湖北省武汉市第六中学2018-2019学年高一上第一次月考数学试题(无答案)
- 格式:doc
- 大小:165.26 KB
- 文档页数:5
湖北省部分重点中学2018-2019学年度下学期期末联考高一数学试卷答案命题学校:武汉六中命题教师:曹淑红审题教师:邬婕考试时间:2019年6月26日上午9:00-11:00 试卷满分:150分1-5.DBDBC 6-10. CDBAB 11-12. CB 13. 14 . 15. 16.三、解答题17.(10分)求图中阴影部分绕AB所在直线旋转一周所形成的几何体的表面积和体积.【答案】表面积为68π,体积为由题意知,所求旋转体的表面积由三部分组成:圆台下底面、侧面和一半球面.在直角梯形ABCD中,过D点作,垂足为E,如图:在中,,所以可计算出:S半球=8π,S圆台侧=35π,S圆台底=25π.故所求几何体的表面积为68π ;…………………… 5分由圆台的体积半球的体积,故所求几何体的体积为…………………… 10分18.(12分)数列的前项和.(1)求数列的通项公式;(2)设,求数列的前项和.答案:(1)当时,.∵适合上式,∴.…………………… 4分(2)由(1),令,得,∵,∴,即当时,,当时,,①当时,,此时,∴的前项和.②当时,,此时,由,得数列的前项和.由①②得数列的前项和为. ……………………12分19.(12分)如图,在三棱柱ABC-A1B1C1中,各个侧面均是边长为的正方形,为线段的中点.(1)求证:直线AB1∥平面BC1D;(2)求直线C1B与平面ACC1A1所成的角的余弦值(3)设为线段上任意一点,在BC 1D 内的平面区域(包括边界)是否存在点E ,使CEDM ,并说明理由.试题解析:(1)证明:如图,连接交于点,连接.显然点为的中点.∵是中点, ∴.∵平面,⊄1AB 平面,∴直线平面. …… …… …… …… 4分(2)在三棱柱ABC-A 1B 1C 1中,各个侧面均是边长为的正方形,且CC 1AC ,CC 1BCCC 1ACB , CC 1BDD 为线段AC 的中点, BDCAAC 与C 1C 相交于点CB C 1∴在面11A ACC 上的射影为D C 1即为直线C 1B 与平面ACC 1A 1所成的角中 AC=1,同理:=== …… …… …… …… 8分(3)在D BC 1内的平面区域(包括边界)存在一点E ,使DM CE ⊥此时点E 是在线段D C 1上.证明如下:过C 作CE D C 1⊥交线段D C 1于E ,由(2)可知⊥BD 平面11ACC A ,而CE ⊂平面11ACC A ,所以CE BD ⊥. 又1CE C D ⊥,所以CE ⊥平面D BC 1.又DM ⊂平面D BC 1,所以CE ⊥DM . …… …… …… …… 12分20.(12分)已知数列中,2)(1)求数列的通项公式;(2)设 ,求的通项公式及其前n 项和T n 。
武汉六初、六中上智2018~2019学年度上学期12月月考八年级数学试卷一、选择题(共10小题,每小题3分,共30分)1下列计算中正确的是()A .a 2+a 3=2a 5B .a 4÷a =a 4C .a 2·a 4=a 8D .(-a 2)3=-a 62.下列各式中能用平方差公式的是()A .(x +y )(y +x )B .(x +y )(y -x )C .(x +y )(-y -x )D .(-x +y )(y -x )3.下列计算正确的是()A .-2(x 2y 3)2=-4x 4y 6B .8x 3-3x 2-x 3=4x 3C .a 2b (-2ab 2)=-2a 3b 3D .-(x -y )2=-x 2-2xy -y 24.下列因式分解正确的是()A .4a 2-4a +1=4a (a -1)+1B .x 2-4y 2=(x +4y )(x -4y )C .22)3123(9149-=+-x x x D .2xy -x 2-y 2=-(x +y )25.已知多项式2x 2+bx +c 因式分解为2(x -3)(x +1),则b 、c 的值为()A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-66.多项式m 2-4n 2与m 2-4mn +4n 2的公因式是()A .(m +2n )(m -2n )B .m +2n C .m -2n D .(m +2n )(m -2n )27.平面内点A (-1,2)和点B (-1,-2)的对称轴是()A .x 轴B .y 轴C .直线y =4D .直线x =-18.若分式4242--x x 的值为零,则x 等于()A .2B .﹣2C .±2D .09.如果9x 2+kx +25是一个完全平方式,那么k 的值是()A .30B .±30C .15D .±1510.如图,已知∠MON =30°,点A 1、A 2、A 3、…在射线ON 上,点B 1、B 2、B 3、…在射线OM 上;△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4、…均为等边三角形.若OA 1=1,则△A 2015B 2015A 2016的边长为()A .4028B .4030C .22014D .22015二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:a 2·(-2a 2)3=__________,20192018)2()1(-∙-=__________12.若分式11-+x x 有意义,则x 的取值范围是___________13.已知(a +b )2=7,(a -b )2=4,则ab 的值为___________14.如图为杨辉三角表,它可以帮助我们按规律写出(a +b )n (其中n 为正整数)展开式的系数,请仔细观察表中规律,写出(a +b )5的展开式(a +b )1=a +b (a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3……(a +b )5=_______________________15.如图,四边形ABCD 中,AB ⊥AD ,BC ⊥DC ,点M 、N 分别是AB 、BC 边上的动点,∠B =56°.当△DMN 的周长最小时,则∠MDN 的度数是___________16.直角三角形纸片ABC 中,∠ACB =90°,AC ≤BC .如图,将纸片沿某条直线折叠,使点A 落在直角边BC 上,记落点为D .设折痕与AB 、AC 边分别交于点E 、点F ,当折叠后的△CDF 与△BDE 均为等腰三角形,那么纸片中∠B 的度数是___________三、解答题(共8题,共72分)17.(本题8分)计算:(1)(2m +n )2-(m +n )(m -n )-n2(2)ba b a b ab a b a +-÷++-222222218.(本题8分)因式分解:(1)2a 2-18(2)-2x 2y +8xy -8y19.(本题10分)先化简,再求值:(1)[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =-2(2)已知013=+a a ,求12)1(21222--∙-÷-+-a a a aa a a 的值20.(本题8分)如图,△ABC中,A(-2,3)、B(-3,1)、C(-1,2)(1)作△ABC关于直线x=1对称的图形△A1B1C1,写出三顶点A1、B1、C1的坐标(2)在x轴上求作一点D,使四边形ABDC的周长最小(保留作图痕迹,不要求写作法和证明)21.(本题8分)已知x2+2x+y2-10y+26=0,求:(1)x+2y的平方根(2)2y+2x的立方根22.(本题8分)如图,△ABC是边长为6cm的等边三角形,P从点A岀发沿AC边向C运动,与此同时Q从B出发以相同的速度沿CB延长线方向运动.当P到达C点时,P、Q停止运动,连接PQ交AB于D(1)设P、Q的运动速度为1cm/s,当运动时间为多少时,∠BQD=30°?(2)过P作PE⊥AB于E,在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED 的长;如果变化请说明理由23.(本题10分)若a、b、c为△ABC的三边,且满足a2+b2+c2=ab+ac+bc.点D是AC 边的中点,以点D为顶点作∠FDE=120°,角的两边分别与直线AB和BC相交于点F和点E(1)试判断△ABC的形状,说明理由(2)如图1,将△ABC图形中∠FDE=120°绕顶点D旋转,当两边DF、DE分别与边AB和射线BC相交于点F、E时,三线段BE、BF、AB之间存在什么关系?证明你的结论(3)如图2,当角两边DF、DE分别与射线AB和射线BC相交两点F、E时,三线段BE、BF、AB之间存在什么关系24.(本题12分)已知如图,在平面直角坐标系中,点B(m,0)、A(n,0)分别是x轴轴上两点,且满足多项式(x2+mx+8)(x2-3x+n)的积中不含x3项和x2项,点P(0,h)是y轴正半轴上的动点(1)求三角形△ABP的面积(用含h的代数式表示)(2)过点P作DP⊥PB,CP⊥PA,且PD=PB,PC=AP①连接AD、BC相交于点E,再连PE,求∠BEP的度数②连CD与y轴相交于点Q,当动点P在y轴正半轴上运动时,线段PQ的长度变不变?如果不变,请求出其值;如果变化,请求出其变化范围。
