介绍一种用四分块矩阵计算n阶行列式的方法
- 格式:pdf
- 大小:67.96 KB
- 文档页数:4
行列式的几种计算方法行列式是线性代数中非常重要的概念,它可以帮助我们理解矩阵的性质和求解线性方程组。
行列式的计算方法有多种,下面将详细介绍几种常用的计算方法。
一、按定义式计算行列式:按照定义式计算行列式是最基本的一种方法。
对于一个n阶矩阵A,其行列式记作det(A),可以按照以下公式进行计算:det(A) = Σ(−1)^σ(π_1,π_2,…,π_n)a_{1π_1}a_{2π_2}⋯a_{nπ_n}σ(π_1,π_2,…,π_n)是排列(π_1,π_2,…,π_n)的符号,a_{iπ_i}表示矩阵A的第i行第π_i列的元素,Σ表示对所有可能的排列进行求和。
按照定义式计算行列式需要对所有可能的排列进行求和,计算量较大,对于较大阶的矩阵来说并不实用。
我们通常会采用其他方法来计算行列式。
计算行列式时,我们可以利用其性质来简化计算过程。
行列式有一些基本的性质,如行列式中某一行(列)所有元素都乘以一个数k,行列式的值也要乘以k;行列式中某一行(列)元素乘以某个数加到另一行(列)上去后,行列式的值不变等。
利用这些性质,我们可以通过变换行列式中的元素或行列式本身,从而简化计算过程。
对于一个3阶矩阵A,我们可以利用做行列变换将其变换为上三角矩阵,这样计算其行列式就会变得非常简单。
具体地,我们可以通过交换行或列,将矩阵A变换为上三角矩阵,然后利用上三角矩阵的行列式的性质求解行列式的值。
三、按矩阵的余子式和代数余子式计算行列式:对于一个n阶矩阵A,其(i,j)位置的余子式M_{ij}定义为将A的第i行第j列划去后,剩下的元素按原来的次序组成的(n-1)阶行列式。
即M_{ij} = (-1)^{i+j} \cdot \det(A_{ij})其中A_{ij}是将矩阵A的第i行第j列元素划掉后得到的(n-1)阶子式矩阵。
矩阵的代数余子式A_{ij}定义为A_{ij} = (-1)^{i+j} \cdot M_{ij}。
行列式的几种计算方法
空格
行列式是线性代数的基本概念,它具有重要的应用价值。
它的计算方法也有很多,下面主要介绍几种行列式计算的方法。
一、展开式法
把行列式的每一行的元素乘以其所在的代数余子式的值,再将所有的积相加,得到的结果就是行列式的值。
这种方法理论上可以计算任何n阶的行列式,但当n阶较大时,展开比较繁琐,耗时也较长。
二、余子式法
计算第i行列式的方法是:取行列式的第i行,取其余行,去掉第i列,再找出这些行的代数余子式,再将每一行所对应的代数余子式乘以该行第i位置上的元素,再将所有的乘积之和,得到的结果就是行列式的值。
三、乘法法
若用行列式的乘法法来计算三阶行列式,则将行列式的三行分别乘以它们的代数余子式,将结果相加。
其中要用到符号乘,只要熟悉符号乘的规则,就可以简单地进行计算。
四、分块法
分块法是将行列式分解成几个临时的小行列式,再用余子式或展开式算出小行列式的值,再将小行列式的值按一定的规则组合起来,就得到原行列式的值了。
分块法优点是计算过程不复杂,缺点是分解成的小行列式的值计算比较复杂。
五、行变换法
用行变换法计算行列式的方法是:先将行列式的几行或几列进行线性变换,使行列式某一行或某一列为0,再将变换后的行列式化简为方阵或三角阵,再求解,之后再换回原行列式,则可以得出原行列式的值。
以上就是常用的几种行列式计算方法,不同的方法各有优劣,使用者可根据具体情况选择合适的方法用于行列式计算。
线性代数技巧行列式的计算方法行列式是线性代数中重要的概念,它是一个数,可以用来描述矩阵的性质。
在计算行列式时,可以使用不同的方法,如拉普拉斯展开、余子式法、矩阵分解等。
下面我将详细介绍三种常用的行列式计算方法。
1.拉普拉斯展开法拉普拉斯展开法是计算行列式最常用的方法之一、对于一个n阶方阵A,它的行列式可以用下式计算:det(A) = a1jC1j + a2jC2j + ... + anjCnj其中,a1j、a2j、..、anj 表示第1行、第2行、..、第n行的第j 列元素,C1j、C2j、..、Cnj 表示第1行、第2行、..、第n行的第j列的余子式。
在计算过程中,我们可以选择第i行或第j列,将行列式分成两个更小的行列式,然后递归计算这两个行列式的值。
这种方法的计算复杂度为O(n!),在计算较大的行列式时效率较低。
2.余子式法余子式法是计算行列式的另一种常用方法,它的基本思想是利用代数余子式的概念来计算行列式。
对于一个n阶方阵A,它的行列式可以用下式计算:det(A) = a11A11 + a12A12 + ... + a1nAn其中,a11、a12、..、a1n表示第1行的各个元素,A11、A12、..、An表示对应元素所在的代数余子式。
代数余子式的计算公式如下:Ai = (-1)^(i+1) × det(Mi)其中,Mi表示去掉第1行和第i列之后的(n-1)阶方阵。
