雷达原理_第四章-雷达终端
- 格式:ppt
- 大小:3.59 MB
- 文档页数:192
雷达原理课件雷达原理课件雷达(Radar)是一种利用电磁波进行探测和测量的技术。
它广泛应用于军事、航空、气象等领域,为我们提供了无可替代的信息和数据。
本文将介绍雷达的原理和应用,并探讨其在现代社会中的重要性。
一、雷达的基本原理雷达的基本原理是利用电磁波的特性来实现目标的探测和测量。
它通过发射一束电磁波,然后接收并分析回波来确定目标的位置、距离、速度等信息。
1. 发射电磁波雷达系统首先发射一束电磁波,通常是微波或无线电波。
这些电磁波会沿着直线传播,并在碰到目标时发生反射或散射。
2. 接收回波当发射的电磁波碰到目标时,它们会发生反射或散射,并返回雷达系统。
雷达接收器会接收到这些回波,并将其转化为电信号。
3. 分析回波接收到的电信号经过处理和分析,可以提取出目标的相关信息。
通过测量回波的时间延迟、频率变化和幅度变化等,雷达系统可以确定目标的位置、距离、速度等参数。
二、雷达的应用领域雷达技术在各个领域都有着广泛的应用,以下是几个常见的领域:1. 军事应用雷达在军事领域中起着至关重要的作用。
它可以用于目标探测、目标跟踪、导航、武器制导等方面。
雷达系统可以帮助军队实时监测敌方的动态,提供战场情报,为作战决策提供重要支持。
2. 航空导航雷达在航空领域中被广泛应用于飞行导航和空中交通管制。
它可以帮助飞行员确定飞机的位置和高度,避免与其他飞行器相撞。
雷达系统还可以监测天气变化,提供飞行安全的重要信息。
3. 气象预报雷达技术在气象领域中扮演着重要角色。
通过测量回波的强度和频率,雷达系统可以提供降水量、风速、云层高度等天气信息。
这对于气象预报和灾害预警非常关键。
4. 海洋勘测雷达在海洋领域中也有着广泛的应用。
它可以用于测量海洋表面的波浪、潮汐和海流等信息。
这对于海洋勘测、海上交通和海洋资源开发具有重要意义。
三、雷达在现代社会中的重要性雷达技术的发展和应用对于现代社会来说具有重要意义。
以下是几个方面的重要性:1. 安全保障雷达系统可以帮助保障国家的安全。
雷达工作原理第一篇:雷达工作原理雷达的原理雷达(radar)原是“无线电探测与定位”的英文缩写。
雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。
雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。
雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。
天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。
电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。
天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。
由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。
接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。
为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。
根据电磁波的传播速度,可以确定目标的距离为:S=CT/2其中S:目标距离T:电磁波从雷达到目标的往返传播时间C:光速雷达测定目标的方向是利用天线的方向性来实现的。
通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。
两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。
测定目标的运动速度是雷达的一个重要功能,—雷达测速利用了物理学中的多普勒原理.当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。
雷达的战术指标主要包括作用距离、威力范围、测距分辨力与精度、测角分辨力与精度、测速分辨力与精度、系统机动性等。
其中,作用距离是指雷达刚好能够可靠发现目标的距离。
雷达的(radar)概念:无线电探测和测距。
雷达的原理:利用目标对电磁波的反射现象来发现目标并测定其位置的。
雷达的组成:天线:向确定的方向发射和接收特定频段的电磁波1.收发开关:发射状态将发射机输出功率接到天线,保护接收机输入端接受状态将天线接收信号接到接收机,防止发射机旁路信号2.发射机:在特定的时间、以特定的频率和相位产生大功率电磁波3.接收机:放大微弱的回波信号,解调目标信息4.激励器/同步器:产生和供给收发信号共同的时间、频率、天线指向基准5.显示器/操作员:显示目标信息和雷达的工作状态,配合人工操作。
