课题 整式的加减
- 格式:doc
- 大小:36.50 KB
- 文档页数:2
课题:2.2.3整式的加减混合运算及应用(23)班别: 姓名: 学号: 自评:第一部分 预习导案一、学习目标1、理解整式加减的运算法则,熟练进行整式加减的混合运算.2、掌握利用整式的加减解决简单的实际应用问题.二、学习重难点重点:整式加减的混合运算法则.难点:总结理解、并熟练进行整式加减运算的一般步骤.三、知识链接回忆去括号,合并同类项的法则.化简:-7a+2(a-2)-3(1-a)四、预习导学阅读课本P67-69,经历列式、去括号、合并同类项、代入求值等解题过程,你熟练地掌握了整式的加减运算法则了吗?请在课本上划记要点,并完成以下填空:一般地,几个整式相加减,如果有括号就先________,然后再________________.五、预习检测1、计算(1)(3x+2 y)+(4x -5 y) (2)(5a -2b) -(4a -3b)2、先化简,再求值:(3a2b -ab2) -(a2b+3ab2),其中a =21,b =31.六、预习过程中我的疑惑:_____________________________________________第二部分 课堂导学七、合作探究(一)组内探究我的预习疑惑。
(二)组内探究下列问题:1、小组内交流,应该怎样进行整式的加减运算?总结整式加减运算的法则。
2、根据自主学习和例8谈谈整式加减列式时必须注意哪些问题?根据例9思考:求代数式的值时,直接代数好吗?3、整式加减的法则:一般地,几个整式相加减,如果有括号就先 ,然后再__________ 。
多项式进行加减运算时,应该把多项式作为一个整体,先加上__________,然后再加减。
3、式子求值时,一般的,要先对多项式进行__________,然后再代入求值。
八、总结反思本节课学习了哪些内容?你有哪些收获?第三部分 课堂检测1、减去m 3-等于5352--m m 的整式是( ))1(5.2-m A 565.2--m m B )1(5.2+m C 565.2+--m m D2、一个多项式与122+-x x 的和是 x -,则这个多项式为( )A.352+-x xB.12-+-x xC.352-+-x xD.1352--x x3、一个长方形的长是2x +3y ,宽是x —y ,则这个长方形的周长是 .4、已知多项式A=4a 2+5b ,B=-3a 2-2b ,计算2A -B 的结果5、计算(1)2(23)3(23)a b b a -+- (2)(ab -3a 2) -2b 2-5 ab -(a 2-2ab )6、先化简再求值.1])24(26[422+----y x xy xy y x .其中1,21=-=y x .。
2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(-32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b )+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x 2+y 2)-(x 2-y 2+8xy)解:原式=8xy-x 2+y 2-x 2+y 2-8xy=-2x 2+2y 2(3)(2x 2-12+3x)-4(x-x 2+12) 解:原式=2x 2-12+3x-4x+4x 2-2=6x 2-x-52 (4)3x 2-[7x-(4x-3)-2x 2]解:原式=3x 2-(7x-4x+3-2x 2)=3x 2-7x+4x-3+2x 2=5x 2-3x-32.(10分)求(-x 2+5+4x )+(5x-4+2x 2)的值,其中x=-2.解:(-x 2+5+4x)+(5x-4+2x 2)=-x 2+5+4x+5x-4+2x 2=x 2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,求这个多项式.解:这个多项式为(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
第3课时整式的加减【知识与技能】掌握整式加减的一般步骤,熟练地进行整式的加减运算.【过程与方法】通过探究整式加减的一般步骤,培养学生观察、分析、归纳及概括能力.【情感态度】结合本课教学特点,教育学生热爱生活,热爱学习,激发学生观察,探究数学问题的兴趣. 【教学重点】整式的加减.【教学难点】归纳整式加减的一般步骤.一、情境导入,初步认识按照下面的步骤做一做:1.任意写一个两位数;2.交换这个两位数的十位数字和个位数字,又得到一个数;3.求这两个数的和.再写几个两位数重复上面的过程.这些和有什么规律?这个规律对任意一个两位数都成立吗?【教学说明】学习通过操作,初步感受整式的加减.二、思考探究,获取新知1.整式加减的一般步骤问题1按照下面的步骤做一做.教材第95页的“做一做”.【教学说明】学生通过导入的操作已经知道解决问题的方法,进一步感受整式的加减.问:在上面的两个问题中,分别涉及整式的什么运算?说一说你是如何运算的.通过这个问题得到整式加减的一般步骤.【归纳结论】进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.2.整式的加减问题2计算:【教学说明】通过计算,使学生熟练地掌握整式的加减的计算方法.【归纳结论】几个整式相加减,通过用括号将一个整式括起来,再用加减号连接,然后去括号,合并同类项.3.整式加减的应用问题3我国出租车收费标准因地而异.甲市为:起步价6元,3千米后每千米收费为1.5元;乙市为:起步价10元,3千米后每千米收费为1.2元.(1)试问在甲、乙两市乘坐出租车S(S>3)千米的价钱差是多少元?(2)如果在甲、乙两市乘坐出租车的路程都为10千米,那么哪个市的收费标准高些?高多少?【分析】先把甲、乙两市乘坐出租车S(S>3)千米的价钱分别用含S的式子表示出来,再求甲、乙两市的价钱差.【教学说明】学生分析、思考,与同伴交流,感受整式的加减在实际问题中的应用.问题4已知M=4x2-3x-2,N=6x2-3x+6,试比较M与N的大小关系.【分析】比较两个式子的大小,一般采用“作差法”,即先将两式作差,再把所得的差与0比较,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.【教学说明】学生通过思考、分析,与同伴进行交流,进一步体验知识的综合运用.三、运用新知,深化理解4.已知A=-2x2+x-6,B=4+3x+5x2.求:(1)A+B;(2) A-B;(3)3A-B.5.某学生计算2x2-5xy+6y2加上某多项式时,由于粗心,误算为减去这个多项式而得到7y2+4xy+4x2,你能帮他求出正确的答案吗?6.一个长方形的宽为a,长比宽的2倍少1.(1)写出这个长方形的周长;(2)当a=2时,这个长方形的周长是多少?7.蔬菜供应站以每千克a元的价格购进某种蔬菜m千克,如果按10%的损耗计算,若以5元/千克的价格出售,那么利润是多少?【教学说明】学生自主完成,检测对整式的加减有关知识的掌握情况,加深对新学知识的理解,使学生学会综合运用所学的知识,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.四、师生互动,课堂小结1.师生共同回顾整式加减的一般步骤.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流进行知识的提炼和归纳,加深对知识的理解.1.布置作业:从教材“习题3.7”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究整式加强的一般步骤,到运用整式的加减解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.6.2 立方根一、新课导入:1.导入课题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的棱长应该是多少?为了解决这一问题,这节课我们就来学习立方根(板书课题).2.学习目标:(1)知道什么是立方根,什么是开立方,并能运用开立方与立方之间互为逆运算的关系求一个数的立方根.(2)知道立方根的性质,会用符号正确表示一个数的立方根.(3)能用计算器求立方根,知道立方根的小数点的位置移动规律.(4)类比平方根来学习立方根,体会类比思想.3.