通过递归计算,可以将大的行列式转化为多个小的行列式的计算,从而提高计算效率。
3.矩阵分解法矩阵分解法是一种便捷的计算行列式的方法。
对于特殊的矩阵,如三对角矩阵、上(下)三角矩阵、对角矩阵等,可以通过矩阵的分解来简化行列式的计算。
例如,对于上(下)三角矩阵A,它的行列式等于主对角线上的元素相乘:det(A) = a11 × a22 × ... × ann这种方法的计算复杂度为O(n),适用于这类特殊矩阵。
行列式的定义与计算行列式是线性代数中的一个重要概念,用于描述线性方程组的性质以及矩阵的特征。
在本文中,将介绍行列式的定义以及计算方法。
一、行列式的定义行列式是一个数学函数,用一种特定的方式将矩阵映射为一个数字。
对于n阶矩阵A = [aij]来说,其行列式记作det(A)或|A|。
行列式的定义如下:当n=1时,矩阵只有一个元素,此时矩阵的行列式就是这个元素本身。
当n>1时,矩阵A可以分为n行n列,可以表示为:A = [a11 a12 (1)a21 a22 (2)... ... ... ...an1 an2 ... ann]其中a11、a12...ann是矩阵A的元素。
对于n>1的情况,行列式的计算可以使用展开定理或按行(列)展开等方法进行。
二、行列式的计算(一)二阶行列式二阶行列式的计算公式如下:|A| = a11·a22 - a12·a21(二)三阶行列式三阶行列式的计算公式如下:|A| = a11·a22·a33 + a12·a23·a31 + a13·a21·a32 - a13·a22·a31 -a12·a21·a33 - a11·a23·a32(三)n阶行列式n阶行列式的计算可以通过列展开、行展开或使用拉普拉斯定理等方法进行。
这里以列展开为例介绍。
设A为一个n阶矩阵,可以将其表示为A = [a1 a2 ...an],其中ai为A的第i列。
若选择第k列进行展开,则根据列展开法可得:|A| = a1k·A1k - a2k·A2k + ... + (-1)^(k+1)·ank·Ank其中,Aik是移去第i行第k列元素所形成的(n-1)阶行列式。
根据此公式,可以递归地计算n阶行列式的值。
三、行列式的性质行列式具有以下性质:1. 互换行列式的两行(列),行列式的值变号。
行列式的定义计算方法行列式是线性代数中一个重要的概念,用于描述线性方程组的解的性质。
行列式广泛应用于数学、物理、工程等领域,具有重要的理论和实际价值。
本文将详细介绍行列式的定义和计算方法,并通过实例加以说明。
行列式是线性代数中独特的一个概念,它起源于19世纪初,由日本数学家关孝和引入并发展起来。
行列式在线性代数中具有非常重要的地位,它与线性方程组的解有密切的关联。
掌握行列式的定义和计算方法,对于理解线性代数的相关概念和解决实际问题具有重要的意义。
一、行列式的定义行列式是一个方阵的一个标量值,它可以用来判断矩阵的很多性质和计算线性方程组的解。
对于一个n阶矩阵A=(a_ij),它的行列式记作det(A),其中a_ij表示在矩阵A中第i行、第j列的元素。
二、行列式的计算方法1. 二阶行列式的计算:对于一个2x2的矩阵A=(a_11 a_12; a_21 a_22),它的行列式计算公式为:det(A) = a_11 * a_22 - a_12 * a_212. 三阶行列式的计算:对于一个3x3的矩阵A=(a_11 a_12 a_13; a_21 a_22 a_23; a_31 a_32 a_33),它的行列式计算公式为:det(A) = a_11 * a_22 * a_33 + a_12 * a_23 * a_31 + a_13 * a_21 * a_32- a_31 * a_22 * a_13 - a_32 * a_23 * a_11 - a_33 * a_21 * a_123. 高阶行列式的计算:对于高于三阶的行列式,我们通常使用拉普拉斯展开法来计算。
选择行或列,然后对该行或列的元素依次乘以其代数余子式,再按正负号加和,即可得到行列式的值。
【举例说明】为了更好地理解行列式的计算方法,我们通过一个实例来进行说明。
考虑一个3x3的矩阵A=(1 2 3; 4 5 6; 7 8 9),我们将按照上述的计算方法来求解其行列式值。
线性代数行列式计算方法总结线性代数是数学的一个分支,研究向量空间与线性映射的代数理论。
行列式是线性代数中重要的概念之一,用于判断线性方程组的解的存在与唯一性,以及计算线性变换的特征值与特征向量等。
本文将介绍线性代数中行列式的计算方法,并总结为以下几种常见的方法。
方法一:定义法行列式的定义是一个很重要的概念,也是计算行列式的基础。
对于一个n阶方阵A,它的行列式表示为|A|或det(A),定义为n个行向量或列向量所组成的n维向量空间的基向量所构成的平行多面体的有向体积。
根据这个定义,我们可以通过构造平行多面体来计算行列式的值,方法即是代数余子式展开法。