2018-2019学年湖北省武汉市部分学校高一上学期期末数学试题一、单选题1.sin(210)-的值为 A .12-B .12C. D.2【答案】B【解析】【详解】试题分析:由诱导公式得()()1sin 210sin 210sin 18030sin 302︒︒︒︒︒-=-=-+==,故选B . 【考点】诱导公式.2.已知集合{}21,A y y x x Z ==-∈,{}sin ,B y y x x R ==∈,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}1,0-【答案】D【解析】根据三角函数的值域与交集的运算求解即可. 【详解】{}{}sin ,|11B y y x x R y y ==∈=-≤≤,又{}{}21,1,0,3,8....A y y x x Z y ==-∈=-.故AB ={}1,0-.故选:D 【点睛】本题主要考查了三角函数的值域以及集合的交集运算,属于基础题型.3.已知函数f (x )2233x x log x x ⎧=⎨≥⎩,<,,则f [f (2)]=( )A .1B .2C .3D .4【答案】B【解析】根据分段函数的表达式求解即可. 【详解】由题[]22(2)(2)(4)log 42f f f f ====.故选:B 【点睛】本题主要考查了分段函数的求值,属于基础题型. 4.要得到函数πsin(2)3y x =+的图象,只需将函数sin 2y x =的图象( ) A .向左平移3π个单位 B .向左平移6π个单位C .向右平移3π个单位D .向右平移6π个单位【答案】B【解析】试题分析:sin 2sin 236y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,因此只需将函数y = sin2x 的图象向左平移6π个单位 【考点】三角函数图像平移5.已知函数f (x )=ax |x |+bsinx +1,若f (3)=2,则f (﹣3)=( ) A .﹣2 B .﹣1C .0D .1【答案】C【解析】根据函数的对称性求解即可. 【详解】由()sin 1f x ax x b x =++,()()()sin 1sin 1f x a x x b x ax x b x -=--+-+=--+. 故()()2f x f x +-=.又(3)2f =故(3)2(3)0f f -=-=.故选:C 【点睛】本题主要考查了函数性质的运用,属于基础题型. 6.下列关于函数f (x )=tanx 的说法正确的是( ) A .是偶函数B .最小正周期为2πC .对称中心为(kπ,0),k ∈ZD .f (4π)+f (34π)=0【答案】D【解析】根据正切函数的图像与性质判断即可. 【详解】()tan f x x =为奇函数,最小正周期为π,对称中心为,0,2k k Z π⎛⎫∈⎪⎝⎭.故A,B,C 错误. 又33()()tan tan 1104444f f ππππ+=+=-=.故D 正确. 故选:D 【点睛】本题主要考查了正切函数的性质,属于基础题型.7.若sin 76°=m ,则cos 7°可用含m 的式子表示为( )A B C D 【答案】B【解析】分析角度关系利用降幂公式求解即可. 【详解】由题,cos14sin 76m ︒=︒=,又21cos14cos 7cos 72+︒︒=⇒=︒=故选:B 【点睛】本题主要考查了诱导公式与降幂公式的运用,属于基础题型.8.已知函数f (x )=Asin (ωx +φ)(其中A >0,ω>0,﹣π<φ<π)的部分图象如图所示,则ω和φ的值分别为( )A .ω=1,φ3π=-B .ω=1,φ6π=-C .ω=2,φ3π=-D .ω=2,φ6π=-【答案】D【解析】先利用周期求ω再代入最高点求得ϕ即可. 【详解】由题三角函数半个周期为362πππ⎛⎫--= ⎪⎝⎭,故12==222ππωω⨯⇒.易得2A =,又函数过2,23π⎛⎫⎪⎝⎭,故2sin(2)22,36k k Z ππϕϕπ⨯+=⇒=-+∈,又πϕπ-<<, 故6πϕ=-.故选:D 【点睛】本题主要考查了根据三角函数图像求解析式的方法,属于基础题型.9.已知函数f (x )220x x x x ⎧≤=⎨⎩,,>,若函数g (x )=f (x )+x ﹣a 恰有一个零点,则实数a 的取值范围( ) A .(﹣∞,0] B .(1,+∞)C .[0,1)D .(﹣∞,0]∪(1,+∞)【答案】D【解析】画出函数()f x 的图像再数形结合求()f x x a =-+ 只有一个交点的情况即可. 【详解】画出函数220()0x x f x x x ⎧≤=⎨⎩,,>的图像,易得若()()g x f x x a =+-恰有一个零点则()f x x a =-+恰有一个根,即()f x 与y x a =-+恰有一个交点.故(](),01,a ∈-∞⋃+∞.故选:D 【点睛】本题主要考查了数形结合求解函数零点个数的问题,属于中等题型. 10.如表为某港口在某季节中每天水深与时刻的关系:若该港口水深y(单位:m)和时刻t(0≤t≤24)的关系可用函数y=Asin(ωt+φ)+h来近似描述,则该港口在11:00的水深(单位:m)为()A.4 B.5C.5D.3【答案】A【解析】根据表格可计算出对应的函数关系()siny A t hωϕ=++的解析式,再代入11t=计算即可.【详解】由表格知函数最大值为7,最小值为3.故73A hA h+=⎧⎨-+=⎩,即2,5A h==.又相邻两个最大值之间的距离为15312T=-=.故2126ππωω=⇒=.此时2sin56y tπϕ⎛⎫=++⎪⎝⎭,又当3t=时32sin5=76yπϕ⎛⎫=++⎪⎝⎭,故22ππϕ+=,即0ϕ=.故2sin56y tπ⎛⎫=+⎪⎝⎭.故当11t=时,112sin546yπ⎛⎫=+=⎪⎝⎭.故选:A【点睛】本题主要考查了正弦函数的实际运用,需要根据题意代入对应的点求解函数解析式,属于中等题型.11.已知函数f(x)6404214xx xxx-⎧-≤⎪=⎨⎪-⎩,<,>,若三个互不相同的正实数a,b,c满足f(a)=f(b)=f(c),则abc的取值范围是()A.(0,16)B.(4,24)C.(16,24)D.(0,24)【答案】C【解析】画出函数()f x的图像再分析当()()()f a f b f c==时的情况即可.【详解】画出函数()f x 的图像,设()()()f a f b f c m ===,()0,3m ∈. 则64421c a b m a b --+=-=-=.故1144a b ab a b ⎛⎫+=+⇒= ⎪⎝⎭. 故4abc c =.又()4,6c ∈,故()416,24c ∈.故选:C 【点睛】本题主要考查了数形结合以及函数的综合运用,需要根据题意画出对应的函数图像,再分析abc 中的定量关系进行化简从而求得范围.属于中等题型.12.已知函数f (x )=sin (ωx +φ)(其中ω>0,﹣π<φ<π),若该函数在区间(63ππ-,)上有最大值而无最小值,且满足f (6π-)+f (3π)=0,则实数φ的取值范围是( )A .(56π-,6π) B .(23π-,3π) C .(3π-,23π) D .(6π-,56π)【答案】D【解析】根据题意可画图分析确定()f x 的周期,再列出在区间端点满足的关系式求解即可. 【详解】由题该函数在区间(63ππ-,)上有最大值而无最小值可画出简图,又063f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,故周期T 满足()236T T πππ=--⇒=.故22ππωω=⇒=.故()sin(2)f x x ϕ=+.又πϕπ-<<,故322325662262πππϕππϕπππϕ⎧<⨯+<⎪⎪⇒-<<⎨⎛⎫⎪-<⨯-+< ⎪⎪⎝⎭⎩.故选:D 【点睛】本题主要考查了正弦型函数图像的综合运用,需要根据题意列出端点处的函数对应的表达式求解.属于中等题型.二、填空题13.设扇形的半径长为4cm ,面积为16cm 2,则其圆心角的弧度数是_____. 【答案】2.【解析】根据面积公式直接求解即可. 【详解】由题意,设圆心角的弧度数为α则2116422αα=⨯⇒=. 故答案为:2 【点睛】本题主要考查了扇形的面积公式,属于基础题型.14.定义在R 上的奇函数f (x )满足f (2+x )=f (2﹣x ),当0≤x ≤2时,f (x )=x 2,则f (10)=_____. 【答案】4【解析】根据奇函数以及()()22f x f x +=-,将(10)f 中自变量变换到[]0,2内求解即可. 【详解】因为奇函数()f x 满足()()22f x f x +=-,故(10)(28)(28)(6)(6)(24)(24)f f f f f f f =+=-=-=-=-+=--2(2)(2)24f f =--===.故答案为:4 【点睛】本题主要考查了函数性质求解函数值的问题,需要根据题中所给的性质将自变量转换到已知解析式的定义域中进行计算.属于中等题型.15.若sin (4πα+)13=,则24cos sin απα=-()_____. 【答案】23-【解析】利用和差角以及二倍角公式展开求解即可. 【详解】)2222sin cos 2sin 4342cos sin απαααπα⎛⎫==+=-+=- ⎪⎝⎭-(). 故答案为:23- 【点睛】本题主要考查了和差角公式以及二倍角公式等.属于中等题型. 16.若函数f (x )=sin 211x x +-是区间[a ,+∞)上的单调函数,则实数a 的最小值为_____.【答案】2334ππ+-【解析】讨论211x x +-的单调性,再利用复合函数的单调性分析,利用恒成立问题的求解方法求解即可. 【详解】根据题意,f (x )=sin 211x x +-, 设t 211x x +=-,则y =sint , t 211x x +==-231x +-,在区间(1,+∞)上为减函数,且t >2在(1,+∞)上恒成立, y =sint 在区间[2,32π]上为减函数,若函数f (x )=sin211x x +-是区间[a ,+∞)上的单调函数,必有21312a a π+≤-,解可得:a 2334ππ+≥-,即a 的最小值为2334ππ+-;故答案为:2334ππ+- 【点睛】本题主要考查了三角函数的综合运用,需要根据题意分析自变量的范围以及单调性对正弦函数的影响等.属于中等题型.三、解答题17.已tanθ=3,求值: (1)23sin cos sin cos θθθθ-+;(2)sin 2θ+3sinθcosθ﹣2cos 2θ.【答案】(1)110(2)85【解析】(1)上下同时除以cosθ再代入tanθ=3求解即可.(2)将原式化简为222232sin sin cos cos sin cos θθθθθθ+-+再上下同时除以2cos θ代入tanθ=3求解即可. 【详解】 (1)∵tanθ=3,2232133133110sin cos tan sin cos tan θθθθθθ---===++⨯+,(2)sin 2θ+3sinθcosθ﹣2cos 2θ222232sin sin cos cos sin cos θθθθθθ+-=+, 22321tan tan tan θθθ+-=+, 9928915+-==+.【点睛】本题主要考查了同角三角函数的关系及其运用等.属于基础题型.18.已知角α的顶点与平面直角坐标系的原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (﹣3,1). (1)求sinα的值;(2)已知角β为钝角,且满足cos (α+β)35=,求cosβ的值.【答案】(1)10(2)50-【解析】(1)根据正弦值的定义求解即可.(2)根据凑角的方法得cosβ=cos [(α+β)﹣α]再求解即可. 【详解】(1)由题意可知:sinα==;(2)由(1)可知cosα==,∴2παπ<<, ∵β为钝角,∴2πβπ<<,∴π<α+β<2π, ∵cos (α+β)35=,∴sin (α+β)45=-,∴cosβ=cos [(α+β)﹣α]=cos (α+β)cosα+sin (α+β)sinα50=- 【点睛】本题主要考查了三角函数的定义求解以及余弦函数差角公式等.属于中等题型.19.函数f (x )=(cosx )cosx . (1)求函数的最小正周期和单调增区间; (2)求函数在区间[75126ππ,]上的最小值,以及取得该最小值时x 的值. 