分子材料表面的生长。
3. 纳米银在高分子材料中的应用纳米银在高分子材料中的抗菌应用广泛,包括医疗器械、包装材料、纺织品等领域。
在医疗器械方面,纳米银被用于制备抗菌涂层,可以有效抑制细菌的生长,降低医院内感染的发生率。
在包装材料方面,纳米银被应用于食品包装,可以延长食品的保鲜期并保持其卫生安全。
在纺织品方面,纳米银能够使纤维表面具有抗菌性能,从而防止细菌滋生和异味产生。
4. 纳米银应用中的挑战和安全性问题尽管纳米银在高分子材料中的抗菌性能得到了广泛认可,但也面临一些挑战和安全性问题。
首先,纳米银的环境风险引起了关注,其释放的银离子可能对环境造成潜在影响。
其次,纳米银具有一定的生物毒性,长期暴露可能对人体健康产生潜在危害。
银纳米颗粒的制备与抗菌性能研究近年来,随着微纳技术的快速发展和人们对高性能材料需求的增加,银纳米颗粒作为一种新型的高性能材料,引起了人们的广泛关注。
银纳米颗粒具有很强的抗菌性能,能够有效地抑制细菌、真菌和病毒的生长,因此被广泛应用于医疗、环保、食品安全等领域。
银纳米颗粒的制备方法目前,制备银纳米颗粒的方法主要有物理法、化学法、生物法等。
其中,化学法是最常用的方法之一。
化学法制备银纳米颗粒的关键在于还原剂的选择和添加过程。
一般使用的还原剂有:硼氢化钠、羟肟酸、贴珀铁等。
还原剂的添加过程需要控制好反应时间和温度,保证反应过程在适宜的条件下进行。
此外,反应液中的pH值对于银纳米颗粒的形貌和尺寸也有很大的影响。
生物法制备银纳米颗粒相对于化学法和物理法更加环保、可控、高效。
生物法的制备方法主要有植物提取物法、微生物发酵法、酶法等。
这些方法制备的银纳米颗粒具有高纯度、结构稳定、环保的特点。
但与之相应的,生物法制备的银纳米颗粒的生产成本较高。
银纳米颗粒的抗菌性能研究银纳米颗粒在抑菌方面具有很好的效果,已得到广泛应用。
银离子能够破坏表面电荷,使其与细菌的细胞膜相互作用,导致其死亡。
同时,银纳米颗粒具有较大的比表面积和毒力,能与细菌和真菌的外膜、细胞壁相互作用,从而引起其死亡。
近年来,银纳米颗粒的抗菌性能也逐渐得到了研究。
实验研究表明,银纳米颗粒具有较强的抗菌性能,对革兰氏阳性菌和革兰氏阴性菌具有良好的抑制作用。
在一定浓度下,银纳米颗粒可以有效地破坏细菌细胞膜和外膜,降低了细菌的存活率。
同时,银纳米颗粒还能有效地抑制真菌的生长和发育。
针对不同类型的细菌和真菌,需要选择合适的银纳米颗粒浓度和作用时间才能发挥最佳的效果。
结论银纳米颗粒由于其良好的抗菌性能和广泛的应用前景,近年来受到了广泛关注。
目前,银纳米颗粒的制备方法主要有化学法、物理法和生物法。
生物法制备的银纳米颗粒因其环保、可控、高效等特点,具有较好的发展前景。
纳米银颗粒抗菌材料的制备与抗菌性能研究随着微生物感染的增加和抗生素耐药性的威胁,研究纳米银颗粒抗菌材料成为了一个备受关注的领域。
本文将介绍纳米银颗粒抗菌材料的制备方法和其对各类病原菌的抗菌性能研究成果。
一、纳米银颗粒的制备方法在纳米领域中,制备纳米银颗粒的方法主要包括化学还原法、溶液法、物理气相法等。
其中,化学还原法是最常用的方法之一。
在该方法中,还原剂(如氢氯酸)作为还原剂,将银离子还原成金属银颗粒。
此外,溶液法通过将银盐溶解在水中,再通过加热、搅拌等方法来制备纳米银颗粒。
物理气相法则是通过介质蒸发和凝聚的方式制备纳米银颗粒。
二、纳米银颗粒的抗菌性能研究纳米银颗粒具有优异的抗菌性能,可以抑制多种病原菌的生长和繁殖。
研究表明,纳米银颗粒对常见的致病菌如大肠杆菌、金黄色葡萄球菌以及耐药菌等都具有显著的抑制作用。
这是因为纳米银颗粒具有较大的比表面积和较高的表面能,使其与细菌细胞表面的蛋白质和DNA等具有亲和力,从而破坏了细菌的生物膜结构,进而抑制了其生长和繁殖。
另外,纳米银颗粒对真菌的抑制作用也值得关注。
研究发现,纳米银颗粒对霉菌和酵母菌都具有较强的杀菌作用。
这主要是因为纳米银颗粒可以与真菌细胞膜结合并破坏其结构,导致真菌细胞的死亡。