学习重、难点:重点:立方根的概念.难点:立方根与平方根的区别与联系.二、分层学习1.自学指导:(1)自学内容:课本P49至P50例题为止的内容.(2)自学时间:8分钟.(3)自学要求:认真阅读课文,并做好圈点标记,类比平方根来理解相关内容.(4)自学参考提纲:①什么叫立方根(或三次方根)?什么叫开立方?开立方与立方之间有何关系?②根据开立方与立方的关系,完成P49“探究”中的填空.③根据填空的结果,归纳出立方根的性质,你能说说它与平方根的性质有什么不同吗?④一个数a的立方根,用符号a表示,读作三次根号a.⑤符号a中,3是根指数,能省略吗?(不能)根指数在什么情况下可以省略?a 是实数,这里的a还需满足“a≥0”的条件吗?⑥完成P50“探究”,从中可以归纳出:对于任意数a,都有-a=-a.⑦求下列各式的值:1000-0.01-1 -64 27上面4个小题的答案依次为:10,-0.1,-1,-4 32.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流和纠错.4.强化:(1)立方根的概念,性质和符号表示.(2)3-a=-3a.(3)利用开立方与立方互为逆运算求一个数的立方根.1.自学指导:(1)自学内容:课本P50倒数第三行至P51“练习”之前的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,熟悉用计算器求立方根的方法;小组合作探究立方根的小数点的位置移动规律.(4)自学参考提纲:23、523、4等开方开不尽的数也都是无限不循环小数,可以用夹逼法求其近似值,也可以用计算器求其近似值.②若a、b是两个连续整数,且a<50,求a+b的值.(7)③用计算器计算:0.002160.216216216000上面4小题答案依次为:0.06,0.6,6,60.④由③中计算结果,可以归纳出被开方数的小数点的移动与它的立方根的小数点的移动规律:被开方数的小数点每向右或向左移动3位,它的立方根的小数点就相应地向右或向左移动1位.⑤用计算器计算100=4.642(精确到0.001),并利用④)中总结的规律填空:①0.1=0.4642;②0.0001=0.04642;③100000=46.42.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内同学间相互交流、纠错.4.强化:被开方数的小数点与它的立方根的小数点的位置移动规律.三、评价1.学生的自我评价:学生代表交流学习目标的达成情况及学习的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学要突出体现“创设情境——提出问题——建立模型——解决问题”的思路,提倡学生自主学习,利用平方根的知识类比学习立方根的知识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)审查下列说法:(1)2是8的立方根;(2)±4是64的立方根;(3)-1 3是-127的立方根;(4)(-4)3的立方根是-4,其中正确的个数是(C)A.1个B.2个C.3个D.4个2.(10分)下列各式:(1)-3;(2) 3;(3)()33-3110中,有意义的有(D)A.1个B.2个C.3个D.4个3.(10分)已知0.343=0.7,则343000=70; -0.000343=-0.07.4.(20分)求下列各数的立方根:(1)-0.008;(2)64125; (3)106; (4)(-110)3.解:(1)-0.008=-0.2;(2)6412545;(3)6102=100;(4)33110⎛⎫⎪⎝⎭-=-110. 5.(20分)求下列各式的值:二、综合运用(20分) 6.(10分)求下列各式中x 的值: (1)x 3=0.008; (2)x 3-3=38; (3)(x-1)3=64. 解:(1)∵0.23=0.008,∴x=0.2. (2)x 3=278,∵32⎛⎫ ⎪⎝⎭3=278,∴x=32. (3)∵43=64,∴x-1=4,∴x=5. 7.(10分)比较下列各组数的大小: (1)9 2.5; (2)332. 解:(1)∵(93=9,2.53=15.625,∴(93<15.625, ∴9(2)∵(3)3=3,3·(32)2=278, ∴3<278, ∴3332. 三、拓展延伸(10分) 8.若x 2y =4,2x y +的值.解:∵x 2y ∴x=23,y 2=16, ∴x=8,y=±4,∴x+2y=8+2×4=16或x+2y=8-2×4=0, 2x y +162x y +0=0.第2章整式加减1. 用字母表示数【知识与技能】1.在现实情境中理解用字母表示数的意义.2.能用字母运算律和计算公式.3.让学生在探索基本数量关系的过程中,建立符号意识.【过程与方法】从一个学生熟悉的实例引入用字母表示数,并通过各种师生活动加深学生对“奇偶数”的概念和用字母表示数的意义的理解;并使学生会用字母表示数和数量关系,使学生进一步发展符号感.【情感态度】从学生的生活实际中提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,培养学生思维严谨的良好素养.【教学重点】重点是会用字母表示数和规律.【教学难点】难点是探索一般规律并用字母表示.一、情境导入,初步认识【情境1】实物投影,并呈现问题:科学家爱因斯坦上小学的时候,在一次数学课中,发现了下列等式:1+2=2+1,3.5+5.6=5.6+3.5,12+23=23+12.他认为,这是数学运算的一个重要规律,于是就把这个规律告诉了他的老师和同学,得到了大家的赞赏.你能发现这个规律吗?你能把这个规律用简明的方法表示出来吗?你还能用简明的方法表示哪些运算规律?【情境2】实物投影,并呈现问题:游戏:如果你能把你想到的一个数扩大2倍后再减去2的差的一半告诉我,我就能猜到你想到的是什么数,信吗?试试看.老师为什么能猜到你想到的数呢?【教学说明】学生独立思考后,小组讨论,教师注意引导学生发现用字母表示数的意义,从而会用字母表示数和规律.情境1中有理数加法的交换律,用字母表示为:a+b=b+a,还可以表示:加法结合律(a+b)+c=a+(b+c),乘法结合律(a×b)×c=a×(b×c),乘法交换律a×b=b×a,乘法分配律a×(b+c)=a×b+a×c.情境2中学生体验并感受到了用字母表示数的优越性.【教学说明】通过现实情景再现,让学生体会到用字母表示数的意义,发展学生的数学符号意识.通过前面的情景引入,激发学生的探究欲望,并使学生获得大量的感性材料,有趣的情境也激发了学生学习的兴趣.二、思考探究,获取新知1.奇数和偶数问题1什么是奇数?什么是偶数?问题2用字母如何表示奇数和偶数?【教学说明】学生通过阅读教材和观察生活,在经过观察、分析后能得出结论.2.字母表示数的意义问题用字母表示数有什么作用?【教学说明】一方面让学生经历用字母表示数,在用字母表示数和数量关系的过程中体会用字母表示数的意义,另外发展学生运用符号的意识.【归纳结论】用字母所表示的数是某个范围内所有数的代表,具有普遍性,又是这个范围内的任意一个数,具有任意性.因此,用字母表示数,可以把数和数量关系简明地表示出来.用字母可以简明地表示数学运算律、公式、数量关系、未知数等.三、运用新知,深化理解1.字母与数相乘的3v表示什么,下面同学的说法中,正确的个数是()①我一小时走v千米,3小时共走3v千米;②小明说小彬一分钟跑v米,3分钟跑3v 米;③晶晶说一个瓶子体积共v升,3个同样的瓶子体积是3v升;④媛媛说老虎一顿吃3公斤肉,v顿吃3v公斤肉.2.下列用字母表示“分数的分子、分母同乘以不等于0的数,分数的值不变”正确的是()3.请用字母表示:(1)三角形底边为a,高为h,面积为s,则s= ;(2)梯形的上底为a,下底为b,高为h,面积为s,则s= ;(3)圆的半径为R,面积为s,周长为L,则S= , L= .4.如图,用字母表示图中阴影部分的面积:5.如图所示的是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由个基础图形组成.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识.通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识.【答案】1.A 2.D四、师生互动,课堂小结1.什么叫做奇数?什么叫做偶数?2.用字母表示数有什么意义?3.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第57页“练习”中选取.2.完成同步练习册中本课时的练习.本节课精心预设教学的各个环节,给学生提供了较大的思考空间,创设了多个贴近学生认知规律且适合学生学习的教学情境,使学生在现实情境中了解用字母表示数的意义,理解奇偶数的概念,掌握奇偶数的表示方法和能用字母来表示数和数量关系,为代数式的学习打好基础,同时发展了学生的符号意识.。