【答案】(1)函数的最小正周期为T =π,函数f (x )的单调增区间为[k 36k ππππ-+,],(k ∈Z )(2)x 23π=时,f (x )取得最小值12- 【解析】(1)利用降幂公式与和差角公式将函数化简成()()sin f x A x B ωϕ=++ 的结构再求解即可.(2)根据三角函数图像性质求解即可. 【详解】(1)f (x )=cos 2x 2122cos x +=+sin 2x =sin (2x 6π+)12+ ∴函数的最小正周期为T 22π==π, 由2kπ2π-≤2x 6π+≤2kπ2π+(k ∈Z ),解得k 36x k ππππ-≤≤+,∴函数f (x )的单调增区间为[k 36k ππππ-+,],(k ∈Z );(2)当x ∈[712π,56π]时,可得:4112366x πππ≤+≤,∴当2x 362ππ+=时,即x 23π=时,f (x )取得最小值12-.【点睛】本题主要考查了降幂公式与和差角公式化简三角函数的方法,同时也考查了根据函数图像与性质求最值的方法等.属于中等题型.20.已知函数f (x )2222x x -=+.(1)求f (﹣1)+f (3)的值; (2)求证:f (x +1)为奇函数;(3)若锐角α满足f (2﹣si nα)+f (cosα)>0,求α的取值范围. 【答案】(1)0(2)证明见解析(3)04πα∈(,) 【解析】(1)直接求解(1),(3)f f -求和即可. (2)令()(1)g x f x =+证明()()g x g x -=-即可.(3)根据()(1)g x f x =+的奇偶性与单调性化简f (2﹣sinα)+f (cosα)>0求解即可. 【详解】(1)331355f f -=-=(),(),故f (﹣1)+f (3)=0; (2)证明::令g (x )=f (x +1),则2121x x g x -=+(),此时21122112x xx xg x g x -----===-++()(), ∴函数g (x )为奇函数,即f (x +1)为奇函数;(3)由(2)可得函数21212121x x xg x -==-++(), 函数g (x )的定义域为R ,任取x 1<x 2∈R ,122112122222*********x x x x x x g x g x --=-=++++()()()()(), ∵x 1<x 2,∴12220x x -<,则g (x 1)﹣g (x 2)<0,∴函数g (x )在R 上为增函数,且f (2﹣sinα)=g (1﹣sinα),f (cosα)=g (cosα﹣1),∴f (2﹣sinα)+f (cosα)>0即为g (1﹣sinα)+g (cosα﹣1)>0, 又∵奇函数g (x )在R 上为增函数,∴1102sin cos πααα--∈>,(,),解得4πα∈(0,).【点睛】本题主要考查了函数的奇偶性判定以及利用奇偶性与单调性求不等式的方法等.属于中等题型.21.如图,OB 、CD 是两条互相平行的笔直公路,且均与笔直公路OC 垂直(公路宽度忽略不计),半径OC =1千米的扇形COA 为该市某一景点区域,当地政府为缓解景点周边的交通压力,欲在圆弧AC 上新增一个入口E (点E 不与A 、C 重合),并在E 点建一段与圆弧相切(E 为切点)的笔直公路与OB 、CD 分别交于M 、N .当公路建成后,计划将所围成的区域在景点之外的部分建成停车场(图中阴影部分),设∠CON =θ,停车场面积为S 平方千米.(1)求函数S =f (θ)的解析式,并写出函数的定义域;(2)为对该计划进行可行性研究,需要预知所建停车场至少有多少面积,请计算当θ为何值时,S 有最小值,并求出该最小值. 【答案】(1)f (θ)11224tan sin πθθ=+-(),θ∈(0,4π)(2)6πθ=时,S 取得最【解析】(1) 连接OE ,根据平面几何的性质分析边角关系即可.(2)根据(1)中的函数表达式,令tanθ=t ,再化简利用基本不等式,根据“一正二定三相等”的方法求得最小值以及取最小值时的角度大小即可. 【详解】(1)连接OE ,∵∠CON =θ,∴22EOM π∠θ=-,CN =NE =tanθ,OM 11222sin cos πθθ==-(), ∴1122OMNC S tan sin θθ=+四边形(), 则f (θ)11224tan sin πθθ=+-(),θ∈(0,4π); (2)由f (θ)11224tan sin πθθ=+-(),θ∈(0,4π). 令tanθ=t ,θ∈(0,4π),则t ∈(0,1),则S 21131322443444t t t t t πππ+=+-=+-≥⋅=()()当且仅当13t t =,即t =时,S此时tanθ=,6πθ=.【点睛】本题主要考查了三角函数在平面几何中的运用,同时也考查了利用基本不等式求解函数的最值问题等.属于中等题型.22.定义在R 上的两个函数f 1(x )=|sinx ﹣a |和f 2(x )=cos 2x ,其中a ∈R . (1)当a =0时,若存在实数x 0使得f 1(x 0)=f 2(x 0)=k ,求实数k 的值; (2)设函数f (x )=f 1(x )﹣f 2(x ),求f (x )最小值g (a )的表达式.【答案】(1)k =2)g (a )=25142514211122a a a a a a ⎧-⎪⎪⎪---⎨⎪⎪--≤≤⎪⎩,>,<, 【解析】(1)利用题目条件列出|sinx 0|=cos 2x 0=k ,再根据关于二次函数的复合函数方法求解即可.(2)分a ≥1, a ≤﹣1与﹣1<a <1三种情况进行分析,同时结合正弦函数的取值范围进行讨论,再分段讨论函数的最值即可. 【详解】(1)当a =0时,f 1(x )=|sinx |,f 2(x )=cos 2x ; 由f 1(x 0)=f 2(x 0)=k ,得|sinx 0|=cos 2x 0=k ,∴|sinx 0|=1﹣sin 2x 0=120sinx -,解得|sinx 0|=1|sinx 0|=(不合题意,舍去),所以k =; (2)由题意知,函数f (x )=f 1(x )﹣f 2(x )=|sinx ﹣a |﹣cos 2x ,①当a ≥1时,f (x )=a ﹣sinx ﹣cos 2x ,即f (x )=sin 2x ﹣sinx +a ﹣1,此时g (a )=f (x )min 21122=-+()a ﹣1=a 54-; ②当a ≤﹣1时,f (x )=sinx ﹣a ﹣cos 2x ,即f (x )=sin 2x +sinx ﹣a ﹣1,此时g (a )=f (x )min 21122=---()a ﹣1=﹣a 54-; ③当﹣1<a <1时,f (x )2211sin x sinx a sinx asin x sinx a sinx a⎧+--≥=⎨-+-⎩,,<;若12<a <1,则g (a )=f (x )min 21122=-+()a ﹣1=a 54-; 若﹣1<a 12-<,则g (a )=f (x )min 212=-+()(12-)﹣a ﹣1=﹣a 54-; 若1122a -≤≤,则g (a )=f (x )min =a 2﹣a +a ﹣1=a 2﹣1;综上知,f (x )最小值g (a )的表达式为g (a )=f (x )min 25142514211122a a a a a a ⎧-⎪⎪⎪=---⎨⎪⎪--≤≤⎪⎩,>,<,.【点睛】本题主要考查了关于正弦函数的二次复合函数问题,包括二次函数的求根以及最值范围的问题以及分类讨论的思想等.属于难题.。
高一期中数学参考答案1~5: CABBD 6~10:BDDAC 11~12:BA13.3m =14.08a ≤<15.(]0,116.②③ 17.(1)278(2)203解:(1)原式20.5238142799927+1+16364416168⎛⎫⎛⎫⎛⎫=÷+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)原式323100220log 3lglg43123+1433=++++=++= 18.解:{|45}A x x =-≤≤由条件AB A =可知B A ⊆当B φ=时,121m m +>-,解得2m <当B φ≠时,12114215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得23m ≤≤综上m 的取值范围是:3m ≤ 19、解:(1)法一:由函数()f x 为奇函数,得()00f =即10m +=,所以1m =- 法二:因为函数()f x 为奇函数,所以()()f x f x -=-,即()()0f x f x -+=∴()()22222121212112x x x x f x f x m m m -⎛⎫ ⎪⎛⎫⎛⎫-+=+++=++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭ ⎪+⎝⎭ ()22122222220122112x x x x xm m m +⎛⎫=++=+=+= ⎪+++⎝⎭, 所以1m =-(2)证明:任取12,x x R ∈,且12x x <,则有())()212222121x x x -++∵12x x <,∴12220x x -<,∴2210x +>,∴1210x+>,()()120f x f x ->,即()()12f x f x >所以函数()f x 在(),-∞+∞上是减函数(3)由题意1(4)(2)0x x f b f +-+-=有解,即1(4)(2)0x x f b f +--=从而1(4)(2)0x x f b f +--=,∵函数()f x 在(),-∞+∞上是减函数 ∴1420x x b +--=有解,142x x b +-=设2(0)x t t =>,122422(1)11x x t t t +-=-=--≥- ∴1b ≥-20.解:(1)由题意得,当时,; 当时,.∴销售额与时间的函数关系式为.(2)①当,时,,当,时,是的单调递增函数.当,时,是的单调递减函数.故当或13时,取得最大值,且.②当,时,当,时,是的单调递减函数.故当时,取得最大值,且.∵,∴当时,日销售额取得最大值,且最大值为元.21. 解:(1)当12a =时,()2121log 42f x x x ⎛⎫=- ⎪⎝⎭, 定义域为()(),08,-∞+∞,增区间为(),0-∞;减区间为()8,+∞;(2)令()24u x ax x =-,①当01a <<时,则()[]()[]2242,440,2,4u x ax x u x ax x x ⎧=-⎪⎨=->∈⎪⎩在递减对任意的, ∴()24416160au a ⎧≥⎪⇒⎨⎪=->⎩无解; ②当1a >时,则()[]()[]2242,440,2,4u x ax x u x ax x x ⎧=-⎪⎨=->∈⎪⎩在递增对任意的, ∴()2222480a au a ⎧≤⎪⇒>⎨⎪=->⎩, 又1a >,∴2a >,综上所述,2a >.22.解:(1)()()222210120,0,2x x f x x x kx k x x-+≥⇒-++≥⇒≥-∈+∞,记()(]()221,0,112 12,1,2x x x x g x x x x x ⎧-∈⎪-+⎪=-=⎨⎪-+∈+∞⎪⎩,易知()g x 在上(]0,1递增,在 ()1,+∞上递减,∴()()max112g x g ==-,∴12k ≥- (2)①ⅰ)01x <≤时,方程()0f x =化为2+1=0kx ,0k =时,无解;0k ≠时,12x k=-; ⅱ)12x <<时,方程()0f x =化为22+210x k x -=,2k x -=,而其中022k k k ---<≤,故()0f x =在区间(1,2)内至多有一解2k x -=;综合ⅰ)ⅱ)可知,0k ≠,且01x <≤时,方程()0f x =有一解12x k =-,故12k ≤-;12x <<时,方程()0f x =有一解x =,令12<<,得7142k -<<-,所以实数k 的取值范围是7142k -<<-; ②方程()0f x =的两解分别为112x k =-,22k x -=122211+=k k k x x k --+=-()222,4x =∈。