方法二:对角线法则对角线法则是计算2阶或3阶方阵行列式的简易方法。
对于2阶方阵A,其行列式的值等于主对角线上元素的乘积减去副对角线上元素的乘积;对于3阶方阵A,其行列式的值等于主对角线上元素的乘积与副对角线上元素的乘积之差。
此方法适用于小规模方阵的计算。
方法三:按行展开法按行展开法是计算n阶方阵行列式的一种常用方法。
对于一个n阶方阵A,选择其中一行(通常选择第一行)展开,即将该行中的元素与所在行和列上排列的剩余元素分别构成n-1阶的方阵,然后将其乘以对应元素的代数余子式,最后再按正负号相间相加得到行列式的值。
按行展开法在计算大规模方阵的行列式时,不仅简化了计算过程,还可以通过递归的方式实现。
方法四:按列展开法按列展开法与按行展开法类似,只是选择展开的对象变为一列。
选择第j列展开,则将该列中的元素与所在行和列上排列的剩余元素分别构成n-1阶的方阵,然后将其乘以对应元素的代数余子式,最后再按正负号相间相加得到行列式的值。
方法五:性质法行列式具有一系列的性质,可以根据这些性质来简化行列式的计算过程。
这些性质包括行列对换,相同行列的元素倍加,行列式放缩等。
利用这些性质,我们可以通过对行列式进行简单的变换,使其更容易计算,例如将行列式转化为上三角形矩阵,然后直接求解主对角线上元素的乘积即可。
利用分块矩阵计算行列式
严坤妹
【期刊名称】《福建商业高等专科学校学报》
【年(卷),期】2005(000)002
【摘要】分块矩阵能显示矩阵的局部特性,还能简化计算,本文初步探讨利用分块矩阵计算n阶行列式.
【总页数】3页(P50-52)
【作者】严坤妹
【作者单位】福建商业高等专科学校基础部,福建,福州,350012
【正文语种】中文
【中图分类】O241-6
【相关文献】
1.有关分块矩阵计算行列式的探讨 [J], 徐小玲
2.巧妙利用四分块矩阵求高阶行列式 [J], 钱丽丽
3.利用分块技术计算箭状矩阵的逆和行列式 [J], 赵立群
4.介绍一种用四分块矩阵计算n阶行列式的方法 [J], 汤茂林
5.分块矩阵在行列式及逆矩阵计算中的应用研究 [J], 王从徐
因版权原因,仅展示原文概要,查看原文内容请购买。
分块矩阵在行列式计算中的应用
分块矩阵,也称作划分矩阵或分割矩阵,指的是一种结构十分特殊的
矩阵,其每一行和每一列都被划分成不同的若干个子矩阵,每个子矩阵中
含有的元素数是相等的。
分块矩阵的出现,为许多复杂的数值计算以及矩
阵的计算提供了一种有效的方法。
分块矩阵的计算方法能够进一步简化复杂运算的计算步骤,它是一种
非常有效的计算技术,可以极大地提高计算速度。
行列式是一种数学结构,可以定义一种矩阵的性质。
行列式的运算除
了基本的乘法、加法以外,还涉及到分块矩阵的计算。
行列式的计算可以
通过分块矩阵的计算得以简化。
分块矩阵的应用分为两种,一种是计算行列式,另一种是基于分块矩
阵的矩阵乘法,我们将这两种分别介绍。
一、计算行列式
计算一个矩阵的行列式是一件很复杂的运算,如果矩阵的阶数n很大,那么就会耗费大量的计算时间。
而引入分块矩阵可以减少这种耗时的负担。
通常情况下,一个n阶矩阵可以分割成多个小的m阶矩阵,而当m较
小时,计算行列式也会比计算n阶矩阵要简单,时间也会更快。
这样,就
可以利用分块矩阵的特性进行行列式的计算,大大缩短计算时间。
行列式的几种计算方法行列式是线性代数中的一个重要概念,它在矩阵和向量运算中起着关键作用。
行列式的计算方法有多种,接下来将介绍几种常用的计算方法。
1. 代数余子式法代数余子式法是最基本的行列式计算方法之一。
对于一个n阶行列式A,我们可以通过以下公式进行计算:Det(A) = a11A11 + a12A12 + ... + a1nA1na11是矩阵A的元素,A11是a11的代数余子式。
代数余子式的计算方法是对矩阵A的每个元素求其代数余子式,然后再按照公式相加,得到最终的行列式值。
代数余子式法的优点是直观易懂,适用于任意阶数的行列式。
但是当阶数比较大时,计算量较大,需要进行大量的矩阵代数运算,因此效率较低。
2. 初等变换法初等变换法是另一种常用的行列式计算方法。
该方法通过对矩阵进行一系列的初等变换,将矩阵化简为上三角矩阵或对角矩阵,然后再通过对角线元素的乘积得到行列式的值。
初等变换包括三种操作:互换两行(列)、某一行(列)乘以一个非零数、某一行(列)加上另一行(列)的若干倍。
通过这三种操作,我们可以将矩阵变换为三角形式,从而更容易计算行列式的值。
初等变换法的优点是可以有效地简化矩阵,使得行列式的计算更加简单。
但是这种方法对于高阶矩阵来说,计算量仍然较大,且需要一定的技巧和经验。
3. 克拉默法则克拉默法则是一种利用矩阵的逆矩阵来计算行列式的方法。
对于一个n阶行列式A,其公式如下:Det(A) = (A^-1) * Adj(A)A^-1表示矩阵A的逆矩阵,Adj(A)表示矩阵A的伴随矩阵。