学科教师辅导讲义讲义编号_ 10sh6sx0010则两地距离为_____千米.4、轮船往返相距S千米的A、B两地,轮船在静水中每小时行a千米,水流速度为每小时b千米,则往返A、B两地一次需要____________小时;3、列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来即列代数式,使问题变得简洁,更具一般性,但列代数式的关键是正确分析数量关系,弄清运算顺序,掌握诸如和、差、积、商、倍分、大、小、多、少、增加了,增加到,除、除以等概念。
【例题讲解】1、现有盐水x千克,若加水10千克后,浓度为20%,则盐水含盐量为______.2、 一个两位数,个位数字是m,十位数字是n,则这个两位数可用代数式表示为______.3、a、b两数的立方和的倒数用代数式表示为______4、用代数式表示比x与y差的绝对值小3的数是______5、a的平方的2倍与b的平方的和表示为______6、列代数式:一个梯形的上底为a厘米,下底是上底的3倍,高比下底小2厘米,那么这个梯形的面积是___平方厘米7、某次旅游分甲、乙两组,已知甲组有a名队员,平均门票m元,乙组有b名队员,平均门票n元,则一共要付门票___元.8、某公司职员,月工资a元,增加10%后达到_____元.4、代数式的值及求法用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,叫做代数式的值。
代数式的值一般不是某一个固定的量,而是随着代数式中字母取值的变化而变化。
求代数式的值应注意以下几个问题: (1)若代数式中省略了乘号、代入数值后应添上“×”号; (2)若代入的值是负数或分数时,应添上括号; (3)注意解题格式规范,应写成“当……时,原式=……”的形式;(4)代数式的字母可取不同的值,但所取的值不应该使所在的代数式或实际问题无意义.【例题讲解】1、当a=1,b=-2时,代数式2(a-1)2-(b+2)2-3的值是______2、当x=-0.3,y=0.2时,求代数式(|3x-2y|-|2x-3y|)2的值______.3、已知a+b=-3,ab=-2,则(a+b)2-4ab的值为______4、当x=-2时,求代数式-x3+2x2-3x-4的值5、正确理解单项式的有关概念(1)单项式的定义 数与字母的乘积或字母与字母的积所组成的代数式叫做单项式,单独一个数或一个字母也是单项式, 如6,a都是单项式.因此,单项式只能含有乘法以及以数字为除数的除法运算,不能含有加减运算,更不能含有以字母为除式的除法运算.(2)单项式的系数 单项式中的数字因数叫单项式的系数,如-2xy2的系数为-2.单项式的系数为1或-1时,通常省略不写,但“-”号不能省略.如1ab 写成ab,-1ab写成-ab.(3)单项式的次数一个单项式,所有字母的指数的和叫做这个单项式的次数.如5x2y4的次数为6(2+4=6).一个单项式的次数是几,我们习惯上又称作这个单项式是几次单项式.如5x2y4是六次单项式。
整式加减教学设计整式加减教学设计1教学目标1.会进行含有括号的整式加减运算。
2.会先进行整式的加减,再求值。
复习旧知识,引入新知识复习“去括号法则”,请同学们先完成题目1:教师根据情况分析错误原因,并提醒学生注意括号前面的“—”号。
分析:在去括号的运算中,当()前是“-”号时,容易犯的错误是只将第一项变号,而其他项不变。
通过练习题1的分析后,再让学生继续完成练习题2,进行知识强化。
(让4个学生出黑板板示,允许其他同学出来修改)师:前面我们学习了合并同类项、去括号,本节课我们学习整式的加减。
进行整式的加减运算,实际上就是做两件事,第一件事是去括号,第二件事是合并同类项。
请看例6.(按去括号、合并同类项两步先让生尝试)师:通过上面的学习,你能说出整式加减的基本运算步骤吗?每一步应注意什么?让学生观察例题的过程,找出解题的路径。
试探练习,回授调节师:请学生4人出黑板板示,其他同学在自己座位上迅速完成,作好改错准备。
生:在自己座位上独立完成?板示学生返回座位后,发现有错误的`学生可出黑板改正。
师:提问学生,要求说出错误在什么地方,并加以改正。
生:?学生练习,老师巡查并指导。
学生多数会漏写括号。
师:在这几个整式相加或相减时,为什么要加上括号生:思考回答?师:观察本例,并说出本例与之前练习有什么区别?生:此例最后给出x、y的值,要求多项式的值。
师:请用两种方法做一做,并比较哪一种方法简单些?学生通过比较,都会认为先化简,后求值较为简单些。
教师再板书规范的书写过程。
通过本题的解答,让学生进一步熟练整式加减法的一般解题步骤,让学生先化简再求值,并培养学生规范的解题格式。
学生练习,教师巡查指导,及时提醒出现差错的学生改正。
注意不同层次学生的积极性的调动,使每个学生都参与到训练中来,积极动脑、动手,同时教师对差生进行指导和鼓励。
整式加减教学设计2【教学目标】1、理解同类项、合并同类项的概念。
2、掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。
1.如图1 ,带阴影的方框中的九个数的和与方框正中心的数有什么关系呢?
图1
(学生观察、计算、讨论、交流并归纳,尝试证明。
教师引导学生总结概括出结论)
结论:方框内数字的和为99,恰好是中间数字11的9倍。
因此,11恰好是方框中9个数的平均数。
2.将带阴影的方框移动后,(1)中的关系还成立吗?
图2
(学生观察、计算、讨论、交流并归纳,尝试证明。
教师引导学生总结概括出结论)
结论:移动后,方框内数字的和为144,恰好是中间数字16的9倍。
因此,16恰好是方框中9个数的平均数。
3.由此你能得出什么结论?
图3
(学生总结归纳。
教师引导学生用整式表示数量,让学生体会由特殊到一般的方法。
)
解:设中间的数为a,则方框中所有的数字如下:
其和为9a
用一个长方形框框住2020年8月的日历表中某三个日期,已知这三个日期之和为57,你能求出这三天分别是几号吗?
解:(1)设横排中间的数为x,则其他两数分别是x-1,x+1。
依题意得(x-1)+x+(x+1)=57, 解得x=19
因此这三天分别是18号、19号、20号;。
课题:整式的加减、幂的运算律知识精要:一、整式的加减1、同类项的定义:所含的字母相同,且相同字母的指数也相同的单项式叫做同类项. 注意:常数项也是同类项.2、合并同类项的法则:把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变.3、去括号法则:括号前面是“+”号,去掉“+”和括号,括号内的各项不变号;括号前面是“-”号,去掉“-”和括号,括号内的各项都变号.二、幂的运算律1、同底数幂的乘法:同底数幂相乘,底数不变,指数相加.m n m n a a a+⋅=(m 、n 是正整数). 2、幂的乘方:幂的乘方,底数不变,指数相乘.()m n mn a a =(m 、n 是正整数).3、积的乘方:积的乘方等于把积的每一个因式分别乘方,再把所得幂相乘.()n n n ab a b =(m 、n 是正整数).精解名题:例1、若P 是三次多项式,Q 也是三次多项式,则P Q +一定是( ).A .三次多项式;B .六次多项式;C .不高于三次的多项式或单项式;D .单项式. 例2、如果32x a b 与23y a b -是同类项,那么x =_______,y =_______.例3、如果2a x y -与513b x y -的和仍是一个单项式,则a b +=_________.例4、试说明2222236723x y x yx x y x -+-+-+的值与y 的取值无关.例5、求多项式3222231132a a b ab a b ab b ----+的值,其中3a =-,2b =.