三、纳米银颗粒抗菌材料的应用前景纳米银颗粒抗菌材料具有广阔的应用前景。
在医疗领域,纳米银颗粒可以应用于外科手术器械、医疗敷料和抗菌涂层等,用于预防和治疗感染。
此外,纳米银颗粒也可应用于食品保鲜和饮用水处理等领域,以减少微生物污染。
在纺织品和建筑材料中添加纳米银颗粒也可实现抗菌功能,从而提高产品的附加值。
然而,纳米银颗粒的应用也面临一些挑战。
首先,纳米银颗粒的合成成本较高,需要通过一系列复杂的制备工艺来实现。
其次,纳米银颗粒在长时间使用后可能出现聚集和沉积问题,降低了抗菌效果。
此外,纳米银颗粒的毒性与生物安全性也是需要重视的问题。
综上所述,纳米银颗粒抗菌材料因其良好的抗菌性能具有广泛的应用前景。
纳米材料的研究进展及其应用纳米材料是指具有纳米尺度(1-100纳米)的晶粒、颗粒、纤维或片层结构的物质。
由于其特殊的尺寸效应、界面效应和量子效应,纳米材料具有独特的物理、化学和力学性质,因此在多个领域具有广泛的应用前景。
本文将对纳米材料的研究进展及其应用进行综述。
首先,纳米材料在能源领域的应用已取得了显著进展。
纳米材料在太阳能电池、燃料电池和储能系统等能源转换和储存设备中发挥重要作用。
例如,纳米晶体硅可以提高太阳能电池的光吸收和电荷转移效率,提高太阳能电池的光电转换效率。
纳米结构的电极材料能够提高储能器件的能量密度和循环稳定性。
此外,纳米材料还可以用于水分解产氢、催化转化等领域,为可持续能源的开发和利用提供新的解决方案。
其次,纳米材料在生物医学领域也显示出巨大的潜力。
纳米颗粒可以用作药物传递系统,在癌症治疗中发挥重要作用。
纳米颗粒的小尺寸和高比表面积可以提高药物的溶解度和增进肿瘤靶向性。
此外,纳米材料还可以用于生物成像、抗菌和组织工程等方面。
纳米材料的特殊性质使其成为开发高效治疗和诊断手段的有力工具。
此外,纳米材料在电子器件及信息技术领域也有广泛的应用。
纳米材料可以用于制备高性能的半导体器件,如纳米线、纳米管和量子点晶体管。
这些纳米结构的电子材料具有优异的电子输运性能和高灵敏度,为下一代电子器件的发展提供了新的途径。
此外,纳米材料还可以用于制备高密度存储介质、柔性显示器和传感器等应用。
最后,纳米材料在环境保护和污染治理中也有着重要的作用。
由于纳米材料具有高比表面积和活性表面,可用于吸附和催化分解有害气体和水污染物。
纳米材料也可以作为环境传感器,监测环境中的重金属离子和有机污染物。
此外,纳米材料在环境监测、水处理和废物处理等领域的应用也在不断发展。
总之,纳米材料的研究进展及其应用广泛涉及能源、生物医学、电子器件和环境保护等多个领域。
随着纳米材料的不断发展和应用,其在各个领域的作用将进一步扩大。
然而,纳米材料的制备、表征与应用过程还面临许多挑战,例如生物安全性、环境影响和可持续发展等问题,需要进一步研究和探索。
纳米银材料的制备及其抗菌应用研究近年来,随着人们对健康和环境的重视,纳米银材料逐渐被广泛应用于医疗、食品安全、环境治理等领域。
纳米银材料是指银粒子的尺寸小于100纳米的粒子,具有良好的抗菌、抗病毒和抗真菌等特性,被广泛应用于抗菌制品的制备中。
本文将探讨纳米银材料的制备及其抗菌应用研究。
一、纳米银材料的制备方法纳米银材料的制备方法主要包括物理法、化学法和生物法三种。
物理法包括电弧法、激光剥离法、放电等离子体法等,化学法包括还原法、溶胶-凝胶法、水热法等,生物法则是指利用具备还原能力的生物或生物分子将银离子还原为纳米银颗粒。
以还原法为例,它是一种比较成熟的制备纳米银材料的方法。
还原法制备纳米银材料的原理是利用还原剂将银离子逐步还原为纳米银颗粒,常用还原剂有多糖、羟丙基甲基纤维素、异构糖等。
还原法的优点是简单易操作,所制备的纳米银颗粒形状和大小可控,但不易实现大规模生产。
二、纳米银材料的抗菌应用研究纳米银材料的抗菌应用主要体现在医疗、食品安全、环保等领域。
在医疗领域,纳米银材料作为抗菌药物得到广泛应用。
纳米银材料可以通过破坏细菌细胞的膜结构和DNA等的特性,对细菌、真菌等进行抗菌。