单级震荡发射机的特点:优点:简单,低廉,高效;缺点:频率不稳,相位随机,不能复杂调制主震放大式发射机组成及特点:1.基准振荡器:保证频率、重频、脉宽,2.锁相振荡器:提供相位(稳定性、一致性很高) 3.放大链:固态+行波管放大链,固态+行波管+速调管(前向波管)放大链等优点:频率稳定、准确,相位稳定,能够复杂调制缺点:复杂,昂贵,效率较低脉冲调制器的组成:1.直流电源:提供充足、稳定的直流能量,满足工作要求;2.充电元件:将直流能量及时传递给储能元件3.储能元件:在开关截止时保存充电能量,在开关导通时释放保存的能量4.调制开关:刚性在输入脉冲的作用下,脉冲期间导通,间歇期间截止软性在输入触发的作用下,导通释放能量,放尽后自然截止5.耦合元件:将高压、大电流脉冲作用到射频负载上(原理图另附)噪声系数定义:接收机输入端信号噪声功率比与输出端信号噪声功率比的比值及:雷达终端显示器根据完成的任务可分为: 距离显示器、平面显示器、高度显示器、情况显示器和综合显示器、光栅扫描显示器等。
检测性能由发现概率和虚警概率描述:发现概率越大说明发现目标的可能性越大;虚警概率越小说明错误目标的可能性越大;在虚警概率不超过某个允许值的条件下,发现概率越大越好虚警:没有信号时,输出的电平超过门限被认为是信号的事件。
波导损耗:波导损耗与波导制造的材料、工艺、传输系统工作状态以及工作波长等因素有关, 通常情况下, 工作波长越短, 损耗越大。
【雷达任务:测目旳距离、方位、仰角、速度;从目旳回波中获取信息【雷达工作原理:发射机在定期器控制下,产生高频大功率旳脉冲串,通过收发开关抵达定向天线,以电磁波形式向外辐射。
在天线控制设备旳控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目旳上,二次散射电磁波旳一部分抵达雷达天线,经收发开关至接受机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目旳旳存在、方位、距离、速度等。
【影响雷达性能指标:脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。
【测角:根据接受回波最强时旳天线波束指向【雷达是怎样获取目旳信息旳?【雷达构成:天线,发射机,接受机,信号处理机,终端设备(电源,显示屏),收发转换开关【发射机工作原理:为雷达提供一种载波受到调制旳大功率射频信号,经馈线和收发开关由天线辐射出去。
【发射机基本构成:单级振荡式:脉冲调制器,大频率射频振荡器,电源。
主振放大式:脉冲调制器,中间和输出射频功放,电源,定期器,固体微波源(主控振荡器,用来产生射频信号)工作过程:(1)单级振荡式:信号由振荡器产生,受调制(2)主振放大式:信号由固体微波源通过倍频后产生,经射频放大链进行放大,各级都需调制(脉冲调制器),定期器协调工作。
优缺陷:单击振荡式:简朴经济轻便,频率稳定度差,无复杂波形;主振放大式:频率稳定度高,相位相参信号,有复杂波形,合用频率捷变雷达【发射机质量指标:(1)工作频率(波段)(2)输出功率:影响威力和抗干扰能力。
峰值功率(脉冲期间射频振荡旳平均功率)和平均功率(脉冲反复周期内输出功率旳平均值)。
(3)总效率Pt/P。
(4)调制形式:调制器旳脉冲宽度,反复频率,波形。
(5)信号稳定度/频谱纯度,即信号各项参数。
【调制器构成:电源,能量储存,脉冲形成【调制器任务与作用:为发射机旳射频各级提供合适脉冲,将一种信号载到一种比它高旳信号上【仿真线:由于雷达旳工作脉冲宽度多半在微秒级别以上,用真实线长度太长,因此在实际中是用集总参数旳网络替代长线,即仿真线【刚/软性开关:刚性开关旳电容储能部分放电式调制器,特点为部分放电,通电利索;软性开关旳人工线性调制器,特点为完全放电,效率高,功率大。
雷达的工作原理雷达是一种利用无线电波进行探测和测距的设备,它在军事、航空、航海、气象等领域都有着广泛的应用。
雷达的工作原理是基于无线电波的回波信号,通过分析回波信号的特征来实现目标的探测和测距。
下面我们将详细介绍雷达的工作原理。
首先,雷达系统发射出一束无线电波。
这些无线电波会沿着一定的方向传播出去,当它们遇到目标时,就会被目标表面反射回来,形成回波信号。
雷达接收系统会接收并处理这些回波信号,通过分析回波信号的特征来确定目标的位置、速度和其他相关信息。
雷达的工作原理可以通过以下几个关键步骤来描述,发射、传播、接收和处理。
首先是发射阶段。
雷达系统会通过天线发射出一束无线电波,这些无线电波会以一定的频率和功率向外传播。
发射的频率和功率会影响雷达系统的探测范围和精度。
接下来是传播阶段。
发射出的无线电波会沿着一定的方向传播出去,当它们遇到目标时,就会被目标表面反射回来,形成回波信号。
传播过程中,无线电波会受到大气、地形等因素的影响,这些影响会对回波信号的特征产生一定的影响。
然后是接收阶段。
雷达接收系统会接收并放大回波信号,然后将其转换成电信号进行处理。
接收到的回波信号会包含有关目标的位置、速度和其他相关信息。
最后是处理阶段。
雷达系统会通过信号处理算法来分析回波信号的特征,从而确定目标的位置、速度和其他相关信息。
信号处理算法的设计和优化对于雷达系统的性能至关重要,它直接影响着雷达系统的探测范围、精度和抗干扰能力。
总的来说,雷达的工作原理是基于无线电波的发射、传播、接收和处理。
通过分析回波信号的特征,雷达系统可以实现对目标的探测和测距。
随着科技的进步,雷达技术也在不断发展,未来雷达系统的性能将会得到进一步提升,为各个领域的应用提供更加可靠和高效的支持。