例6、已知:21(2)0x y -++=,求323239911152424x y xy x y xy x y --+---的值.例7、有这样一道题322323323(232)(2)(3)x x y xy x xy y x x y y ----++---的值,其中12x =,1y =.甲同学错把12x =看成12x =-,但计算结果仍然正确,你知道其中的原因吗?例8、按图所示的程序计算,若开始输入值是3,那么最后输出的结果是多少?例9、已知5x a =,25x y a +=,求x y a a +的值.例10、若123n a +++⋅⋅⋅+=,求代数式))(())()(123221n n n n n xy y x y x y x y x ---Λ(的值.例11、若215125x +=,求2014(2)x x +-的值.例12、若0542=-+y x ,求y x 164⋅的值.例13、已知:625255=⋅x x ,求x 的值.例14、比较5553,4444,3335的大小.例15、已知103a =,105b =,107c =,试把105写成底数是10的幂的形式.例16、已知723921=-+n n ,求n 的值.例17、已知23a =,212b =,26c=,试问a 、b 、c 之间有怎样的关系?请说明理由.巩固练习:一、选择题1、下列结论:①x 的指数是0;②x 的系数是0;③2是代数式;④2-和3是同类项.其中正确的结论个数有( ).A .1;B .2;C .3 ;D .4.2、下列说法正确的是( ).A .22xy 与2y x -是同类项; B .0与1-不是同类项; C .n m 221与22mn 是同类项; D .2R π与2R π是同类项. 3、若B 是一个四次多项式,C 是一个二次多项式,则“B -C ” ( ).A .可能是七次多项式;B .一定是大于七项的多项式;C .可能是二次多项式;D .可能是四次多项式.4、下列计算错误的个数是( ).①326(3)6x x =;②5521010(5)25a b a b -=-;③33928()327x x -=-;④23467(3)81x y x y =. A .1个; B .2个; C .3个; D .4个.5、如果28(9)3n =,则n 的值是( ).A .4;B .2;C .3;D .无法确定.6、计算2332()()a a -⋅-的结果是( ).A .12a ;B .12a -;C .10a -;D .36a -.7、下列各式错误的是( ).A .326()()a b a b ⎡⎤+=+⎣⎦;B .5225()()n n a b a b +⎡⎤+=+⎣⎦;C .()()n m mn a b a b ⎡⎤+=+⎣⎦;D .11()()n m m n a b a b ++⎡⎤⎡⎤+=+⎣⎦⎣⎦.8、若3915(2)8m m n a b a b +=成立,则( ).A .3m =,2n =;B .3m n ==;C .6m =,2n =;D .3m =,5n =.9、计算3232()x y xy ⋅⋅-的结果是( ).A .510x y ;B .58x y ;C .58x y -;D .612x y .10、若1221235()()m n n m a b a b a b ++-=,则m n +的值为( ).A .1;B .2;C .3;D .3-.11、2015201553()(2)135-⨯-等于( ). A .1-; B .1; C .0; D .2015. 12、已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( ).A .a b c >>;B .a c b >>;C .a b c <<;D .b c a >>.二、填空题1、若单项式2157n ax y +与475m ax y -的差仍是单项式,则2m n -=_____________. 2、当k =________时,代数式643643542510x kx y x x y --++不含43x y 项.3、已知102m =,103n =,则3210m n +=____________. 4、201320142015113(1)(1)()345⨯-⨯-= . 三、解答题 1、已知22m n n xy ---与5413m x y -是同类项,求22(2)5()2(2)m n m n m n m n --+--++的值.2、已知2153A x x =-+,231B x x =-+,当23x =时,求2A B -的值.3、先化简,再求值:221312()(2)2233x x y x y --+--,其中2x =-,23y =.4、一个多项式加上2532x x +-的2倍得213x x -+,求这个多项式.233336a b a a b +++3=,b =请你认真计算一下,认为他的说法是否有道理?6、小红做了一道数学题:“已知两个多项式为A 、B ,其中2456B a a =-+,求A B +的值.”粗心的小红误将“A B +”看成“A B -”,结果求出的答案是210712a a -+,请你帮助小红求出正确的A B +的结果.7、 已知23m =,25n =,则22m n +的值是多少?8、已知33m a=,32n b =,求233242()()m n m n m n a b a b a b +-⋅⋅⋅的值.9、若216m n x+=,2n x =,求m n x +的值.10、(1)已知5=m a ,2=m b ,求m b a )(32.(2)已知n 是正整数,且23=n x,求3223)2()3(n n x x -+的值.11、已知:2325a b m+=,32125a b m +=,求a b m +的值.12、若13310052+++=⨯x x x , 求x 的值.13、若124x y +=,1273y x -=,求x y -的值.14、已知22m a-=,33n a +=,求32m n a +的值.15、已知3a =-,25b =,求20142014ab +的末位数字是多少?16、A 、B 两地果园分别有苹果40吨和60吨,C 、D 两地分别需要苹果30吨和70吨;已知从A 、B 到C 、D 的运价如表:(1)若从A 果园运到C 地的苹果为x 吨,则从A 果园运到D 地的苹果为_______ 吨,从A 果园将苹果运往D 地的运输费用为_________元.(2)用含x 的式子表示出总运输费.(要求:列式后,再化简)(3)如果总运输费为1090元时,那么从A 果园运到C 地的苹果为多少吨?。
: 2.1 整式(第 1 )一、教课目1. 列式表示数目关系的程,展符号感.2. 知道式及其系数、次数的意,会正确确立一个式的系数和次数.二、教课要点和点1. 要点:列式表示数目关系,式及其系数、次数的意.2.点:列式表示数目关系 . 三、教课程(一)基本,稳固旧知1. 填空:x3的指数是,底数是;a2的指数是,底数是; n 的指数是,底数是.(二)情境,入新:前方我学了第一章有理数,从今日开始,我要学第二章整式的加减. (板:第二章整式的加减)同学自然会:什么是整式?我将在本和下学什么是整式 . (板: 2.1 整式)我第一学整式的一种,叫式 . (板:(式))(三)指,授新:什么的式子是式呢?大家看一个例子. (出示下边的板)一种笔本售价是每本 2 元,那么 2 本所需是元,5本所需是元, 10 本所需是元,100本所需是元,x 本所需是元.:(指板)一种笔本售价是每本 2 元,那么 2 本所需是多少元?生: 4 元 . (板: 4):(指板)那么 5 本所需是多少元?生: 10 元. (板: 10):(指板)那么10 本所需是多少元?100 本所需是多少元?生: 20 元,200 元 . (板: 20,200 ):(指板)一种笔本售价是每本 2 元,那么 x 本所需是多少元?生:⋯⋯(多几位同学表见解):(指板)一种笔本售价是每本2 元,那么 x 本所需是 2×x 元 . (板:2×x)了写方便,(指乘号)往常将乘号写成“·”,(将“2×x”改“ 2·x”)或许将乘号省略不写 .(用彩笔将“ 2·x ”改“ 2x”) 2x 就表示 2×x.:(板: 2x 并指 2x)2x 就是一个式 . 式自然不仅2x 么一个,在生活中,存在大批的其余的式,同学通把下边的列成式子,就能找到大批的式 .(四)探,回授2.填空:(1)一支笔的售价是 x 元,一支珠笔的售价是笔的 2.5 倍,一支珠笔的售价是元;(2) a 的正方形面;(3) a 正方体的体;(4)一汽的速度是每小v 千米,它 t 小行的行程千米;( 5)数 n 的相反数是.