目前,纳米银材料的临床应用主要是在医用敷料、医用器械等方面。
其中,利用纳米银包裹的纤维素纤维制备的敷料具有良好的抗菌效果,可以有效地避免感染。
在食品安全方面,纳米银材料在食品保鲜和包装中的应用具有广阔的前景。
研究表明,纳米银材料可以有效抑制食品中的微生物生长,延长食品保鲜期。
此外,将纳米银材料应用于食品包装中,可以有效地防止食品被微生物污染,保障食品安全。
在环保领域,纳米银材料可以通过对污染物的吸附和生物降解等作用,可作为新型环境治理材料。
研究表明,利用纳米银材料对水体中的有害物质进行吸附可以有效地使水质净化,还可以将其应用于空气净化中。
三、纳米银材料的发展趋势随着研究的深入,纳米银材料的应用范围也在不断扩大。
未来,纳米银材料还将应用于化妆品、日常清洁用品等领域。
纳米材料的杀菌特性研究纳米材料的杀菌特性研究随着微生物耐药性的增加和传统抗菌材料的局限性暴露出来,寻找新的杀菌方式和材料变得至关重要。
纳米材料由于其独特的性质和尺寸效应,已被认为是应对微生物感染和传播的有效策略之一。
本文将着重探讨纳米材料的杀菌特性以及其在杀菌领域的应用。
首先,纳米材料的杀菌特性来源于其高比表面积和尺寸效应。
纳米材料可以提供更大的接触面积,使其能够更为有效地与微生物接触,从而发挥杀菌作用。
此外,纳米材料的尺寸通常在20-100纳米范围内,与微生物细胞的尺寸相当。
这使得纳米材料具有更好地进入细胞、破坏细胞膜和核酸等生物分子的能力。
其次,纳米材料可以通过多种方式杀菌。
一种常见的方法是通过纳米颗粒的释放杀菌剂来实现。
纳米粒子可以包装和释放杀菌剂,例如银离子、金离子、二氧化钛等,以抑制微生物的生长和繁殖。
此外,纳米材料还可以通过产生自由基、中断微生物细胞膜的完整性、破坏DNA等方式对微生物进行杀菌。
纳米材料还可以通过改变微生物的结构和功能来实现杀菌。
一些研究表明,纳米材料可以引起微生物细胞的形态异常、阻碍其代谢过程和细胞分裂,最终导致细胞死亡。
此外,纳米材料还可以改变微生物的表面电荷、离子通道活性等,从而破坏微生物的功能和稳定性。
纳米材料在杀菌领域的应用潜力巨大。
首先,纳米材料可以应用于多种感染场景中,包括医疗领域、食品加工和环境卫生等。
例如,在医疗手术中使用纳米材料包裹的抗菌剂可以减少感染的风险;在食品加工中,纳米颗粒可以用作杀菌剂,提高食品的安全性;在环境卫生领域,纳米材料可以用于净化水源和空气等。
其次,纳米材料的杀菌特性还可以与传统抗菌方法进行联合应用,发挥协同效应。
当前的抗菌方法主要包括物理方法(如高温、UV灭菌)、化学方法(如消毒剂)和生物方法(如抗生素)。
与传统抗菌方法相比,纳米材料具有更广泛的杀菌范围和更低的耐药性发展风险。
然而,纳米材料的杀菌特性研究还面临一些挑战。
首先,纳米材料的安全性和环境影响仍然需要深入研究。
纳米金属材料载体对致病微生物的杀菌效果研究纳米金属材料作为一种新型的载体,在医疗领域的应用越来越广泛,特别是在杀菌方面具有独特的优势。
本文将重点研究纳米金属材料载体对致病微生物的杀菌效果,并探讨其机制。
对于致病微生物,包括细菌、病毒和真菌等,它们经常是导致疾病发生的元凶。
传统的杀菌方法通常使用化学品或物理方法,但这些方法的应用存在一些问题,如产生副作用、耐药性等。
而纳米金属材料作为一种新型材料,具有独特的物理、化学性质和优异的生物活性,被广泛应用于医疗领域。
纳米金属材料载体的杀菌效果主要来源于以下几个方面。
首先,纳米金属材料具有高比表面积和较小的粒径,这使得纳米颗粒能更好地与细菌、病毒等微生物相互作用,提高了杀菌效果。
其次,纳米金属材料表面的电荷特性能够破坏微生物细胞壁结构,导致其死亡。
例如,纳米银颗粒可以与微生物表面的蛋白质结合,进而破坏微生物的膜结构,导致细胞内部环境失控,细胞死亡。
此外,纳米金属材料还可以抑制微生物的代谢活性,破坏微生物的核酸合成和蛋白质合成,从而导致微生物死亡。
研究表明,纳米金属材料载体对细菌、病毒和真菌等不同致病微生物的杀菌效果是高效的。