利用克拉默法则进行行列式的计算,首先需要求出矩阵A的逆矩阵,然后再求出伴随矩阵,最后通过矩阵相乘得到行列式的值。
克拉黫法则的优点是适用于任意阶数的行列式,且对于n阶行列式的计算只需要进行一次逆矩阵的运算和一次矩阵相乘,计算量较小。
4. 三角阵法三角阵法是通过将矩阵化成上三角形式或下三角形式,来简化行列式的计算。
对于一个n阶行列式A,我们可以通过初等变换将矩阵A化为上(下)三角矩阵T:然后再通过上(下)三角矩阵T的对角线元素的乘积得到行列式的值。
n阶行列式的一般展开式行列式是线性代数中的一个重要概念,是一种用来描述矩阵性质的数学工具。
n阶行列式是指由n行n列的矩阵所组成的行列式。
在求解行列式的过程中,一般采用展开式的方法来进行计算,而n阶行列式的一般展开式是求解行列式的一个常用方法。
一、定义n阶行列式是由n行n列的矩阵所组成的行列式,记作det(A),其中A=(a_ij) (1≤i,j≤n)。
其中,a_ij表示第i行第j列的元素。
二、一般展开式的定义对于n阶行列式det(A),我们可以通过对其任意一行或一列进行展开,得到n-1阶的子行列式,然后继续对子行列式进行展开,直到得到1阶的行列式。
这个过程叫做行列式的展开。
其中,对于任意一行或一列,我们可以通过其余行列式的代数余子式和其对应元素的乘积来表示。
三、一般展开式的计算以n阶行列式的一般展开式的计算为例,假设我们要对第i行进行展开,则有:det(A)=∑(-1)^(i+j)×a_ij×det(A_ij)其中,A_ij表示去掉第i行第j列的n-1阶子矩阵。
由于n阶行列式的一般展开式可以对任意一行或一列进行展开,因此我们可以对任意一行或一列进行展开。
四、优美语言的运用在行列式的计算中,一般展开式是一个非常重要的方法。
它可以将高阶行列式的计算转化为低阶行列式的计算,从而大大简化计算过程。
同时,一般展开式的运用也需要一定的技巧和方法。
我们需要通过观察矩阵的性质,灵活选择展开的行列式,以及巧妙地运用代数余子式和乘积的组合,来求解行列式。
总之,n阶行列式的一般展开式是求解行列式的一个常用方法,它可以将高阶行列式的计算转化为低阶行列式的计算,从而简化计算过程。
在计算过程中,我们需要通过观察矩阵的性质,灵活选择展开的行列式,以及巧妙地运用代数余子式和乘积的组合,来求解行列式。
求行列式的值的方法总结本文旨在总结求解行列式的方法以及计算行列式的步骤。
行列式在线性代数中是一个重要的概念,广泛应用于各学科领域,尤其是在计算机科学、物理学、化学等领域。
行列式是矩阵的一种变换操作,本质上是一个标量值,有着重要的数学性质。
行列式的计算方法有多种,包括定义法、三角分解法、拉普拉斯展开法、按行(列)展开法、特征值法等,下面逐一进行介绍。
一、定义法行列式的定义法就是通过定义来计算出行列式的值。
通过这种方法来计算行列式时,需要先找到一个合适的行列式定义,进行推导并最终求解出它的值。
以一个二阶行列式为例:$D=\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2\end{vmatrix}$通过对行列式的定义进行推导,可以得到该二阶行列式的公式:$D=a_1b_2-a_2b_1$同理,对于 n 阶行列式,也可以通过定义法进行计算:$D=\sum\limits_{\sigma\in S_n}(-1)^{\tau(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}...a_{ n\sigma(n)}$其中 S(n) 表示 n 个数的排列组合,并且 $(-1)^{\tau(\sigma)}$ 表示交换相邻两数使得原序列变成排列 $\sigma$ 所需要的交换次数的奇偶性。
二、三角分解法三角分解法是指将一个矩阵变形成一个上三角和一个下三角矩阵。
上三角矩阵的对角线上是矩阵的主对角线,下三角矩阵的对角线上则是一串0。
行列式的值取决于对角线上的元素的乘积。
通过对角线上系数的相乘,就能得到一个矩阵的行列式值。
三角分解法可以将一个 MXN 矩阵化为一个 N*N 的上三角矩阵或者一个 M*M 的下三角矩阵。
计算行列式的结果是容易的,因为上三角和下三角矩阵的行列式是它们对角线上元素的乘积。
三、拉普拉斯展开法拉普拉斯(Laplace)展开法是一种通用的行列式计算法,基于这个展开式,可以将 n 阶行列式的计算拆分成较小的 n-1 阶子式的求解。