(生做,巡指,达成后,生答案,假如必需,酌情解,并将2.5x ,a2,a3, vt ,- n 板出来)(五)指,授新:(指准板) 2x 是式, 2.5x , a2,a3,vt ,-n 些式子也是式 . 在:什么的式子叫做式?生:⋯⋯(多几名学生表见解,要必定学生回答中合理的部分):些式子有一个共同的特色,什么特色呢?它都是数字与字母的. (指准式子) 2x 是数2 与字母 x 的, 2.5x 是数 2.5 与字母 x 的 . a 2是数 1 与字母 a2的, a3是数 1 与字母 a3的, vt 是数 1 与字母 v、t 的,- n 是数- 1 与字母 n 的 .:通上边的剖析,哪位同学知道:什么叫做式?生:⋯⋯:数字与字母的,的式子叫做式. (板:数字与字母的,的式子叫做式):需要指出的是,唯一个数或一个字母也是式. (板:唯一个数或一5,-1,2008 等都是式;又比如,个字母也是式)比如,唯一个数2独的一个字母x 也是式 .(六)探,回授3.判断以下式子是否是式:(1)4x;(2)- 4x2 y;(3)3a2bc;(4)7.2 ;(5)a;(6)2+x.(七)指,授新:(板:- 4x2y)我都知道,- 4x2y 是式,(指准式子)它是数字- 4 与字母 x2、y 的,一种法,- 4 是数字因数, x2、y 是字母因数,我把数字因数- 4 叫做个式的系数 . (板:的系数是- 4):(指已板的式2x)哪位同学知道2x 个式的系数?生: 2.(以下生回答已板的其余式的系数):明确了式系数的观点,下边我再来看式的次数的观点. (板:次数):(指准- 4x2y)个式含有两个字母,字母 x 指数是 2,字母 y 的指数是 1,全部字母的指数和是 3,我把式- 4x2y 全部字母指数的和 3 叫做个式的次数 . (板:是 3):一个式的次数是几次,我就把个式叫做几次式. (指- 4x2y)个式的次数是3,就叫做三次式 . (板:是三次式):(指已板的式2x)个式的次数是几次?生:⋯⋯:(指 2x)个式只含有一个字母,x 的指数是 1,所以全部字母指数的和也是 1,所以个式的次数是 1,个式是一次式 .(以下生回答已板的其余式的次数)(八)探,回授4.填空:( 1)式 2a2的系数是,次数是,是次式;( 2)式- 1.2h 的系数是,次数是,是次式;( 3)式 x2y 的系数是,次数是,是次式;( 4)式- t 2的系数是,次数是,是次式;( 5)式 5a4b 的系数是,次数是,是次式;( 6)式 x 的系数是,次数是,是次式;( 7)式3xyz 的系数是,次数是,是次式;5( 8)式2vt,次数是,是次式 .的系数是35.用式填空:( 1)每包有 12 册, n 包有册;( 2)一个方形的是0.9 ,是 a,个方形的面是;(3)全校学生数是x,此中女生占数48%,女生人数是,男生人数是;(4)量由 m千克增 10%,就达到千克.(九)小,部署作:本我学了什么?学了本你有什么收?生:⋯⋯(多几位同学归纳)(作: P59 1. )四、板第二章整式的加减2.1 整式(式)232.5x , a,a , vt ,- n一种笔本售价是每本 2 元⋯⋯叫做式那么⋯⋯唯一个数或一个字母也是式- 4x2y 的系数是- 4,次数是 3,是三次式: 2.1 整式(第 2 )一、教课目1. 知道多式及其、常数、次数的意,会指出多式的各与多式次数.2.知道整式的意.二、教课要点和点1.要点:多式及其、常数、次数的观点 .2.点:指出多式的各 . 三、教课程(一)基本,稳固旧知1.判断正:的画“√” ,的画“×” .(1)5y 是式;()(2)5y+1 是式;()(3)1是式;()3(4)单项式 ab 的系数是 0;()(5)单项式2ab()的系数是 2;3(6)单项式 xy2次数是 2;()(7)单项式 4xy2是三次单项式 .()2. 填空:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段行驶速度是每小时100 千米,它 2 小时行驶的行程是千米,3小时行驶的行程是千米, t 小时行驶的行程是千米.3.用单项式填空:( 1)底边长为 a,高为 h 的三角形面积是;(2)一辆汽车从拉萨出发, 3 小时后抵达相距 s 千米的尼木县城,这辆长途汽车的均匀速度是;(3)一台电视机原价 a 元,现按原价的9 折(9 折就是 90%)销售,这台电视机此刻的售价为元 .(二)创建情境,导入新课师:上节课我们学习了整式的一种:单项式,本节课我们学习整式的另一种:多项式 . (板书课题:整式(多项式))(三)试试指导,解说新课(师出示下边的板书)4x- 56x2-2x+ 7师:这两个式子是单项式吗?生:不是 .师:这两个式了有什么共同的特色?(稍停)它们都是几个单项式的和. 它们怎么都是几个单项式的和呢?师:(指 4x-5)4x-5 能够转变为 4x+ ( - 5) ,(板书:(4x+( -5) )),所以, 4x -5 能够当作是单项式4x 与- 5 的和 .师:(指 6x2- 2x+7)6x2-2x+7 能够转变为 6x2+ ( - 2x) +7, (板书:( 6x2+( -2x) +7))所以, 6x2-2x+7 能够当作是 6x2,- 2x,7 的和 .师:(指两个式子)所以这两个式子的共同特色都是几个单项式的和.师:几个单项式的和叫做多项式. 所以 4x-5 是多项式,(板书:多项式)6x2-2x +7 也是多项式 .(板书:多项式)师:(指准式子)在多项式中,每个单项式叫做多项式的项. 所以,多项式4x- 52的项是 4x,- 5. (板书:的项是 4x,- 5)多项式 6x -2x+ 7 的项有哪些?22生: 6x ,- 2x,7. (师板书:的项是 6x ,- 2x,7)师:不含字母的项,叫做常数项. 所以,(指准式子)多项式4x-5 的常数项是-5.(板书:常数项是-5)多项式 6x2-2x+7 的常数项是什么?生:7. (板书:常数项是7)(四)尝试练习,回授调理4.填空:( 1)多项式 x2+3x+ 4 是单项式,,常数项是2(2)多项式- x -3+x 是单项式,,的和,它的项是;,,的和,它的项是,,,2,常数项是;,的和,它的项是,,(3)多项式 m-1 是单项式常数项是;(4)多项式 2x+3y2-3xy2是单项式,,的和,它的项是,,.(五)试试指导,解说新课师:(指准 4x- 5)这个多项式有两项, 4x 这一项的次数是一次,常数项的次数是0 次. 次数最高项的次数是一次,我们就说多项式4x-5 的次数是一次 . (板书:次数是 1 次)师:(指准 6x2-2x+ 7)这个多项式有三项,6x2这一项的次数是二次,-2x 这一项的次数是一次,常数项的次数是 0 次. 次数最高项的次数是二次,我们就说多项式 6x2-2x+ 7 的次数是二次 . (板书:次数是 2 次)(六)尝试练习,回授调理5. 填空:(1)多项式 3+2x2-4x 次数最高项是,次数最高项的次数是,这个多项式的次数是;3,次数最高项的次数是,这个多(2)多项式 m-1 次数最高项是项式的次数是;(3)多项式 2x- 3xy2+1 次数最高项是,次数最高项的次数是,这个多项式的次数是;(4)多项式 3x4-2x2y2次数最高项是,次数最高项的次数是,这个多项式的次数是.(七)归纳小结,部署作业师:本节课我们学习了整式的另一种,叫做多项式 . (指准板书)几个单项式的和叫做多项式 . 在多项式中,每个单项式叫做多项式的项 . 此中,不含字母的项叫做常数项 . 多项式中,次数最高项的次数,就是这个多项式的次数 . 单项式和多项式统称整式 . (板书:单项式和多项式统称整式)(作业: P76复习题 2. )四、板书设计2.1 整式(多项式)多项式 4x- 5(4x + ( - 5)) 的项是 4x, - 5,常数项是- 5,次数是 1 次多项式 6x 222,常数项是7,次数是 2 次- 2x+ 7(6x+ ( - 2x)+ 7) 的项是 6x , - 2x,7单项式和多项式统称整式课题: 2.1 整式(第 3 课时)一、教课目的1.稳固单项式、多项式的相关观点 .2.会列较简单的多项式表示数目关系,发展符号感 .二、教课要点和难点1.要点:列多项式表示数目关系 .2.难点:列多项式表示数目关系 .三、教课过程(一)基本训练,稳固旧知1. 