例如,纳米银颗粒具有广谱杀菌作用,可以杀灭多种细菌,如大肠杆菌、金黄色葡萄球菌等。
此外,纳米银颗粒还可以杀灭病毒,如流感病毒、乙型肝炎病毒等。
纳米铜颗粒可以杀灭真菌,如白念珠菌、黑曲霉菌等。
此外,其他纳米金属材料载体,如纳米锌、纳米铁等,也具有较好的杀菌效果。
纳米金属材料载体的杀菌机制尚不完全清楚,但有许多研究表明,细菌与纳米颗粒之间的相互作用对于纳米金属材料的杀菌效果起着重要作用。
一种可能的机制是纳米金属材料的氧化性活性,这可以导致微生物发生氧化损伤,从而引起其死亡。
另外,纳米金属材料表面的局部电子效应也可引起微生物的电荷无序化,从而导致微生物死亡。
纳米金属材料载体对致病微生物的杀菌效果研究具有重要意义。
它不仅可以为治疗传统药物难以治疗的细菌感染提供新的策略,还可以应用于水处理、食品保鲜、环境卫生等领域,有效地减少了化学药剂的使用,降低了人类对环境的污染。
文章编号:1001-5914(2009)08-0736-04纳米银的抗菌原理及生物安全性研究进展刘焕亮1,王慧杰2,袭著革1摘要:由于纳米银独特的抗菌特性,使其得到了广泛的应用,极大地增加了人们接触纳米银的机会,对其安全性进行评价就成为迫切需要解决的问题。
迄今为止,国内外对纳米银的毒性研究在方法上主要集中于形态学、线粒体功能测定、细胞增殖、酶活力等细胞毒性的检测,整体水平的毒性检测也有报道,而缺乏从分子水平进行机制方面的探讨研究。
该文就纳米银的抗菌原理及其生物安全性的研究现状进行综述,并对纳米银在毒理学研究的发展方向进行了展望。
关键词:纳米银;抗菌原理;生物安全性中图分类号:R994.6文献标识码:AProgress in Research on Antibacterial Mechanism and Biological Safety of Silver Nanoparticles LIU Huan -liang,WANG Hui -jie,XI Zhu -ge .Institution of Health and Environmental Medicine,Academy of Military Medical Sciences,Tianjin 300050,ChinaAbstract :The antibacterial property of silver nanoparticles has resulted in their widespread application in many fields,so the chance of silver nanoparticles exposure for human increased greatly.Thus,there is urgent need to assess the safety of such particle.So far,most toxicological studies of silver nanoparticles mainly focus on the cytotoxicity using different examination endpoint such as morphology,mitochondrial function,cell proliferation,enzyme activity,and so on.In addition,the in vitro studies on the toxicity of silver nanopoarticles are also reported,few of the study on molecule mechanism of toxicity was reported.This review provided a summary of antibacterial mechanism of silver nanoparticles and the current research situation of the safety.The future research direction of toxicological study of silver nanoparticles is also prospected based on the current knowledge .Key words:Silver nanoparticles;Antibacterial mechanism;Biological safety 基金项目:国家高技术研究发展计划项目(2006AA032330)作者单位:1.