行列式的计算方法1 引言行列式的计算是《线性代数》和《高等代数》的一个重要内容.同时也是工程应用中具有很高价值的数学工具,本文针对几种常见的类型给出了计算行列式的几种典型的方法.2 一般行列式的计算方法2.1 三角化法利用行列式的性质把原来的行列式化为上(下)三角行列式,那么,上(下)三角行列式的值就是对角线各项的积.例 1 计算行列式12311212332125113311231 ------=n n n n n nn n n n D对这个行列式的计算可以用三角化方法将第1行乘以(-1)加到第2,3,n 行,得0001002000200010001231 ---=n n n n D再将其第1,2,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得102001321)1(2)1(--=-n n D n n=)!1()1(2)1(---n n n2.2 加边法有时为了便于计算行列式,特意把行列式加边升阶进行计算,这种方法称之为升阶法.它的一般方法是:nn n n n n n n n a a a a a a a a a a a a a a a a D 321333323122322211131211==nnn n n n na a ab a a a b a a a b 212222121121110001(n b b b ,,21任意数)例如下面的例题: 例2 计算行列式nn a a a a D ++++=11111111111111111111321现将行列式n D 加边升阶,得na a a D +++=111011101110111121第1行乘以(-1)加到第1,3,2+n 行,得na a a D10001001001111121----=第2列乘以11a 加到第1列,第3列乘以21a 加到第1列,依次下去直到第1+n 列乘以n a 1加到第1列,得)11(00011111121211∑∑==+=+=ni in nni ia a a a a a a a D2.3 降阶法利用按一行(列)展开定理或Laplace 展开定理将n 阶行列式降为阶较小且容易计算的行列式来计算行列式的方法称为降阶法. 例 3 计算nD 222232222222221=解 首先我们应考虑D 能不能化为上(下)三角形式,若将第一行乘以(-2)加到第n ,3,2 行,数字反而复杂了,要使行列式出现更多的“0”,将D 的第一行乘以(-1)加到第第n ,3,2 行,得2001010100012221-=n D这样仍然不是上(下)三角行列式,我们注意到,第二行除了第一项是1,后面的项全是0,这样我们按第二行展开,降阶得到:201222)1(21--=+n D)!2(2--=n2.4 对于所谓二条线的行列式,可直接展开降阶,再利用三角或次三角行列式的结果直接计算. 例4 计算行列式nnn n n a b b a b a b a D 112211--=解 按第1列展开,得11221111221)1(--+---+=n n n n nn n n b a b ab b a b a b a a Dn n n b b b a a a 21121)1(+-+=2.5 递推法通过降阶等途径,建立所求n 阶行列式n D 和比它低阶的但是结构相同的行列式之间的关系,并求得n D 的方法叫递推法.当n D 与1-n D 是同型的行列式,可考虑用递推法.例 5 计算n 级行列式 2112000002100012100012------=n D 对于形如这样的三角或次三角行列式,按第1行(列)或第n 行(列)展开得到两项的递推关系式,再利用变形递推的技巧求解.解 按第1行展开,得210120000012000011)1)(1(2211-------+=+-n n D D212---=n n D D 直接递推不易得到结果,变形得1221121232211=---=-==-=-=------D D D D D D D D n n n n n n于是 1)1(2)1(21121+=-+=-+==+=+=--n n n D D D D n n n例6 计算n 2级行列式nnn n n n nnn d c d c d c b a b a b a D 111111112----=对于形如这样的所谓两条线行列式,可直接展开得到递推公式. 解 按第1行展开,得)1(1111111121111111112nn n n n nn n n n n nn c d c d c b a b a b d c d c b a b a a D ----+-----+=1111111111111111---------=n n n n nn n n n n nn d c d c b a b a c b d c d c b a b a d a)1(2)(--=n n n n n D c b d a)1(22)(--=n n n n n n D c b d a D)2(21111))((-------=n n n n n n n n n D c b d a c b d a)())((11111111c b d a c b d a c b d a n n n n n n n n ---=----2.6 连加法 例 7 计算mx x x x m x x x x m x D n n n n ---=212121这种行列式的特点是:各行元素之和都相等.