武汉六中高一年级第二次月考数学试卷一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合, ,则( )A .B .0、1、 3}C .D .2.已知,则下列结论正确的是( )A . B . C .D .3.下列函数的最值中错误的是( )A .的最小值为2B .已知,的最大值是C .已知,的最小值为3D54.已知关于的不等式的解集是,则下列说法错误的是( )A . B .C .D .不等式的解集是5.已知函数f (x )=,在(0,a -5)上单调递减,则实数a 的取值范围是( )A .[6,8]B .[6,7]C .(5,8]D .(5,7]6.已知函数,且,则实数的取值范围是( )A .B .C .D .7.如图,中,,,,点从点出发,以的速度沿向点运动,同时点从点出发,以的速度沿向点运动,直到它们都到达点为止.若的面积为,点的运动时间为,则与的函数图象是( )A .B .C .D .4Z ,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N {}14Q x x =-≤≤P Q = {}1,2,4{}03x x ≤≤{}14x x -≤≤0a b c >>>11a b a b+>+b ab a a b+<+c ba c a b>--b c ba c a->-1x x+0x >423x x--2-1x >11x x +-x 20ax bx c ++>{}13x x <<0a <0a b c ++=420a b c ++<20cx bx a -+<113x x x ⎧⎫--⎨⎩⎭或221,143,1x x x x x ⎧-+<⎨-+≥⎩()()4f x x x =+()()2230f a f a +-<a ()3,0-()3,1-()1,1-()1,3-Rt ABC △90C ∠=︒5cm AB =4cm AC =P A 1cm /s A C →C Q A 2cm /s A B C →→C C APQ △2(cm )S P (s)t S t8.已知函数为定义在上的偶函数,,,,且,,则不等式的解集为( )A .B .C .D .二、多选题(本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分)9.若是的必要不充分条件,则实数a 的值可以为( )A .2B .C .D .010.下列说法正确的是( )A .若幂函数的图象经过点,则函数的解析式为B .若函数,则在区间上单调递减C .若正实数m ,n 满足,则D .若函数,则对任意,,且,有11.定义域为的奇函数,满足,下列叙述正确的是( )A .存在实数,使关于的方程有3个不同的解B .当时,恒有C .若当时,的最小值为1,则D .若关于的方程和的所有实数根之和为0,则或三、填空题(本题共3小题,每小题5分,共15分)12.已知不等式对任意恒成立,则正实数a 的取值范围是 .13.若函数的定义域为,则的定义域为 .14.设函数的定义域为,满足,且当时,.若()f x R()12,0,x x ∀∈+∞12x x <()()1221212x f x x f x x x -<-()12f =-()00f =()2f x >-[]1,1-()()1,00,1-U ()()1,01,-⋃+∞()1,1-2:60p x x +-=:10q ax +=12-1314,2⎛⎫ ⎪⎝⎭12y x -=2()f x x -=()f x (,0)-∞1122m n >1122m n --<1()f x x -=1x 2(,0)x ∈-∞12x x ≠()()122f x f x +<122x x f +⎛⎫ ⎪⎝⎭R ()f x 22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩k x ()f x k =1211x x -<<<()()12f x f x >(0,]x a ∈()f x 51,2a ⎡⎤∈⎢⎥⎣⎦x 3()2f x =()f x m =32m =-38m =-191ax x +≥-(0,1)x ∈()21f x -[]3,1-y =()f x R 1(1)()2f x f x +=(0,1]x ∈()(1)f x x x =--对任意,都有,则的取值范围是 .四、解答题(本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤)15.已知实数集,集合,集合(1)当时,求;(2)设,求实数的取值范围.16.中国芯片产业崛起,出口额增长迅猛,展现强劲实力和竞争力.中国自主创新,多项技术取得突破,全球布局加速.现有某芯片公司为了提高生产效率,决定投入万元买一套生产设备.预计使用该设备后,前n ()年的支出成本为万元,每年的销售收入98万元.使用若干年后对该设备处理的方案有两种,方案一:当总盈利额达到最大值时,该设备以20万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以30万元的价格处理,哪种方案较为合理?并说明理由(注:年平均盈利额)17.已知函数.(1)若,求在上的值域;(2)设,记的最小值为,求的最小值.[,)x m ∈+∞8()9f x ≤m R 2{2150}A x x x =--<{1}B x x a =-<1a =a 160*N n ∈()2102n n -=总盈利额年度()()2231,2f x x x g x x x a x =+-=--+1a =()g x []2,2x ∈-()()()x f x g x ϕ=-()x ϕ()h a ()h a18.已知函数的定义域为,对任意的,都有.当时,.(1)求的值,并证明:当时,;(2)判断的单调性,并证明你的结论;(3)若,求不等式的解集.19.若函数G 在上的最大值记为,最小值记为,且满足,则称函数G 是在上的“美好函数”.(1)下列三个函数①;②;③,哪个(些)是在上的美好函数,说明理由.(2)已知函数.①函数G 是在上的“美好函数”,求a 的值;②当时,函数G 是在上的“美好函数”,求t 的值;(3)已知函数,若函数G 是在(m 为整数)上的“美好函数”,且存在整数k ,使得,求a 的值.()f x +R ,a b +∈R ()()()f a f b f ab +=01x <<()0f x >()1f 1x >()0f x <()f x ()21f =-()2110f ax x ax +-++<()m x n m n ≤≤<max y min y max min 1y y -=m x n ≤≤1y x =+|2|y x =2y x =12x ≤≤2:23(0)G y ax ax a a =--≠12x ≤≤1a =1t x t ≤≤+2:23(0)G y ax ax a a =-->221m x m +≤≤+maxminy k y =参考答案:题号12345678910答案B B A C D B C D BCD ACD 题号11 答案ACD12.13.14.15.(1)(2)16.方案二更合理,理由如下:设为前年的总盈利额,单位:万元;由题意可得,方案一:总盈利额,当时,取得最大值;此时处理掉设备,则总利额为万元方案二:平均盈利额为,当且仅当,即时,等号成立;即时,平均盈利额最大,此时,此时处理掉设备:总利润为万元;综上,两种方案获利都是万元,但方案二仅需要年即可,故方案二更合适.17. (1) (2)18.(1)因为,都有,所以令,得,则,因为时,,所以当时,,则,令,得,所以,证毕.(2)在上单调递减,证明如下:不妨设,则,,令,则,所以,即,所以在上单调递减;[4,)+∞51,2⎛⎤ ⎥⎝⎦43m ≥-{|3025}x x x -<≤≤<或(,4]-∞()f n n ()()229810216010100160f n n n n n n =---=-+-()()221010016010590f n n n n =-+-=--+5n =()f n 909020110+=()210100160161010010020f n n n n nn n -+-⎛⎫==-++≤-= ⎪⎝⎭16n n=4n =4n =()80f n =8030110+=11043,92⎡⎤-⎢⎥⎣⎦1-,a b +∈R ()()()f a f b f ab +=1a b ==()()()111f f f +=01x <<()0f x >1x >101x <<1(0f x>1,a x b x ==()()110f x f f x ⎛⎫+== ⎪⎝⎭()10f x f x ⎛⎫=-< ⎪⎝⎭()f x +R 120x x <<1201x x <<12()0x f x >122,x a x b x ==1212()()()x f x f f x x +=1212()()()0x f x f x f x -=-<12()()f x f x >()f x +R(3)由,得,又,所以,由(2)知在上单调递减,所以,所以,所以,当时,不等式为,所以不等式的解集为;当时,不等式为,所以不等式的解集为;当时,不等式为,若时,则,所以不等式的解集为,若时,则,所以不等式的解集为,若时,则,所以不等式的解集为,综上所述:时,不等式的解集为,时,不等式的解集为,时,不等式的解集为,当时,不等式的解集为,时,不等式的解集为.19.