填空:(1)单项式 3x 的系数是,次数是,是次单项式;(2)单项式πr 2的系数是,次数是,是次单项式;(3)单项式- x2y 的系数是,次数是,是次单项式;(4)单项式 a2b2的系数是,次数是,是次单项式 .22. 填空:( 1)多项式― x 2― 3x +4 的项是,最高次项是,常数项是,次数是;2,最高次项是,常数项是( 2)多项式 3- m 的项是,次数是;( 3)多项式 a3+ a2 b+ ab2的项是,最高次项是,次数是.3.判断正误:对的画 " √ " ,错的画 " ×".(1)多项式 3a- 5 的项是 3a,5;()(2)多项式 x3+x2y2的次数是 3 次;()(3)几个多项式的和还是多项式;()(4)单项式和多项式统称整式 .()(二)创建情境,导入新课师:上节课,我们学习了多项式的观点,本节课我们要学惯用多项式表示数目关系. 请看例 1.(三)试试指导,解说新课例 1 用多项式填空:(1)温度由 t 度降落 5 度后是度;( 2)甲数 x 的1与乙数 y 的1的和能够表示为;32( 3)如图,圆环的面积为.r(四)尝试练习,回授调理4. 用多项式填空:R( 1)温度由- 3 度降落 t度后是度;(2)温度由- 3 度上涨 t 度后是度;(3)一个数比 x 的 2 倍小 3,这个数为;(4)a 与 b 两数平方的和为;a(5)如图,三角尺的面积为.r5. 用整式填空:b( 1)体重由 x 千克增添 2 千克后是千克;( 2) 1 千克大米售价 1.2元, x 千克大米售价元;( 3) a, b 分别表示长方形的长与宽,则长方形的周长为;(4)a, b 分别表示梯形的上底和下底, h 表示梯形的高,则梯形的面积为;(5)买一个篮球需要 x 元,买一个排球需要y 元,买一个足球需要z 元,买 3个篮球、 5 个排球、 2 个足球共需元.(6)如,是一所住所的建筑平面,所住x米6米所的建筑面是x 米平方米 .4米6. 思虑:如,搭 1 个正方形需要 4 根小棒,搭 2 个正方形需要根小棒,搭 3 个正方形需要根小棒,搭x 个正方形需要根小棒,搭2008 个正方形需要根小棒.(教课建:许多学生而言,些可能有必定度. 要学生充足思虑,要学生安下心来做,快者快做,慢者慢做,不要催学生,不要求全部学生达成全部,差生能真实独立思虑达成二三小就不了,中下生能达成 4 就很好了 . 老要加巡指,各学生以适合鼓舞)(五)小,部署作:今日我学了什么?通本学,你有什么收?生:⋯⋯(多几位同学回答)(作: P60 2. )四、板例 1: 2.2 整式的加减(第 1 )一、教课目1. 同观点的形成程,知道什么是同.2. 归并同法的形成程,会集并同.二、教课要点和点1.要点:同的观点,归并同 .2.点:同观点的形成 . 三、教课程(一)情境,入新:前方我学了整式的观点,从本开始,我学整式的加减. (板:2.2 整式的加减)整式的加减上就是归并同,本我先来学归并同 . (板:(归并同))(二)指,授新:要归并同,我第一要弄清什么是同 . 我一同来看下边的例子 . : 5 个 x 加上 2个 x 等于什么?(板: 5x+2x=)生: 7 个 x. (板: 7x)2222:- 5ab 加上 3ab 等于什么?(板:-5ab +3ab =):依据分派律,- 5ab2+3ab2= ( - 5+ 3)ab 2(板: ( - 5+ 3)ab 2)等于-2ab2 .(板:=- 2ab2):(指准 5x+ 2x=7x)个式子的左是5x 与 2x 两,右只有 7x 一,就是,左的两能够归并成右的一.:(指准- 5ab2+ 3ab2=- 2ab2)个式子的左也有两-5ab2,3ab2,右只有一- 2ab2,就是,左的两也能够归并成一.:(指式子)察、剖析两个式子,大家分么一个:怎么的两能够归并成一?(出示板:怎么的两能够归并成一?)(生疏,巡指):哪位同学知道怎么的两能够归并成一?生:⋯⋯(多几位同学表见解):(在- 5ab2,3ab2下边划,并指准)两所含字母相同,-5ab2一所含字母是 a,b,3ab2一所含字母也是 a, b. (板:所含字母相同) 2 2一字母 a 的指数也是 1;一字母 b 的指数是 2,一字母 b 的指数也是 2. (板:并且相同的字母的指数也相同):(指- 5ab2,3ab2)像所含字母相同,相同字母的指数也相同的,叫做同 . (板:的,叫做同):在,我再回到本来的:怎么的两能够归并成一?生:⋯⋯:同能够归并成一,并且只有同才能够归并成一,不是同不能归并成一 .(三)探,回授1.判断以下各的两是否是同:( 1) 12x 与 2x;(2)2x2y与-5x2y;(3)2a与a2;(4)4xy 与 5yx;(5)4abc与4ab;(6)7xy2与7x2y;33(7)a 与 5 ;(8)-25与12.(因为- 25 与 12 能够归并成一- 13,所以,常数与常数也是同)2.找出多式 4x2-8x+ 5-3x2+6x-2 中的同:( 1) 4x2与是同;( 2)- 8x 与是同;(3)5 与是同.(四)指,授新:我已知道,同是能够归并在一同的归并成一,叫做归并同.. (指板的)把几个同:(指板的两个式子)从两个式子,哪位同学知道怎么归并同?生:⋯⋯(多几位同学表见解):系数相加,字母部分不. (板:系数相加,字母部分不)例 1归并以下各式的同:(1)xy2-1xy2;( 2)- 3ab+ba-2ab. 5(先生,再板演解,解要扣法)3. 填空:( 1) 6x-4x=()x=;( 2)- 7ab+6ab= ()ab=;( 3) 10y2+y2= ()y 2 =;( 4)- 0.5a +2a- 3.5a =()a=.4. 归并以下各式的同:( 1)- 8x2-7x2=(2)1xy- xy=3(3)- 4a2 b+ 4a2b=(4)1y-1y+2y=425.判断正:的画 " √" ,的画 " ×".( 1) 3a2- 2a2= 1;()( 2)3y-y=3;()( 3) 5a+2b=7ab;()( 4) 7ab-7ba=0;()( 5)4x2y-2xy2= 2x2y;()( 6)3x2+2x3=5x5.()6. 思虑:如,大的半径是 R,小的面是大面的4,暗影部分的面9.R(五)小,部署作. (指准- 5ab2+3ab2:本,我学了什么是同及怎么归并同个式子)所含字母相同,并且相同字母的指数也相同的叫做同. 归并同的方法是系数相加,字母部分不. 归并同的个方法是依据什么获得的?生:⋯⋯(依据分派律)(作: P661.2. )四、板2.2 整式的加减(归并同)5x+2x=7x例 1-5ab2+ 3ab2=( -5+3)ab 2=- 2ab2怎的两能够归并成一?⋯⋯叫做同 .系数相加,字母部分不.: 2.2 整式的加减(第 2 )一、教课目1.会集并多式中的同 .2.会先归并同,再求多式的 .二、教课要点和难点1.要点:归并多项式中的同类项 .2.难点:把多项式中的同类项写在一同 .三、教课过程(一)基本训练,稳固旧知1.判断以下各组中的两项是否是同类项:(1)0.2x 2y 与 0.2xy 2;(3)mn与- nm;( 2)4abc 与 4ac;( 4)- 125 与 20.2.归并以下各式的同类项:(1) 4x2- 8x2=(2)- 3x2 y+ 2x2y=(3) 3xy2-2xy2=(4) 2x2+ x2-3x2=3.判断正误:对的画“√” ,错的画“×” .( 1)a+b=b+a;()(2)a- b= b- a;()(3)a- b=- b+a;()(4)x2+2-x=x2+x-2;()(5)x2+ 2- x= x2-x+2;()(6)x2+2-x=x+2-x2;()(7)x2+2-x=- x+2+x2.()(重申:互换多项式的项,要连同符号一同互换)(二)创建情境,导入新课师:上节课我们学习了什么是同类项及怎么归并同类项,本节课我们将学习怎样归并多项式中的同类项 . 请看例 1.(三)试试指导,解说新课例 1 归并多项式 4x2+2x+7+ 3x-8x2-2 的同类项 .解: 4x2+2x+7+3x- 8x2-2第一步:划线,找出同类项;=4x2-8x2+2x+ 3x+7-2第二步:把找出的同类项写在一同;=- 4x2+5x+5第三步:归并同类项 .(第二步不宜加括号,第三步可直接算出结果,这样可能会简单些)(四)尝试练习,回授调理4.