先把第2列到第n 列元素同时加到第1列,并提出公因式,得mx x x m x x x m x D n n n ni i n ---=∑=2221111)(然后将第1行乘以(-1)加到第n ,3,2行,得mm x x m x D n ni i n ---=∑=001)(21)()(11m x m ni i n --=∑=-2.7 乘积法根据拉普拉斯定理,所得行列式乘法运算规则如下:nnn nnn n n nn n n c c c c b b b b a a a a 111111111111=⋅ (其中tj ni it ij b a c ∑==1)两个行列式的乘积可以像矩阵的乘法一样来计算,假若两个行列式的阶数不同,只要把它们的阶数化为相同就可以应用上面的公式了.这种方法的关键是寻找有特殊结构的已知行列式去乘原行列式,从而简化原行列式的计算,这也是较为常用的方法.例 8 计算行列式 ab c db a dc cd a bd c b aD =解 取行列式 1111111111111111------=H显然 0≠H ,由行列式的乘法规则:=DH ⋅ab c d ba d c c d a bd c b a 1111111111111111------ H d c b a d c b a d c b a d c b a d c b a ))()()()((+---+--++--++++=等式两边消去,H 得=D ))()()()((d c b a d c b a d c b a d c b a d c b a +---+--++--++++2.8 对称法这是解决具有对称关系的数学问题的常用方法. 例 9 计算n 阶行列式βαβααββααββα++++=1010001000 n D解 按第1行展开,得21)(---+=n n n D D D αββα即 )(211----=-n n n n D D D D αβα由此递推,即得 nn n D D βα=--1因为n D 中αβ与对称,又有 nn n D D αβ=--1当 βα≠ 时,从上两式中消去1-n D ,得 11n n n D αβαβ++-=-当 βα= 时,1-+=n nn D D ββ)(21--++=n n n D ββββ 222-+=n n D ββ11)1(D n n n-+-=ββ )()1(1βαββ++-=-n n nnn β)1(+= 2.9 数学归纳法当n D 与1-n D 是同型的行列式,可考虑用数学归纳法. 例 10 计算n 级行列式ααααcos 2100cos 210001cos 210001cos =n D解 当2=n 时,ααcos 211cos 2=D αα2cos 1cos 22=-=结论成立,假设对级数小于n 的行列式结论成立,则n D 按第n 行展开,得21cos 2---=n n n D D D α由假设αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n代入前一式,得]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D nαααααn n n cos sin )1sin(cos )1cos(=---=故对一切自然数n ,结论成立.2.10 拆项法这是计算行列式常用的方法.一般地,当行列式的一列(行)或一列(行)以上的元素能有规律地表示为两项或多项和的形式,就可以考虑用拆为和的方法来进行计算.例 11 在平面上,以点),(),(),(233332332232222221311211x x x x M x x x x M x x x x M ------,,为顶点的三角形面积D S =,其中11121323233322222321212131x x x x x x x x x x x x D ------= )1()1()1()1()1()1(11121323222121332211------=x x x x x x x x x x x x )1()1()1()1()1()1()1()1()1(21323222121332211332211------+--+--+--=x x x x x x x x x x x x x x x x x x解 第1行拆为)1()1()1(11111121111)1)(1)(1(21332211321321232221321321------+----=x x x x x x x x x x x x x x x x x x x x x D32112132332121))()()(1)(1)(1(21x x x x x x x x x x x x +-------=232221321111x x x x x x )]1)(1)(1([))()((21321321121323----⋅---=x x x x x x x x x x x x 3 分块矩阵行列式的计算方法我们学习了矩阵的分块,知道一个矩阵⎥⎦⎤⎢⎣⎡B A 00通过分块若能转化成对角矩阵或上(下)三角矩阵⎥⎦⎤⎢⎣⎡B C A 0,那么行列式B A B C A B A ⋅==000,其中B A ,分别是r s ,阶可逆矩阵,C 是s r ⨯阶矩阵,0是n s ⨯阶矩阵.