(1)对于①在上单调递增当时,,当时,,∴,符合题意; 对于②在上单调递增当时,,当时,,∴,不符合题意; 对于③在上单调递增当时,,当时,,∴,不符合题意;故①是在上的美好函数;(2)①二次函数对称轴为直线,当时,,当时,,当时,在上单调递增,,,当时,在上单调递减,,,综上所述,或;②二次函数为,对称轴为直线,在上单调递增,在上单调递减,当,,当时,, 当时,.若,在上单调递增,()2110f ax x ax +-++<()211f ax x ax +-+<-()21f =-()()212f ax x ax f +-+<()f x +R 212ax x ax +-+>2(1)10ax a x +-->(1)(1)0ax x +->0a >1()(1)0x x a+->1(,)(1,)a -∞-⋃+∞0a =10x ->(1,)+∞0a <1()(1)0x x a+-<1a =-11a-=∅10a -<<11a ->1(1,a-1a <-11a -<1(,1)a-1a <-1(,1)a-1a =-∅10a -<<1(1,)a-0a =(1,)+∞0a >1(,)(1,)a-∞-⋃+∞1y x =+1x =2y =2x =3y =max min 1y y =-|2|y x =1x =2y =2x =4y =max min 1y y ≠-2y x =1x =1y =2x =4y =max min 1y y ≠-12x ≤≤2:23(0)G y ax ax a a =--≠1x =1x =14y a =-2x =23y a =-0a >2:23(0)G y ax ax a a =--≠()21341y y a a ∴-=---=1a ∴=0a <2:23(0)G y ax ax a a =--≠()21431y y a a ∴-=---=1a ∴=-1a =1a =-2:23(0)G y ax ax a a =--≠223y x x =--1x =223y x x =--(),1∞-x t =2123y t t =--1x t =+()()22212134y t t t =+-+-=-1x =34y =-1t >223y x x =--[],1t t +则,解得(舍去);若,在上单调递减,在上单调递增,则,解得(舍去),;若,在上单调递减,在上单调递增,则,解得,(舍去);若,在上单调递减,则,解得(舍去).综上所述,或;(3)由(2)可知,二次函数对称轴为直线,又,, ,当时,在上单调递增当时取得最大值,时取得最小值,∴,为整数,且,,即的值为5,又∵,,.()22214231y y t t t -=----=1t =112t ≤≤223y x x =--[],1t (]1,1t +()223441y y t -=---=1t =-1t =102t ≤<223y x x =--[],1t (]1,1t +()()2132341y y t t -=----=0t =2t =0t <223y x x =--[],1t t +()22122341y y t t t -=----=0t =0t =1t =2:23(0)G y ax ax a a =--≠1x =221m x m +≤≤+ 1m ∴>3221m x m ∴<+≤≤+221m x m +≤≤+2:23(0)G y ax ax a a =--≠[]2,21m m ++21x m =+2x m =+2max 2min (21)2(21)34484(2)2(2)333y a m a m a m k y a m a m a m m +-+-+====-+-+-++m k 1m >38m ∴+=m max min 1y y =-()()()()22101210135225231a a a a a a ⎡⎤∴+-+--+-+-=⎣⎦164a ∴=。
2018-2019学年湖北省武汉二中高一上学期10月考试数学试题一、单选题1.方程组的解构成的集合是()A.B.C.D.【答案】C【解析】求出二元一次方程组的解,然后用集合表示出来.【详解】∵∴∴方程组的解构成的集合是{(1,1)}故选:C.【点睛】本题考查集合的表示法:注意集合的元素是点时,一定要以数对形式写.2.若全集,则集合的真子集共有()A.5个B.6个C.7个D.8个【答案】C【解析】利用集合中含n个元素,真子集的个数为2n﹣1个,求出集合真子集的个数.【详解】∵U={0,1,2,3}且∁U A={2},∴A={0,1,3}∴集合A的真子集共有23﹣1=7个故选:C.【点睛】求一个集合的子集、真子集的个数可以利用公式:若一个集合含n个元素,其子集的个数为2n,真子集的个数为2n﹣1.3.已知函数,且,那么()A.2 B.18 C.-10 D.6【答案】D【解析】令g(x)=x5+ax3+bx,可知其为奇函数,根据奇函数的性质可求f(2)的值.【详解】令g(x)=x5+ax3+bx,易得其为奇函数,则f(x)=g(x)+8,所以f(﹣2)=g(﹣2)+8=10,得g(﹣2)=2,因为g(x)是奇函数,即g(2)=﹣g(﹣2),所以g(2)=﹣2,则f(2)=g(2)+8=﹣2+8=6,故选:D.【点睛】本题考查函数奇偶性的应用,以及整体代换求函数值,属于基础题.4.在映射中,,且,则与A中的元素对应的B中的元素为()A.B.C.D.【答案】D【解析】将x=-2,y=1代入对应法则即可得到B中的元素.【详解】∵映射f:A→B中,且f:(x,y)→(x﹣y,x+y),∴将A中的元素(-2,1)代入对应法则得x-y=-2-1=-3,x+y=-2+1=-1,故与A中的元素对应的B中的元素为(﹣3,-1)故选:D.【点睛】本题考查映射概念的应用,属于基础题.5.设集合,,对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示( )A.B.C.D.【答案】A【解析】因为集合A={x|x参加自由泳的运动员},B={x|x参加蛙泳的运动员}所以“既参加自由泳又参加蛙泳的运动员”用集合运算表示为A∩B故选:A6.已知集合,,那么()A.B.C.D.【答案】B【解析】解出集合B,利用交集的运算求解即可得到答案.【详解】,,则故选:B【点睛】本题考查集合的交集运算,属于简单题.7.集合, , 又则有()A.B.C.D.任一个【答案】B【解析】试题分析:因为集合为偶数集,为奇数集,,,所以为奇数,为偶数,所以为奇数,所以.故选B.【考点】元素与集合的关系.8.下列各组函数是同一函数的是()①与;②与;③ 与;④与.A.①③B.①④C.①②D.②④【答案】D【解析】根据相同函数对定义域和解析式的要求,依次判断各个选项即可.【详解】①与的对应法则不同∴f(x)与g(x)不是同一函数;②与定义域和对应法则相同,故是同一函数;③f(x)的定义域为R,函数g(x)的定义域为,故不是同一函数;④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1对应法则和定义域相同,故是同一函数.综上是同一函数的是②④.故选:D.【点睛】本题考查利用函数的三要素判定函数是否是同一函数,事实上只要具备定义域与对应法则相同即可.9.下列表述中错误的是()A.若,则B.若,则C.D.【答案】C【解析】试题分析:由题;A..正确。
2018-2019学年湖北省武汉二中高一上学期10月考试数学试题一、单选题1.方程组的解构成的集合是()A.B.C.D.【答案】C【解析】求出二元一次方程组的解,然后用集合表示出来.【详解】∵∴∴方程组的解构成的集合是{(1,1)}故选:C.【点睛】本题考查集合的表示法:注意集合的元素是点时,一定要以数对形式写.2.若全集,则集合的真子集共有()A.5个B.6个C.7个D.8个【答案】C【解析】利用集合中含n个元素,真子集的个数为2n﹣1个,求出集合真子集的个数.【详解】∵U={0,1,2,3}且∁U A={2},∴A={0,1,3}∴集合A的真子集共有23﹣1=7个故选:C.【点睛】求一个集合的子集、真子集的个数可以利用公式:若一个集合含n个元素,其子集的个数为2n,真子集的个数为2n﹣1.3.已知函数,且,那么()A.2 B.18 C.-10 D.6【答案】D【解析】令g(x)=x5+ax3+bx,可知其为奇函数,根据奇函数的性质可求f(2)的值.【详解】令g(x)=x5+ax3+bx,易得其为奇函数,则f(x)=g(x)+8,所以f(﹣2)=g(﹣2)+8=10,得g(﹣2)=2,因为g(x)是奇函数,即g(2)=﹣g(﹣2),所以g(2)=﹣2,则f(2)=g(2)+8=﹣2+8=6,故选:D.【点睛】本题考查函数奇偶性的应用,以及整体代换求函数值,属于基础题.4.在映射中,,且,则与A中的元素对应的B中的元素为()A.B.C.D.【答案】D【解析】将x=-2,y=1代入对应法则即可得到B中的元素.【详解】∵映射f:A→B中,且f:(x,y)→(x﹣y,x+y),∴将A中的元素(-2,1)代入对应法则得x-y=-2-1=-3,x+y=-2+1=-1,故与A中的元素对应的B中的元素为(﹣3,-1)故选:D.【点睛】本题考查映射概念的应用,属于基础题.5.设集合,,对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示( )A.B.C.D.【答案】A【解析】因为集合A={x|x参加自由泳的运动员},B={x|x参加蛙泳的运动员}所以“既参加自由泳又参加蛙泳的运动员”用集合运算表示为A∩B故选:A6.已知集合,,那么()A.B.C.D.【答案】B【解析】解出集合B,利用交集的运算求解即可得到答案.【详解】,,则故选:B【点睛】本题考查集合的交集运算,属于简单题.7.集合, , 又则有()A.B.C.D.任一个【答案】B【解析】试题分析:因为集合为偶数集,为奇数集,,,所以为奇数,为偶数,所以为奇数,所以.故选B.【考点】元素与集合的关系.8.下列各组函数是同一函数的是()①与;②与;③ 与;④与.A.①③B.①④C.①②D.②④【答案】D【解析】根据相同函数对定义域和解析式的要求,依次判断各个选项即可.【详解】①与的对应法则不同∴f(x)与g(x)不是同一函数;②与定义域和对应法则相同,故是同一函数;③f(x)的定义域为R,函数g(x)的定义域为,故不是同一函数;④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1对应法则和定义域相同,故是同一函数.综上是同一函数的是②④.故选:D.【点睛】本题考查利用函数的三要素判定函数是否是同一函数,事实上只要具备定义域与对应法则相同即可.9.下列表述中错误的是()A.若,则B.若,则C.D.【答案】C【解析】试题分析:由题;A..正确。