军事医学科学院卫生学环境医学研究所(天津300050);2.总后第一干休所(天津300161)作者简介:刘焕亮(1977-),女,助理实验师,硕士研究生,从事环境毒理学研究。
纳米抗菌材料的研究进展 摘要:纳米抗菌材料中抗菌剂以纳米尺寸分散,具有高比表面积和高反应活性,抗菌材料整体的抗菌效果较传统抗菌剂有显著提高,更能显著的抑制细菌、真菌等微生物的生长和繁殖,并改善抗菌材料的力学性能,引起了国内外研究者的广泛关注。本文对具有广泛应用前景的金属型、光催化型、季铵盐或季磷盐修饰无机纳米颗粒等纳米抗菌剂的研究及应用情况进行了综述。 关键词:纳米、 抗菌剂、 金属型、 光催化型、 无机纳米颗粒 The research development of nano-antibacterial materials
Abstract: Antibacterial agents are dispersed as nano-sized particles in nano-antibacterial material.
Because of the high surface area and high reactivity of antimicrobial agents, the overall antibacterial properties of nano-antibacterial materials have increased more significantly than the conventional antibacterial agents, which have more effect on inhibiting the growth and reproduction of microbial, such as bacteria, fungi and other microbial. Moreover, antibacterial agents can improve the mechanical properties of antibacterial material. In this paper, the research and application development of some kinds of nano-antibacterial materials with broad application prospects is reviewed, such as metal-based, light catalytic nano-antibacterial materials, and inorganic nano-sized materials modified by quaternary ammonium or quaternary phosphorus salt. Keywords: nano-sized, antibacterial agent, metal, light catalytic, inorganic nanoparticles 随着科技的发展,生活水平的提高,人们对自身居住、工作、生活的环境卫生要求进一步提高,促进了抗菌技术和抗菌材料的快速发展。在包装材料中添加抗菌剂可以抑止食品原料表面微生物的生长,在包装材料中添加抗菌剂比直接浸泡和喷洒抗菌剂更有优势,可以大量减少抗菌剂的用量和避免由于食品化学组分的影响而降低抗菌剂的抗菌活性。添加到包装材料内的抗菌剂有很多,主要可以分为无机抗菌剂、有机化学抗菌剂和天然生物抗菌剂[1-3]。 