可以看出,这样可以把r s +阶行列式的计算问题通过矩阵分块转化为较低阶的s 阶和r 阶行列式计算问题,下面先根据上面的途径给出计算公式.设矩阵 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B C D A b b c c b b c c d d a a d d a a G rr r rsr r s sr s ss s r s 1111111111111111其中B A ,分别是s 阶和r 阶的可逆矩阵,C 是s r ⨯阶矩阵,D 是r s ⨯阶矩阵,则有下面公式成立. C DB A B BCD A G 1--⋅==或C DA B A BCD A G 1--⋅==下面推导公式,事实上,当0≠A 时,有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---D BCA D A B C D A E CA E 1100 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---B C C DB A B C D A E DB E 0011 上面两式两边同取行列式即可得出上面的公式.例 12 计算 8710650143102101=D这道题的常规解法是将其化为上三角行列式进行计算,若用前面介绍的公式则可以直接得出结果.令 ⎥⎦⎤⎢⎣⎡=1001A ,⎥⎦⎤⎢⎣⎡=8765B , ⎥⎦⎤⎢⎣⎡=1001C , ⎥⎦⎤⎢⎣⎡=4321D 则 ⎥⎦⎤⎢⎣⎡=1001'A ,由公式(1) 知原行列式D CA B A BCD A 1--⋅==⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=43211001100187651001 ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=432187651 4444==0这个题还有个特点,那就是C A =,如果我们把公式变形,即D CA B A BCD A 1--⋅=D ACA AB D CA B A 11)(---=-=当C A =时,D ACA AB 1--CD AB D CAA AB -=-=-1,所以当C A =时,我们有CD AB BCD A -=,这样例题就可以直接写出答案了.参考文献:[1] 北京大学数学系,高等代数[M] (第三版).北京:高等教育出版社,2003,9.[2] 张禾瑞,高等代数[M] (第四版).北京:高等教育出版社,1997.[3] 丘维生,高等代数[M].北京:高等教育出版社,1996,12.[4] 杨子胥,高等代数[M].山东:山东科学技术出版社,2001,9.[5] 王萼芳,高等代数题解[M].北京:北京大学出版社,1983,10.[6] Gelfand I M, Kapranov M M and Celvinskij A V. Discriminaants, redultants,and multidimensional determinants[M].Mathematics: Theory&Applications,Birkhauser Verlag,1994.[7] 徐仲,陆全等.高等代数导教·导学·导考.西安::西北工业大学出版社,2004.[8] 陈黎钦.福建:福建商业高等专科学校学报,2007年2月第1期.11。
行列式的定义计算方法行列式是线性代数中一个重要的概念,用于描述线性方程组的解的性质。
行列式广泛应用于数学、物理、工程等领域,具有重要的理论和实际价值。
本文将详细介绍行列式的定义和计算方法,并通过实例加以说明。
行列式是线性代数中独特的一个概念,它起源于19世纪初,由日本数学家关孝和引入并发展起来。
行列式在线性代数中具有非常重要的地位,它与线性方程组的解有密切的关联。
掌握行列式的定义和计算方法,对于理解线性代数的相关概念和解决实际问题具有重要的意义。
一、行列式的定义行列式是一个方阵的一个标量值,它可以用来判断矩阵的很多性质和计算线性方程组的解。
对于一个n阶矩阵A=(a_ij),它的行列式记作det(A),其中a_ij表示在矩阵A中第i行、第j列的元素。