专题01 平面向量的概念一、单选题1.下列说法正确的是A .单位向量都相等B .若a b ≠,则a b ≠C .若a b =,则//a bD .若a b ≠,则a b ≠ 【试题来源】山西省忻州市第一中学北校2019-2020学年高一下学期3月月考【答案】D【分析】根据向量的概念,向量的两个要素:大小和方向性,即可判断各选项.【解析】对于A ,单位向量的大小都相等,但方向不一定相同,所以单位向量不一定都相等,所以A 错误;对于B ,两个向量不相等,可以大小相等,方向不同,因而当a b ≠时可能a b =,所以B 错误; 对于C ,两个向量的模相等,但方向可以不同,因而当a b =时a 和b 不一定平行,所以C 错误;对于D ,若两个向量的模不相等,则两个向量一定不相同,所以若a b ≠,则a b ≠成立,所以D 正确.综上可知,D 为正确选项,故选D 【名师点睛】本题考查了向量的概念,向量的两个要素:大小和方向性,属于基础题. 2.给出下列四个说法:①若||0a =,则0a =;②若||||a b =,则a b =或a b =-;③若//a b ,则||||a b =;④若//a b ,//b c ,则//a c .其中错误的说法有A .1B .2C .3D .4【试题来源】安徽省六安市第一中学2019-2020学年高一上学期期末(文)【答案】D【解析】①只有零向量的模是0,因此应有0a =,不是0,错;②模相等的向量方向不确定,不一定相同或相反,错;③两向量平行,只要方向相同或相反或有一个为零向量,模不作要求,错;④当0b =时,,a c 不一定共线,错.故选D .【名师点睛】本题考查向量的概念,掌握向量的定义是解题关键.3.下列关于向量的命题正确的是A .若||||a b =,则a b =B .若||||a b =,则//a bC .若a b =,b c =,则a c =D .若//a b ,//b c ,则//a c【试题来源】2020-2021学年高一数学十分钟同步课堂专练(人教A 版必修4)【答案】C【分析】利用向量的知识对每一个选项逐一分析判断得解.【解析】A . 若||||a b =,则,a b 不一定相等,因为向量是既有大小,又有方向的,||||a b =只能说明向量的大小相等,不能说明方向相同,所以该选项错误;B . 若||||a b =,则,a b 不一定平行,所以该选项错误;C . 若a b =,b c =,则a c =,所以该选项是正确的;D . 若//a b ,//b c ,则//a c 错误,如:=0b ,,a c 都是非零向量,显然满足已知,但是不一定满足//a c ,所以该选项错误.故选C【名师点睛】本题主要考查平面向量的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.4.下列命题正确的是A .若||0a =,则0a =B .若||||a b =,则a b =C .若||||a b =,则//a bD .若//a b ,则a b =【试题来源】2020-2021学年【补习教材寒假作业】高一数学(人教A 版2019)【答案】A【分析】根据零向量的定义,可判断A 项正确;根据共线向量和相等向量的定义,可判断B ,C ,D 项均错.【解析】模为零的向量是零向量,所以A 项正确;||||=时,只说明向,a b的长度相等,无法确定方向,a b所以B,C均错;a b 时,只说明,a b方向相同或相反,没有长度关系,不能确定相等,所以D错.故选A.【名师点睛】本题考查有关向量的基本概念的辨析,属于基础题.5.下列说法中,正确的个数是①时间、摩擦力、重力都是向量;②向量的模是一个正实数;③相等向量一定是平行向量;④向量a→与b→不共线,则a→与b→都是非零向量A.1B.2C.3D.4【试题来源】湖北省武汉市第六中学2018-2019学年高一下学期2月月考【答案】B【分析】根据向量的相关概念,逐项判定,即可得出结果.【解析】①时间没有方向,不是向量,摩擦力,重力都是向量,故①错误;②零向量的模为零,故②错;③相等向量的方向相同,模相等,所以一定是平行向量,故③正确;④零向量与任意向量都共线,因此若向量a→与b→不共线,则a→与b→都是非零向量,即④正确.故选B.【名师点睛】本题主要考查向量有关命题的判定,熟记向量的相关概念即可,属于基础题型.6.下列说法中正确的是A.平行向量就是向量所在的直线平行的向量B.长度相等的向量叫相等向量C.零向量的长度为零D.共线向量是在一条直线上的向量【试题来源】吉林省长春市第二十九中学2019-2020学年高一下学期线上检测数学试卷【答案】C【分析】直接根据共线向量、相等向量、零向量的概念判断即可.【解析】平行向量也叫共线向量,是指方向相同或相反的两个向量,另外规定零向量与任意向量平行,故A,D错;相等向量是指长度相等、方向相同的向量,故B错;长度为零的向量叫零向量,故C对;故选C.【名师点睛】本题主要考查平面向量的有关概念,属于基础题.7.下列命题正确的是A.若,a b都是单位向量,则a b=B.两个向量相等的充要条件是它们的起点和终点都相同C.向量AB与BA是两个平行向量A B C D四点是平行四边形的四个顶点D.若AB DC=,则,,,【试题来源】2021年新高考数学一轮复习讲练测【答案】C【分析】利用单位向量的定义可判断A;利用向量相等的定义可判断B;利用平行向量的定义可判断C;利用向量相等的定义可判断D.【解析】对于A,单位长度为1的向量为单位向量,,a b都是单位向量,但方向可能不同,故A不正确;对于B,模相等,方向相同的向量为相等向量,故B不正确;对于C,向量AB与BA为相反向量,所以两个为平行向量,故C正确;A B C D四点在同一条直线上,对于D,AB DC=,若,,,A B C D 不能构成平行四边形,故D不正确;故选C,,,【名师点睛】本题考查了向量的基本概念,需理解单位向量、相等向量、共线向量的概念,属于基础题.8.下列说法错误的是A.向量OA的长度与向量AO的长度相等B.零向量与任意非零向量平行C.长度相等方向相反的向量共线D.方向相反的向量可能相等【试题来源】2021年新高考数学一轮复习讲练测【答案】D【分析】向量有方向、有大小,平行包含同向与反向两种情况.向量相等意味着模相等且方向相同,根据定义判断选项.【解析】A.向量OA与向量AO的方向相反,长度相等,故A正确;B .规定零向量与任意非零向量平行,故B 正确;C .能平移到同一条直线的向量是共线向量,所以长度相等,方向相反的向量是共线向量,故C 正确;D .长度相等,方向相同的向量才是相等向量,所以方向相反的向量不可能相等,故D 不正确.【名师点睛】本题主要考查向量的基本概念及共线(平行)向量和相等向量的概念,属于基础概念题型.9.有下列命题:①若向量a 与b 同向,且||||a b >,则a b >;②若四边形ABCD 是平行四边形,则AB CD =;③若m n =,n k =,则m k =;④零向量都相等.其中假命题的个数是A .1B .2C .3D .4【试题来源】2021年高考数学复习一轮复习笔记【答案】C【分析】分别根据每个命题的条件推论即可判断.【解析】对于①,因为向量是既有大小又有方向的量,不能比较大小,故①是假命题; 对于②,在平行四边形ABCD 中,,C AB D 是大小相等,方向相反的向量,即AB CD =-,故②是假命题;对于③,显然若m n =,n k =,则m k =,故③是真命题;对于④,因为大小相等,方向相同的向量是相等向量,而零向量的方向任意,故④是假命题.故选C .【名师点睛】本题主要考查平面向量的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.10.下列说法中正确的是.A .零向量没有方向B .平行向量不一定是共线向量C .若向量a 与b 同向且a b =,则a b =D .若向量a ,b 满足a b >且a 与b 同向,则a b >【试题来源】吉林省松原市扶余市第一中学2019-2020学年高一下学期期中考试【答案】C【分析】由零向量,平行向量,相等向量的定义逐一判断可得选项.【解析】对于A ,零向量的方向是任意的,故A 错误;对于B ,平行向量就是共线向量,故B 错误;对于C ,由相等向量的定义:两向量的方向相同,大小相等可知,C 正确;对于D ,两个向量不能比较大小,故D 错误.故选C .【名师点睛】本题考查向量的基本定义,在判断关于向量的命题时注意向量的方向,属于基础题.11.以下说法正确的是A .若两个向量相等,则它们的起点和终点分别重合B .零向量没有方向C .共线向量又叫平行向量D .若a 和b 都是单位向量,则a b =【试题来源】2020-2021学年高一数学十分钟同步课堂专练(人教A 版必修4)【答案】C【分析】根据向量的基本概念逐一判断即可.【解析】只要两个向量的方向相同,模长相等,这两个向量就是相等向量,故A 错误, 零向量是没有方向的向量,B 错误; 共线向量是方向相同或相反的向量,也叫平行向量,C 正确;若a ,b 都是单位向量,两向量的方向不定,D 错误;故选C .12.给出下列命题:①零向量的长度为零,方向是任意的;②若,a b 都是单位向量,则a b =;③向量AB 与BA 相等.则所有正确命题的序号是A .①B .③C .①③D .①②【试题来源】2020-2021学年高一数学单元测试定心卷(人教B 版2019必修第二册)【答案】A【分析】根据零向量和单位向量的概念可以判定①②,注意相等向量不仅要长度相等,方向要相同,可否定③.【解析】根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向AB 与BA 互为相反向量,故③错误.故选A .【名师点睛】本题考查零向量和单位向量的概念,相等向量的概念,属概念辨析,正确掌握概念即可.13.下列关于平面向量的命题中,正确命题的个数是(1)长度相等、方向相同的两个向量是相等向量;(2)平行且模相等的两个向量是相等向量;(3)若a b ≠,则a b →→≠;(4)两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3 【答案】B【分析】根据相等向量的有关概念判断.【解析】由相等向量的定义知(1)正确;平行且模相等的两个向量也可能是相反向量,(2)错;方向不相同且长度相等的两个是不相等向量,(3)错;相等向量只要求长度相等、方向相同,而表示两个向量的有向线段的起点不要求相同,(4)错,所以正确答案只有一个.故选B .14.下列命题中,正确命题的个数是①单位向量都共线;②长度相等的向量都相等;③共线的单位向量必相等;④与非零向量a 共线的单位向量是||a a .A .0B .1C .2D .3【试题来源】天津市和平区耀华中学2019-2020学年高一下学期期中【答案】A【分析】根据单位向量,相等向量,共线向量的定义进行判断即可.【解析】因为不同的单位向量的方向可能不相同,所以①错误;相反向量的长度相等,但方向相反,则②错误;因为共线的单位向量方向可能相反,所以它们不一定相等,则③错误;与非零向量a 共线的单位向量是||a a 或||a a -,则④错误;故选A 【名师点睛】本题主要考查了对单位向量,相等向量,共线向量的辨析,属于基础题. 