纳米抗菌材料是一类具备抑菌性能的新型材料,由于材料中抗菌剂的高比表面积和高反应活性的特殊效应,大大提高了整体的抗菌效果,可以使微生物包括细菌、真菌、酵母菌、藻类以及病毒等的生长和繁殖保持较低的水平。用抗菌材料制成的各种制品,具有卫生自洁功能,可有效避免细菌的传播,并能使抗菌材料的力学性能得到强化[4,5]。 纳米抗菌材料按抗菌机理又可分为3类:第1类是Ag+等金属型纳米抗菌剂,其利用Ag+等金属离子可使细胞膜通透性增加或使胞内酶蛋白失活,从而杀死细菌;第2类是ZnO、TiO2等光催化型纳米抗菌材料,利用该类材料的光催化作用,与H2O或OH-反应生成一种具有强氧化性的羟基自由基(·OH)来杀死细菌;第3类是季铵盐或季磷盐修饰改性无机纳米颗粒,如纳米蒙脱土(MMT)或SiO2,因无机纳米颗粒内部有特殊的结构而带有不饱和负电荷,从而具有强烈的阳离子交换能力,经季铵盐或季磷盐修饰后,对细菌有强的吸附固定作用,从而起到抗菌作用。本文对纳米抗菌材料
PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn 的制备及应用研究进展进行了综述[6]。 1、金属型纳米抗菌剂 无机纳米抗菌剂中现在实际使用的金属离子多限于对人体安全的银、铜、锌等几种。金属离子对细菌的抗菌效果和对人体的危害程度如下[4,7]: 抗菌效果:As5+=Sb2+=Se2+>Hg2+>Ag+>Cu2+>Zn2+>Ce3+=Ca2+ 危害程度:As5+=Sb2+=Se2+>Hg2+>Zn2+>Cu2+>Ag+>Ce3+=Ca2+ Ag+对原核生物(细菌)有毒性而对真核生物细胞无毒性作用,一般用量为10-6ug/g(24h)或≤0.5ug/ml(1h)即可灭菌,其的抗菌能力在安全使用几种金属离子中最强,Ag+对12种革兰氏阴性
菌、8种革兰氏阳性菌、6种霉菌均有强烈的杀灭作用,由于银无毒、广谱及良好的抗菌性能,目前载银无机抗菌剂在无机抗菌剂中占主导地位[8]。 目前,关于纳米载银无机抗菌剂的抗菌机理主要有接触式杀菌机理和光催化假说机理两种观点:(1)接触式杀菌机理[9-11]:抗菌剂在使用过程中缓慢释放出银离子,银离子凭借库仑引力被吸附到表面带负电荷的细菌表面,抗菌材料通过破坏细菌细胞膜导致细胞内容物的溶出,与细菌体内的蛋白质、核酸中存在的巯基(-SH)、氨基(-NH2)等含硫、氮的官能团反应、使蛋白质变性,阻碍有利于细菌新陈代谢酶的合成,干扰肽聚糖的合成;与DNA反应,破坏遗传因子,从而使细菌丧失其生物学活性等而完成杀菌过程。当菌体死亡后Ag+得到释放与邻近菌体再次结合将其杀死。(2)光催化假说[12,13]:银的化学结构决定了银具有较高的催化能力,抗菌剂表面分布的微量氧化态银在光的作用下激活空气或水中的氧,产生具有强氧化还原作用的羟基自由基(·OH)及活性氧离子(O2-),它们能破坏细菌细胞的增殖能力,抑制或杀灭细菌,产生抗菌性能。在该抗杀菌过程中,抗菌剂表面的银只起催化剂的作用,本身并不消耗,所以产生持久的抗菌效果。
图1 银离子杀菌原理 纳米级载银无机抗菌剂就是把具有抗菌作用的银离子通过溶胶-凝胶、离子交换等技术依附在纳米级的载体上,如沸石、SiO2、TiO2、ZnO、磷酸复盐等。由于超细纳米级粉体颗粒高比表面积和高反应活性的特殊效应,大大提高了整体的抗菌效果,使抗菌剂耐温性、粉体细度、分散性和功能效应都得到了充分发挥,具有传统无机抗菌剂所无法比拟的优良抗菌效果和安全性,是一种具有长效性和耐热性的抗菌剂[3]。 佘文君等比较了6种国内外知名品牌的纳米级载银无机抗菌剂对口腔病原菌的抗菌活性,结果对变形链球菌杆菌、金黄色葡萄糖球菌、大肠埃希菌等细菌均有良好的杀菌效果。有人测试了几种纳米水性涂料(纳米载银材料)对流感病毒的吸附率和灭活率,发现不同种类的涂料其灭活率也大不相同,这表明纳米材料的结构是影响其杀菌及杀病毒效果的一个重要因素[4]。 目前纳米银因其优良的安全抗菌性能,在医用产品、民用纺织品、家电产品中广泛应用。如伤口敷料、医用防护服、手术隔离罩等医用产品、以及袜子、手套、内衣及女性一次性用品等民用抗菌纺织品、冰箱外壳及内胆等。
PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn 2、光催化型纳米抗菌剂[4,14] 光催化型纳米抗菌剂是指以纳米TiO2为代表的,具有光催化性能的一类半导体无机材料,如纳米TiO2、ZnO、WO3、ZrO、V2O3、SnO2、SiC,以及相互之间的复合物等。在目前使用的这些半导体物质中从使用程序和性价比来看,纳米TiO2明显优于其他几种光催化抗菌剂。TiO2有金红石型、板钛矿型和锐钛矿型3种晶体结构,其中锐钛矿型的TiO2存在晶格缺陷,结构比较开放,当颗粒尺寸降到纳米级时,具有良好的光催化活性。 纳米TiO2抗菌作用较为长效,抗菌机理不同一般的无机和有机抗菌剂,它并非靠抗菌剂的渗出而产生抗菌作用,纳米TiO2的灭菌机理源自于其光催化作用[11]。TiO2的电子结构为一个的价带(VB)和一个空的导带(CB),在紫外光照射下,电子能量达到或超过其带隙能(hυ1)时,电子(e-)可从价带激发到导带,在价带产生相应的空穴(h+),生成电子一空穴对。电子一空穴对,迅速迁移至纳米TiO2表面,和表面吸附的H2O、O2反应生成化学活泼性很强的超氧化物阴离子自由基(·O2 - )和氢氧自由基(·OH)。当遇到细菌、霉菌时,直接攻击细菌、霉菌等微生物的细胞壁和细胞膜,与细胞膜、细胞壁中包含的蛋白质、肽聚糖和磷脂等中的不饱和双键反应,破坏细胞膜和细胞壁,杀灭细菌。TiO2
对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌、牙枝菌和曲霉等都均具有很强的杀菌能力,
具有广谱杀菌能力。 此外,一般常用的杀菌剂银、铜等能使细菌细胞失去活性,但细菌杀死后可释放内毒素等有害物质。纳米TiO2不仅能影响细菌繁殖力,而且能攻击细菌细胞的外层,穿透细胞膜,彻底降解细菌,防止产生内毒素引起二次污染。 锐钛矿晶相的TiO2具有较强的光催化性能,但能带隙约3.2eV,未经改性的TiO2需用紫外线光照射下激发反应活性,紫外光只占太阳光谱的5%左右,TiO2在太阳光下的光催化活性不高,限制了TiO2
抗菌剂的使用。目前国内外学者通过在TiO2中掺杂金属离子(如使用过渡金属:Cu, Co, Ni, Cr, Mn, Mo,
Nb, V, Fe, Ru, Au, Ag, Pt等),或掺杂非金属离子(N, S, C, B, P, I, F等),降低TiO2带隙能,使得TiO2
在可见光区间(>400nm)具有较强的光催化活性,甚至在恶劣的室内照明情况下使用。
采用纳米TiO2生产的抗菌材料具有光谱抗菌、抑菌、防腐、防霉等功能,有广泛的应用前景,目前国内外对其在抗菌塑料方面的应用情况开展了一些探索性研究。美国研究人员利用纳米TiO2和太阳光进行灭菌,他们将大肠杆菌和TiO2混合液在大于380nm 的光线下照射,发现大肠杆菌以一级反应动力方程的速度被迅速杀死[19]。徐瑞芬等人利用锐钛型纳米TiO2作为无机抗菌剂,研制成抗菌广谱长效的功能塑料。彭红瑞等对采用稀土铝酸酯偶联剂对纳米TiO2进行表面处理后,添加至PS中制成纳米TiO2/PS复合材料,在TiO2添加比例为0.7%的情况下,对金黄色葡萄球菌、大肠杆菌和黑色枯草芽孢杆菌的杀菌率达到99%以上,内毒素的分解率达90%以上。杨绵绵等采用在PE中加入质量分数为0.5%-2.0%的纳米TiO2粉体以及钛酸酯或稀土铝酸酯为增韧增强偶联剂,混合制成塑料薄膜母料,并吹膜得到纳米保鲜薄膜,用于包装肉食品、水果、蔬菜等,保鲜期延长3倍。王焕玉等在PVC塑料中加入0.5-5%的钛、锌等纳米氧化物,对金黄色葡萄球菌具有很好的杀菌效果,24小时的杀抑率达98%。李三喜等采用在PE塑料中添加改性纳米TiO2为抗菌剂,并添加15%的淀粉制成纳米抗菌、降解塑料薄膜,在自然条件下,其降解时间为6-8个月。 3、季铵盐修饰的无机纳米抗菌剂