二、行列式的计算方法1. 二阶行列式的计算:对于一个2x2的矩阵A=(a_11 a_12; a_21 a_22),它的行列式计算公式为:det(A) = a_11 * a_22 - a_12 * a_212. 三阶行列式的计算:对于一个3x3的矩阵A=(a_11 a_12 a_13; a_21 a_22 a_23; a_31 a_32 a_33),它的行列式计算公式为:det(A) = a_11 * a_22 * a_33 + a_12 * a_23 * a_31 + a_13 * a_21 * a_32- a_31 * a_22 * a_13 - a_32 * a_23 * a_11 - a_33 * a_21 * a_123. 高阶行列式的计算:对于高于三阶的行列式,我们通常使用拉普拉斯展开法来计算。
选择行或列,然后对该行或列的元素依次乘以其代数余子式,再按正负号加和,即可得到行列式的值。
【举例说明】为了更好地理解行列式的计算方法,我们通过一个实例来进行说明。
考虑一个3x3的矩阵A=(1 2 3; 4 5 6; 7 8 9),我们将按照上述的计算方法来求解其行列式值。
高等代数中的行列式与矩阵关系与计算方法高等代数中的行列式与矩阵:关系与计算方法高等代数是现代数学的一门重要学科,其中行列式与矩阵是其核心内容之一。
本文将介绍行列式与矩阵的关系以及计算方法,帮助读者更好地理解和应用这一领域的知识。
1. 行列式的概念与性质行列式是一个方阵所具有的一个标量值。
对于一个n阶方阵A,其行列式记作det(A)或|A|,其定义如下:det(A) = a₁₁·a₂₂·...·aₙₙ - a₁₂·a₂₁·...·aₙₙ₋₁ +a₁₃·a₂₃·...·aₙₙ₋₂ - ... + (-1)^(n+1)·a₁ₙ·a₂ₙ₋₁·...·aₙ₁其中,aᵢₙ代表矩阵A的第i行第j列的元素。
行列式具有以下性质:- 若矩阵A的两行或两列互换,则行列式的值变号。
- 若矩阵的某一行(列)元素全为0,则其行列式的值为0。
- 若矩阵的某行(列)有两个元素相同,则其行列式的值为0。
- 若矩阵的某行(列)是另一行(列)的倍数,则其行列式的值为0。
- 两个矩阵进行加减运算时,其行列式的值也分别相加减。
2. 矩阵的概念与性质矩阵是由数字按照矩形排列而成的数表,常用来表示线性方程组和线性变换。
一个矩阵由m行n列的元素构成,记作A =[aᵢₙ]ᵢ₌₁₋₁,...,m ₋ j₌₁,...,n。
矩阵具有以下性质:- 矩阵的行数与列数分别称为其阶数。
- 若两个矩阵的对应元素相等,则这两个矩阵相等。
- 矩阵的加法与减法满足交换律和结合律。
- 矩阵的乘法满足结合律,但不满足交换律。
- 矩阵的转置是指将矩阵的行与列互换,记作Aᵀ。
3. 行列式与矩阵的关系行列式与矩阵之间有着紧密的联系。
一个方阵A的行列式可以用它的元素构成的矩阵来表示,即:|A| = det(A) = [a₁₁, a₁₂, ..., a₁ₙ][a₂₁, a₂₂, ..., a₂ₙ][..., ..., ..., ...][aₙ₁, aₙ₂, ..., aₙₙ]其中,aᵢₙ代表矩阵A的第i行第j列的元素。
行列式的几种计算方法行列式是线性代数中的一种重要概念,也是解线性方程组的基础。
行列式的求解方法有很多,下面介绍几种比较常用的方法。
1. 代数余子式法代数余子式法是求解$n$阶行列式的一种常用方法。
假设有一个$n$阶行列式$A$,它的第$i$行、第$j$列元素为$a_{i,j}$,则记$A_{i,j}$为该行列式除去第$i$行和第$j$列后得到的$(n-1)$阶行列式,即:$$A_{i,j}=(-1)^{i+j}|A_{i,j}|$$其中,$|A_{i,j}|$表示该矩阵的余子式。
在求解行列式的时候,先选择行或列作为基准,计算出每个元素的代数余子式,然后进行相乘相加即可。
具体方法如下:$$det(A)=\sum_{i=1}^{n}a_{i,j}A_{i,j}=\sum_{j=1}^{n}a_{i,j}A_{i,j}$$根据公式可知,代数余子式法的时间复杂度为$O(n!)$,因此只能适用于小规模的行列式求解。
2. 行列式加边法行列式加边法是求解$n$阶行列式的另一种常用方法,它利用了矩阵的运算规律,通过添加等行等列来求解行列式值。
具体方法如下:(1)选择行或列中绝对值最大的元素,将该元素加入到行列式外面新添加一行或一列,然后依次将其它元素按矩阵运算法则进行变换;(2)此时,行列式的值等于新行列式减去外加行列后的新行列式;(3)依次将新加行列的元素还原到原来的位置,然后计算新添加元素的代数余子式求和即可。
这种方法的优点是时间复杂度较低,为$O(n^3)$。
缺点是需要进行大量的矩阵运算,计算过程较为繁琐。
3. 克拉默法则克拉默法则是解决线性方程组的常用方法,也可以用来求解行列式。
假设有一个$n$阶行列式$A$,则克拉默法则的公式为:其中,$D_i$表示以第$i$列为基准的行列式值。
4. 三角分解法三角分解法是求解$n$阶行列式的一种高效方法,它可以分解为上三角和下三角矩阵的乘积,从而降低了计算复杂度。
该方法可以通过高斯列主元消元法来实现,具体流程如下:(1)按列主元消元法,将原始矩阵变换为上三角矩阵$U$;(2)计算对角线上的元素之积,即为行列式的值。