15.有下列命题:①若a b →→=,则a b →→=;②若AB DC →→=,则四边形ABCD 是平行四边形;③若m n →→=,n k →→=,则m k →→=;④若//a b →→,//b c →→,则//a c →→.其中,假命题的个数是A .1B .2C .3D .4 【试题来源】宁夏育才中学2019-2020学年高一5月教学质量检测 【答案】C 【分析】根据平面向量的概念及向量平行的相关知识逐个判断即可.【解析】a b →→=,则a b →→,的方向不确定,则a b →→,不一定相等, ①错误;若AB DC →→=,则,AB DC →→的方向不一定相同,所以四边形ABCD 不一定是平行四边形,②错误;若m n →→=,n k →→=,则m k →→=,③正确;若//a b →→,//b c →→,则0b →→=时,//a c →→不一定成立,所以④错误.综上,假命题的是①②④,共3个.故选C .【名师点睛】本题主要考查平面向量的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.16.下列说法不正确的是A .平行向量也叫共线向量B .两非零向量平行,则它们所在的直线平行或重合C .若a 为非零向量,则a a是一个与a 同向的单位向量 D .两个有共同起点且模相等的向量,其终点必相同【试题来源】安徽省六安市第一中学2019-2020学年高一上学期期末(理)【答案】D【分析】根据共线向量的定义判断AB ;由a a 的模长为1,10a >得出a a是一个与a 同向的单位向量;举例排除D .【解析】由于任一组平行向量都可以平移到一条直线上,则平行向量也叫共线向量,A 正确; 两非零向量平行,则它们所在的直线平行或重合,由共线向量的定义可知,B 正确; a a 的模长为1,10a >,则a a是一个与a 同向的单位向量,C 正确; 从同一点出发的两个相反向量,有共同的起点且模长相等,但终点不同,D 错误;故选D【名师点睛】本题主要考查了共线向量概念的辨析,属于基础题.17.下列四个命题正确的是A .两个单位向量一定相等B .若a 与b 不共线,则a 与b 都是非零向量C .共线的单位向量必相等D .两个相等的向量起点、方向、长度必须都相同【试题来源】辽宁省阜新市第二高级中学2019-2020学年高一下学期第一次学考【答案】B【分析】由相等向量、共线向量的概念逐一核对四个选项得答案.【解析】两个单位向量一定相等错误,可能方向不同;若a与b不共线,则a与b都是非零向量正确,原因是零向量与任意向量共线;共线的单位向量必相等错误,可能是相反向量;两个相等的向量的起点、方向、长度必须相同错误,原因是向量可以平移.故选B.【名师点睛】本题考查命题的真假判断与运用,考查了平行向量、向量相等的概念,属于基础题.18.有下列说法:①若两个向量不相等,则它们一定不共线;②若四边形ABCD是平行四边形,则AB CD=;③若//a c;b c,则//a b,//AB CD.④若AB CD=,则AB CD且//其中正确说法的个数是A.0B.1C.2D.3【试题来源】2021年新高考数学一轮专题复习(新高考专版)【答案】A【分析】对于①,根据向量相等的定义以及向量共线的定义可知结论不正确;对于②,根据向量相等的定义可知结论不正确;对于③,找特殊向量,当0b=时,可知结论不正确;对于④,AB与CD不一定平行,AB与CD可能在一条直线上,可知结论不正确.【解析】对于①,当两个向量不相等时,可能方向相反,所以可能共线,故①不正确;对于②,若四边形ABCD是平行四边形,则AB DC=,故②不正确;对于③,当0b=时,a与c可以不共线,故③不正确;AB CD或AB与CD在一条直线上”,故④不对于④,“若AB CD=,则AB CD且//正确.故选A.【名师点睛】本题考查了向量相等的定义,考查了向量共线的定义,属于基础题.19.下列说法正确的是A .单位向量都相等B .若//a b ,则a b =C .若a b =,则a b =D .若λa b ,(0b ≠),则a 与b 是平行向量 【试题来源】山西省大同市灵丘县豪洋中学2019-2020学年高一下学期期中 【答案】D 【分析】根据相等向量,共线向量的定义判断可得;【解析】对于A ,单位向量的模长相等,但方向不一定相同,所以A 错误;对于B ,当//a b 时,其模长a 与b 可能相等或a b λ=0λ≥,或b a λ=0λ≥,所以B 错误;对于C ,当a b =时,不一定有a b =,因为a b =要a b =且a 与b 同向,所以C 错误; 对于D ,λa b ,(0b ≠),则a 与b 是平行向量,D 正确.故选D . 【名师点睛】本题考查了平面向量的基本概念应用问题,属于基础题.20.如图所示,在正ABC 中,D ,E ,F 均为所在边的中点,则以下向量中与ED 相等的是A .EFB .BEC .FBD .FC【试题来源】2020-2021学年【补习教材寒假作业】高一数学(人教A 版2019)【答案】D【分析】由题意先证明//DE CB 且12DE CB =,再利用中点找出所有与向量ED 相等的向量【解析】DE 是ABC 的中位线,//DE CB ∴且12DE CB =, 则与向量ED 相等的有BF ,FC .故选D .【名师点睛】本题考查了相等向量的定义,利用中点和中位线找出符合条件的所求的向量,属于基础题.21.已知a 、b 是平面向量,下列命题正确的是A .若||||1a b ==,则a b =B .若||||a b <,则a b <C .若0a b +=,则//a bD .零向量与任何非零向量都不共线【试题来源】备战2021年新高考数学一轮复习考点微专题【答案】C【分析】A ,根据向量的定义判断;B .向量不能比较大小判断;C ,若0a b +=,则b a =-,由共线向量定理判断;D ,由零向量与任一向量共线判断.【解析】对于A ,向量方向不相同则向量不相等,选项A 错误;对于B .向量不能比较大小,选项B 错误;对于C ,若0a b +=,则b a =-,//b a ∴,选项C 正确;对于D ,零向量与任一向量共线,选项D 错误.故选C .【名师点睛】本题主要考查平面向量的概念及线性运算,还考查了理解辨析的能力,属于基础题.22.下列命题中正确的是A .若||a b |=|,则a b =B .若a b ≠,则a b ≠C .若||a b |=|,则a 与b 可能共线D .若a b ≠,则a 一定不与b 共线【试题来源】考点18 平面向量的概念及其线性运算-备战2021年高考数学(理)一轮复习考点一遍过【答案】C【分析】利用共线向量、模的计算公式,即可得出.【解析】因为向量既有大小又有方向,所以只有方向相同、大小(长度)相等的两个向量才相等,因此A 错误;两个向量不相等,但它们的模可以相等,故B 错误;无论两个向量的模是否相等,这两个向量都可能共线,故C正确,D错误.故选C【名师点睛】本题考查了共线向量、模的计算公式,考查了理解能力,属于基础题.23.下列关于向量的概念叙述正确的是A.方向相同或相反的向量是共线向量B.若//a ca b,//b c,则//C.若a和b都是单位向量,则a b=D.若两个向量相等,则它们的起点和终点分别重合【试题来源】山西省2019-2020学年高一下学期期末(理)【答案】A【分析】由向量共线的定义,可知A正确;当0b=时,可知B不正确;单位向量,方向不定,不相等;向量相等即大小和方向相同即可.【解析】由向量共线的定义可知,A正确;当0b=时,可知B不正确;单位向量,方向不确定,故C不正确;向量是自由的,向量相等,只需大小和方向相同即可,不需起点终点重合,故D不正确.故选A【名师点睛】本题考查了向量的定义和基本性质,考查了理解辨析能力,属于基础题目.24.已知向量a与b共线,下列说法正确的是A.a b=或a b=-B.a与b平行C.a与b方向相同或相反D.存在实数λ,使得λa b【试题来源】安徽省合肥市庐江县2019-2020学年高一下学期期末【答案】B【分析】根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果.【解析】向量a与b共线,不能判定向量模之间的关系,故A错;向量a与b共线,则a与b平行,故B正确;a为零向量,则满足a与b共线,方向不一定相同或相反;故C错;当0a ≠,0b =时,满足a 与b 共线,但不存在实数λ,使得λa b ,故D 错.故选B .【名师点睛】本题主要考查向量共线的有关判定,属于基础题型.25.下列关于平面向量的命题中,正确命题的个数是①任一向量与它的相反向量都不相等;②长度相等、方向相同的两个向量是相等向量;③平行且模相等的两个向量是相等向量;④若a b ≠,则||||a b ≠;⑤两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3【答案】B【分析】根据平面向量的基本概念,对选项中的命题进行分析、判断正误即可.【解析】零向量与它的相反向量相等,①错;由相等向量的定义知,②正确;两个向量平行且模相等,方向不一定相同,故不一定是相等向量,例如,在平行四边形ABCD 中,//AB CD ,且=AB CD ,但AB CD ≠,故③错; a b ≠,可能两个向量模相等而方向不同,④错;两个向量相等,是指它们方向相同,大小相等,向量可以自由移动,故起点和终点不一定相同,⑤错.故选B .26.判断下列命题:①两个有共同起点而且相等的非零向量,其终点必相同; ②若//a b ,则a 与b 的方向相同或相反; ③若//a b 且//b c ,则//a c ; ④若a b =,则2a b >.其中正确的命题个数为A .0B .1C .2D .3【试题来源】四川省凉山州2019-2020学年高一下学期期末考试(文)【答案】B【分析】根据相等向量、共线向量、零向量等知识确定正确命题的个数.【解析】①,两个有共同起点而且相等的非零向量,其终点必相同,根据相等向量的知识可知①是正确的.②,若//a b ,则可能b 为零向量,方向任意,所以②错误.③,若//a b 且//b c ,则可能b 为零向量,此时,a c 不一定平行,所以③错误.④,向量既有长度又有方向,所以向量不能比较大小,所以④错误.故正确的命题有1个.故选B【名师点睛】本题主要考查相等向量、共线向量、零向量等知识,属于基础题. 27.设,a b 是非零向量,则“2a b =”是“a a b b =” 成立的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【试题来源】山东省济南市莱芜第一中学2020-2021学年高三上学期11月月考【答案】B 【分析】结合共线向量、单位向量的知识,以及充分、必要条件的概念,判断出正确选项.