归并以下各式的同类项:(1) a2-3a+ 8- 3a2+ 5a-7==(2)- 3x2 y- 2xy2+3xy2+2x2y==(3) 4a2+ 3b2+ 2ab-4a2-4b2==(五)试试指导,解说新课例 2求多式 3a+abc-1c2-3a+1c2的,此中,a=-1, b= 2,c =- 3. 336(先归并多式的同,再代入数,最后获得果,解格式要与教材相同)(六)探,回授5.求多式 2x2- 5x+x2+ 4x-3x2-2 的,此中 x=1 .2(五)小,部署作:本我学了归并多式的同,归并多式的同有三步,是哪三步?生:⋯⋯(作: P71 1.P 76复 2. )四、板例1例2: 2.2 整式的加减(第 3 )一、教课目1.去括号法的形成程,知道去括号法 .2.会去括号 .二、教课要点和点1.要点:去括号 .2.点:去括号法的形成程 . 三、教课程(一)基本,稳固旧知1.归并以下多式的同:(1) 8a+2b-5a- b=(2) 8x-3y+z-4x- 3y+2z=2.求多式 3x2- 8x+2x3-13x2+ 2x-2x3+3 的,此中 x=- 4.3. 填空:分派律是a(b +c) =,利用分派律可得:6(x - 3) =,- 6(x - 3) =.(二)情境,入新:(板: 8a+ 2b-(5a -b) )个式子归并同的果是什么?生: 3a+b.:个果是的!什么呢?因个式子中含有括号,(用彩笔括号)要归并含有括号的式子的同,先要去括号 . 怎样去括号呢?就是我要学的内容 . (板: 2.2 整式的加减(去括号))(三)指,授新:怎样去括号呢?先看两个去括号的例子.:(板: 6(x -3) =)利用分派律, 6(x -3) 等于什么?生: 6x-18. (板: 6x-18):(板:- 6(x - 3) =)利用分派律,- 6(x -3) 等于什么?生:- 6x+18. (板:- 6x+ 18):从两个例子,我能够看到,(指准-6(x-3)=-6x+18)去括号上就是运用分派律,把括号外的因数分乘括号内的各 .(板:+ (x -3) =-(x-3)=):运用分派律,我又怎么去掉(指式子)两个式子中的括号呢?大家自己笔先一 . (生,巡):(指+ (x -3) )个式子不好用分派律,我能够把+(x -3) 写成 1× (x -3) ,(板:1×(x -3) )就能够用分派律了,运用分派律获得的果是什么?生: x-3. (板:= x-3):(指- (x - 3) )个式子也不好用分派律,我能够把-(x - 3) 写成 ( -1) ×(x - 3) ,(板: ( -1) × (x -3) )就能够用分派律了,运用分派律获得的果是什么?生:- x+ 3. (板:=- x+3):从上边的四个例子明,去括号的程上就是运用分派律的程. 前两个式子(指 6(x -3) ,- 6(x -3) )是直接用分派律去括号,尔后两个式子(指+ (x - 3) ,- (x -3) )用分派律去括号比麻,就有必需找去括号的律 .:去掉中程,(擦掉中程,板成+(x - 3) =x -3,- (x -3) =- x +3)获得+ (x -3) = x-3,- (x -3) =- x+3. 从两个式子,同学去括号有什么律?(生疏,巡指):哪位同学了去括号的律?生:⋯⋯(多几位同学表见解):从两个式子,我能够,(指准+ (x -3) =x-3)假如括号前是“+”号,去括号后括号里的各都不符号;(板上边句)(指准- (x - 3) =-x+3)假如括号前是“-”号,去括号后括号里各都改符号 . (板上边的句)大家把两句一遍 . (生)例 1 去括号:( 1) a+ (b +c-d) ;(2)a+(-b+c-d);( 3) a- (b +c-d) ;(4)a-(-b+c-d).(四)探,回授4. 去括号:( 1) a+ (b -c) ;(2)a-(b-c);( 3) a- ( - b+ c) ;(4)a+(-b+c);( 5) (a +b) -c;(6)-(a+b)-c.(五)指,授新例 2 先去括号,再归并同:( 1) 8a+2b- (5a -b) ;( 2) (5a -3b) -3(a 2- 2b).(生先,再板演解;(2)除教材中的解法,也能够用分派律直接去掉括号)(六)探,回授5.化:(1)12(x -0.5) =(2)- 5(1 -1x) =5(3)- 5a+(3a -2) -(3a -7) =(4)1(9y - 3) +2(y +1) =3(七)归纳小结,部署作业师:本节课我们学习了怎样去括号. (指准+(x -3) =x-3)假如括号前是“+”号,去括号后括号里各项都不变符号;(指准-(x -3) =-x+3)假如括号前是“-”号,去括号后括号里各项都改变符号;(指准- 6(x - 3) =- 6x+18)假如括号前是其余因数,那么用分派律能够直接去掉括号 .(作业: P71习题 2. )四、板书设计2.2 整式的加减(去括号)6(x - 3) = 6x- 18例 1例 2- 6(x -3)=- 6x+ 18+ (x -3)= x-3假如括号前是“+”号⋯⋯-(x -3) =- x+ 3假如括号前是“-”号⋯⋯课题: 2.2 整式的加减(第 4 课时)一、教课目的1.会进行整式加减运算 .2.会先进行整式的加减,再求值 .二、教课要点和难点1.要点:进行整式加减运算 .2.难点:求值 .三、教课过程(一)基本训练,稳固旧知1.判断正误:对的画“√” ,错的画“×” .( 1) a- (b -c+d) =a-b- c+ d;()( 2) a- (b +c) -d=a-b- c- d;()( 3) (a +b) - ( - c+ d) =a+b-c-d;()( 4)a+( -b+c-d) = a- b+ c- d;()( 5)- (a - b) +(c -d) =- a+ b- c+ d.()2. 去括号:( 1) (a +b) +(c - d) =( 2) (a +b) -(c - d) =( 3)- (a + b) -( -c-d) =( 4) (a -b) -( -c+d) =( 5)- (a - b) +( -c-d) =(6) a- ( - b+ c) -d=(二)情境,入新:前方我学了归并同、去括号,本我学整式的加减. (板: 2.2 整式的加减)行整式的加减运算,上就是做两件事,第一件事是去括号,第二件事是归并同 . 看例 1.(三)指,授新例1 算:( 1) (2x -3y) +(5x +4y) ;(2)(8a-7b)-(4a-5b).(按去括号、归并同两步先生)例 2 算:(2a - 3b) +[4a -(3a -b)].(先去小括号)(四)探,回授3.算:(1) ( - x+ 2x2+ 5) +(4x 2- 3- 6x) ;(2) (3a 2-ab+7) - ( - 4a2+2ab+ 7) ;(3) (2a -3b) -[4a + (3a - b)].4. 填空:整式 x+y 与整式 x-y 的和,差.(五)指,授新例 3 求1x- 2(x -1y2) +( -3x+1y2) ,此中 x=- 2,y=2. 23233(按教材格式板演)(六)探,回授5.先化,再求:5(3a 2b-ab2) - (ab 2+3a2b) ,此中 a=1,b=1.23(七)小,部署作:本我学了整式的加减,行整式的加减运算有两步,是哪两步?生:⋯⋯(作: P3.4. )71四、板2.2整式的加减例 1例 2例 3: 2.2 整式的加减(第 5 )一、教课目1.会列式算整式加减的文字 .2.会列的整式加减式子表示中的数目关系,展符号感.二、教课要点和点1.要点:列的整式加减式子表示数目关系 .2.点:列的整式加减式子表示数目关系 . 三、教课程(一)创建情境,导入新课师:前方我们学习了怎样进行整式加减运算,本节课我们学习几个与整式加减有关的例题,算作是对整式加减的一种应用 .(板书课题: 2.2 整式的加减(应用))请看例 1.(二)试试指导,解说新课例 1 列式表示比 x 的 7 倍大 3 的数与比 x 的-2 倍小 5 的数,计算这两个数的差 . 解:比 x 的 7 倍大 3 的数为 7x+3,比 x 的- 2 倍小 5 的数为- 2x-5,这两个数的差为 (7x + 3) -( -2x-5) = 7x+3+2x+5= 9x+8(每一步都让学生试试)(三)尝试练习,回授调理1.求整式 8xy- x2+y2与 x2-y2+8xy 的差 .2.列式表示比 a 的 5 倍大 4 的数与比 a 的 2 倍小 3 的数,计算这两个数的和 .(四)试试指导,解说新课例2一种笔录本的单价是x元,圆珠笔的单价是y元.卓玛买这种笔录本3个,买圆珠笔 2 支;扎西买这种笔录本 4 个,买圆珠笔 3 支 . 买这些笔录本和圆珠笔,卓玛和扎西一共花销多少钱?(教课建议:按教材P69解法一解比较自然,要让学生充足熟习题意,充足试试的基础上再解说,熟习题意的时间要下足,这是需要耐心的,能够经过读题、说题、画题、列表、实物展现等方式让学生熟习题意)(五)尝试练习,回授调理3. 某村土豆栽种面积是 a 亩,白菜栽种面积比土豆栽种面积少8 亩,青稞栽种面积是白菜栽种面积的10 倍,问该村土豆、白菜、青稞一共栽种多少亩.(六)试试指导,解说新课例 3 两船从同一港口同时出发反向而行,甲船顺流,速度为每小时 (50 + a) 千米,乙船逆水,速度为每小时 (50 - a) 千米 .(1) 2 小时后两船相距多远?(2) 2 小时后甲船比乙船多航行多少千米?(解题格式与板材P67例题相同)(七)尝试练习,回授调理4.填空:已知某轮船顺流航行速度为每小时 (a + y) 千米,逆水航行速度为每小时(a - y) 千米,(1)轮船顺流航行 3 小时,航行了千米;(2)轮船逆水航行 1.5 小时,航行了千米;(3)轮船顺流航行 3 小时,逆水航行 1.5 小时,一共航行了千米.(八)归纳小结,部署作业师:本节课我们学习了几个例题,例 2 例 3 都是和实质问题相关的 . 做这种应用题,要点是要静下心来,好好读题,好好画题——把题目的意思画出来,搞清题目的意思 . 做应用题还需来有信心和毅力,不要被题目吓倒!假如你真的动了脑筋,自己做出了一道题,那么再做第二道题、第三道题就有希望了 .(作业: P68练习 2.P 71习题 7. )四、板书设计2.2 整式的加减(应用)例1例2例3:第二章整式的加减复(第1、 2 )一、教课目1.知道第二章整式的加减知构 .2.通基本,稳固第二章所学的基本内容 .3.通典型例和合运用,加深理解第二章所学的基本内容,展能力 . 二、教课要点和点1.要点:知构和基本 .2.点:典型例和合运用 . 三、教课程(一),完美知单项式归并同类项用字母列含字母整式a(b + c) = ab+ ac整式的加减表示数的式子多项式去括号(上边的知构,要合下边的解逐渐板出来):我已学完了第二章整式的加减,今日我就来复第二章. (板:第二章整式的加减复):第二章的内容不像第一章那么多,哪位同学能用几个字来归纳第二章的内容?生:⋯⋯(多几位学生):!整式的加减 . 因要学整式的加减,我学了归并同和去括号;因要学整式的加减,我学了什么是整式,以及式和多式 . 整式的加减是本章学的点,其余内容都是了学整式的加减做准的 . 那么,本章的内容是从什么地方开始,又是怎样一步一步走向“整式的加减”的呢?(出示下边的目)一本笔本售价 2 元, n 本需元.:本章的内容是从“用字母表示数”开始的. (板:用字母表示数)用字母表示数是什么意思?大家看个例子,(指板的目)一本笔本售价 2 元, n 本需多少元?里 n 本中的 n 就是用字母表示数, n 详细表示是什么数?可能是 0,可能是 1,2 , 3,4 等等 .就是用字母表示数的意思 .:有了表示数的字母,我就能够列出含字母的式子. (板:列含字母的式子)比如,在才的个例子中,(指板的目)一本笔本售价 2 元, n 本需2n 元. (板: 2n)里 2n 就是列出的含字母的式子.:在中,可能列出含各样各字母的式子,此中比的一种叫式 . (板:式)数字与字母的,的式子叫做式. (指板)2n 是一个式 . 学式需掌握式的系数、次数的观点.:在学式的基上,我又学了多式的观点. (板:多式)什么是多式呢?几个式的和叫做多式. 学多式需掌握多式的、常数、次数的观点 .:式是整式,多式也是整式,式和多式称整式. (板:整式):接着,我又学了归并同(板:归并同)和去括号.(板:去括号)归并同、去括号从表面上看,它干的是两件不相同的事,但出人不测的是,它都是依照分派律a(b +c) = ab+ac. (板: a(b + c) =ab+ac)分派律这个式子,从左到右看是去括号,(加箭头)从右到左看是归并同类项 .(加箭头)师:学习了归并同类项和去括号,实质上也就学了整式的加减. (板书:整式的加减)为何这样说呢?因为做整式的加减只有两个步骤,第一步是去括号,第二步是归并同类项 .师:(指板书出的知识构造图)这就是本章知识的线索,从字母表示数出发,终点是整式的加减 .(二)基本训练,掌握双基1.填空:(以下空你最好直接填,实在想不起来,你能够在教材中找,这些内容是需要你仔细理解的;先用铅笔填,校正时用其余笔填)(1)数字与字母的积,像这样的式子叫;单项式中的数字因数叫做单项式的;一个单项式中,全部字母的指数和叫做这个单项式的.(2)几个单项式的和叫做;此中,每个单项式叫做多项式的,不含字母的项叫做;多项式里次数最高项的次数,叫做这个多项式的.(3)与统称整式.(4)所含字母相同,并且相同字母的指数也相同的项叫做;归并同类项的方法是:系数,字母部分.(5)去括号的方法是:假如括号前方是“+”号,去括号后括号里各项都符号;假如括号前是“-”号,去括号后括号里各项都符号 .(6)几个整式相加减,假如有括号就先去括号,而后再2. 填空:( 1)单项式- 15ab 的系数是,次数是;22( 2)单项式 4a b 的系数是,次数是;.( 3)单项式3x2y的系数是,次数是. 53. 填空:2(2)多项式 a3-2a2b2+b3的项是,次数是4. 填空:( 1)全班学生总数是x,此中男生占总数的52%,则女生人数是;( 2)底边长为 6,高为 h 的三角形面积是;( 3)一台 a 元的电视机,降价30%后售价是元;( 4)一台 a 元的电视机,打七折销售,售价是元;( 5)温度由 t 度降落 8 度后是度;( 6)今年扎西 m岁,昨年扎西岁,5年后扎西岁;;.(7)某商铺上月收入为 a 元,本月的收入比上月的 2 倍还多 10 元,本月的收入是元;(8)西藏某景点的门票价钱是:成人10 元,学生 5 元 . 一个旅行团有成人学生 y 人,那么该旅行团对付元门票费;x 人,5.归并同类项:。
七年级数学导学案
课题 整式的加减——去括号
学习目标:
1、了解去括号法则,并初步理解去括号法则的合理性
2 、能用去括号法则进行正确去括号,能正确去括号前有系数的括号
学习重点:理解去括号法则并能用去括号法则进行正确去括号
学习难点:括号前面是“—”号和括号前有系数的括号的去法
一、问题导学(自学课本P65—P67并完成以下题目)
1 、结合你对正负数,相反数意义的理解填空
① +(+5)= _______ -(+5)= _______
② +(-5)=_______ -(-5)=_______
2 、看一看,再想一想
① +2(b+c)= +(_______)=
② - 3(X+2)=-( _______)=
3、通过上面的计算,你能发现什么规律?
①如果括号外的因数是正数,去括号后______________
____________
②如果括号外的因数是负数,去掉括号后______________
____________
二、尝试练习
1 、化简
① +12(t-0.5)=+( )=______________
② -12 (t- 0.5) =- ( )=______________
③ + 5 ( x-3 ) = +( )= ______________
2、下列去括号过程是否正确?若不是,请改正
① a-3(-b+c-d)=a+3b+3c-d ( )_____________
② 3a-(2b-c)=3a-2b-c ( )_____________
③ -(a-b)+2 (c-d)=-a-b+2c-d ( )_____________
④ 5(X+y)-2(y-1)=5X+5y-2y+1 ( )_____________
三、先化简,再合并同类项
① -2(-a3+2a2)+3(a3-a2) ②(4x2-3x+1)-3(-x2+2x)
七年级数学导学案
③ 3(y2-4y+3)-5(5y2-y+2) ④(6b2-5b+3)-(5b+2b-1)
四 、 两船从同一港口出发反方向而行,甲船顺水,乙船逆水,两船在静水中
在速度都是50千米/时,水流速度是a千米/时。
(1) 2小时后两船相距多远?
(2) 2小时后两船比乙船多航行多少千米?
五 化简求值
①-5a+2(3a-2)-3(3a-7),其中 a=-1
②7a2b-(-4a2b+5ab2)-2(2a2b-3ab2),其中 a=1 b=-1