【解析】依题意,a b 是非零向量,a a 表示与a 同向的单位向量,b b 表示与b 同向的单位向量,当2a b =时,,a b 的方向相同,所以a a b b =, 当a a b b =时,,a b 的方向相同,但不一定有2a b =,如3a b =也符合, 所以“2a b =”是“a a b b=” 成立的充分不必要条件.故选B【名师点睛】本题主要考查共线向量的知识、单位向量的知识,考查充分、必要条件的判断,属于基础题.28.若四边形ABCD 是矩形,则下列说法不正确的是A .AB →与CD →共线B .AC →与BD →共线 C .AD →与CB →模相等,方向相反 D .AB →与CD →模相等【试题来源】2020-2021学年【补习教材寒假作业】高一数学(苏教版)【答案】B【分析】根据向量的共线及模的概念即可求解.【解析】因为四边形ABCD 是矩形,所以AB →与CD →共线,AD →与CB →模相等,方向相反,AB →与CD →模相等正确, AC →与BD →共线错误,故选B29.设,a b →→是两个平面向量,则“a b →→=”是“||||a b →→=”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【试题来源】浙江省金华市曙光学校2020-2021学年高二上学期期中【答案】A【分析】根据充分条件、必要条件的定义及向量的概念判断即可.【解析】因为a b →→=,则一定有||||a b →→=,而||||a b →→=推不出a b →→=,所以“a b →→=”是“||||a b →→=”的充分不必要条件,故选A30.下列关于向量的结论:(1)若||||a b =,则a b =或a b =-;(2)向量a 与b 平行,则a 与b 的方向相同或相反;(3)起点不同,但方向相同且模相等的向量是相等向量;(4)若向量a 与b 同向,且||||a b >,则a b >.其中正确的序号为A .(1)(2)B .(2)(3)C .(4)D .(3) 【试题来源】专题07 平面向量的实际背景及基本概念(重点练)-2020-2021学年高一数学十分钟同步课堂专练(人教A 版必修4)【答案】D【分析】根据向量的定义可判断(1)(4)错误,向量,a b 都是零向量时,由向量,a b 平行得不出方向相同或相反,从而判断(2)错误,根据相等向量的定义可判断(3)正确.【解析】(1)若||||a b =,由于,a b 的方向不清楚,故不能得出a b =或a b =-,故(1)不正确.(2)由零向量与任何向量平行,当向量a 与b 平行时,不能得出a 与b 的方向相同或相反,故(2)不正确.(3)由向量的相等的定义,起点不同,但方向相同且模相等的向量是相等向量;故(3)正确.(4)向量不能比较大小,故(4)不正确.故选D .二、多选题1.下面的命题正确的有.A .方向相反的两个非零向量一定共线B .单位向量都相等C .若a ,b 满足a b >且a 与b 同向,则a b >D .“若A 、B 、C 、D 是不共线的四点,且AB DC =”⇔“四边形ABCD 是平行四边形”【试题来源】备战2021年新高考数学一轮复习考点一遍过【答案】AD【分析】根据向量的概念:方向相反或相同的非零向量共线,模相等且方向相同的向量相等,向量除了相等的情况不能比较大小,即可判断选项正误;【解析】方向相反的两个非零向量必定平行,所以方向相反的两个非零向量一定共线,故A 正确;单位向量的大小相等,但方向不一定相同,故B 错误;向量是有方向的量,不能比较大小,故C 错误;A 、B 、C 、D 是不共线的点,AB DC =,即模相等且方向相同,即平行四边形ABCD 对边平行且相等,反之也成立,故D 正确.故选AD【名师点睛】本题考查了向量的基本概念,需要理解向量共线、相等的条件,属于简单题;2.若四边形ABCD 是矩形,则下列命题中正确的是A .,AD CB 共线B .,AC BD 相等 C .,AD CB 模相等,方向相反 D .,AC BD 模相等【试题来源】2020-2021学年高一数学单元测试定心卷(人教B 版2019必修第二册)【答案】ACD【分析】根据向量的加法和减法的几何意义(平行四边形法则),结合矩形的判定与性质进行分析可解.【解析】因为四边形ABCD 是矩形,,ADBC AC BD ∴=‖, 所以,AD CB 共线,,AC BD 模相等,故A 、D 正确;因为矩形的对角线相等,所以|AC|=|BD|,,AC BD 模相等,但的方向不同,故B 不正确;|AD|=|CB|且AD ∥CB ,所以,AD CB 的模相等,方向相反,故C 正确.【名师点睛】本题考查向量的共线,相等,模,向量的加减法的几何意义,属基础题,根据向量的加减法的平行四边形法则和矩形的性质综合判定是关键.3.在下列结论中,正确的有A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等【试题来源】江苏省淮安市涟水县第一中学2019-2020学年高一上学期第二次月考【答案】BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【解析】A . 若两个向量相等,它们的起点和终点不一定不重合,故错误; B . 平行向量又称为共线向量,根据平行向量定义知正确;C . 相等向量方向相同,模相等,正确;。
2018-2019学年湖北省武汉市外国语学校高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 过点M(1,2)的直线l与圆C:(x-2)2+y2=9交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程为()(A)x=1 (B)y=1(C)x-y+1=0 (D)x-2y+3=0参考答案:D2. 下列函数中,不是奇函数的是()A.y=1﹣x2 B.y=tanx C.y=sin2x D.y=5x﹣5﹣x参考答案:A【考点】函数奇偶性的判断.【专题】函数思想;综合法;函数的性质及应用.【分析】根据奇函数和偶函数的定义即可判断每个选项函数的奇偶性,从而找出不是奇函数的选项.【解答】解:A.y=1﹣x2是偶函数,不是奇函数,∴该选项正确;B.y=tanx的定义域为{,k∈Z},且tan(﹣x)=﹣tanx;∴该函数为奇函数,∴该选项错误;C.y=sin2x的定义域为R,且sin(﹣2x)=﹣sin2x;∴该函数为奇函数,∴该选项错误;D.y=5x﹣5﹣x的定义域为R,且5﹣x﹣5﹣(﹣x)=5﹣x﹣5x=﹣(5x﹣5﹣x);∴该函数为奇函数,∴该选项错误.故选:A.【点评】考查奇函数和偶函数的定义,以及判断一个函数奇偶性的方法和过程,三角函数的诱导公式.3. 圆与圆的位置关系为()A.内切B.相交C.外切D.相离参考答案:4. 在中,边所对的角分别为,若,则( )A. B. C.D.参考答案:C5. 已知A(1,0,2),B(1,﹣3,1),点M在z轴上且到A、B两点的距离相等,则M点坐标为()A.(﹣3,0,0)B.(0,﹣3,0)C.(0,0,﹣3)D.(0,0,3)参考答案:C【考点】两点间的距离公式.【专题】计算题.【分析】点M(0,0,z),利用A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,建立方程,即可求出M点坐标【解答】解:设点M(0,0,z),则∵A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,∴∴z=﹣3∴M点坐标为(0,0,﹣3)故选C.【点评】本题考查空间两点间的距离,正确运用空间两点间的距离公式是解题的关键.6. 要得到函数y=3sin(2x-)的图象,只要将函数y=3sin2x的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位参考答案:D略7. 已知函数是R上的增函数,则a的取值范围是()A.B.C.D.参考答案:B8. 已知m=0.95.1,n=5.10.9,p=log0.95.1,则m、n、p的大小关系为()A.m<n<p B.n<p<m C.p<m<n D.p<n<m参考答案:C9. (5分)方程log2x+x=0的解所在的区间为()A.(0,)B.(,1)C.(1,2)D.[1,2]参考答案:B考点:函数零点的判定定理.专题:函数的性质及应用.分析:设函数f(x)=log2x+x,则根据函数零点的判定讨论,即可得到结论.解答:设函数f(x)=log2x+x,则函数f(x)在(0,+∞)上为增函数,则f()=log2+=﹣1+=﹣<0,f(1)=log21+1=1>0,则f()f(1)<0,即函数f(x)零点所在的区间为(,1),则方程log2x+x=0的解所在的区间为(,1),故选:B.点评:本题主要考查函数零点区间的判定,利用方程和函数的关系,结合函数零点存在的判定条件是解决本题的关键.10. 函数的单调减区间是()A.(-∞,2) B.(2,+∞)C.(2,5) D.(-1,2)参考答案:C由﹣x2+4x+5≥0可解得﹣1≤x≤5,结合二次函数的性质和复合函数的单调性可得:函数y= 的单调减区间是(2,5)故选:C.二、填空题:本大题共7小题,每小题4分,共28分11. 函数的定义域是_______________参考答案:[0,1]12. 不等式的解集是__.参考答案:【分析】根据绝对值不等式的解法求解即可.【详解】由得,故解集为故答案为:【点睛】本题主要考查绝对值不等式的解法,属于基础题型.13. 式子的值为_________参考答案:略14. 函数的单调减区间为__________;参考答案:略15. 函数的定义域是 .参考答案:略16. 在矩形ABCD中,AB=2,BC=1,E为BC的中点,若F为该矩形内(含边界)任意一点,则的最大值为__________.参考答案:17. 三条直线能围成三角形,则的取值范围是.参考答案:分三直线两两互相平行或三直线相交于一点两类情形考虑,可分别求得,即实数的取值范围是.三、解答题:本大题共5小题,共72分。
武汉六中2018-2019学年度高一上学期第1次月考数学试题
(考试时间:120分钟 试卷满分:150分)
一、单选题(每题5分,共60分)
1.设集合,,,,32|321xxQP则下列结论正确的是
A.QP B.PQP C.PQP D.QQP
2.已3210,,,A,且A中至少有一个偶数,则这样的集合A共有
A.11个 B.12个 C.15个 D.16个
3.下列叙述正确的是
A.方程0122xx的根构成的集合为11,
B.03012|02|2<>xxRxxRx
C.集合65|xyyxyxM,,表示的集合是32,
D.集合531,,与集合153,,是不同的集合
4.在下列四组函数中,xf与xg表示同一函数的是
A.1112xxxgxxf, B.11111<,,,xxxxxgxxf
C.011xxgxf, D.233xxgxxf,
5.设xf的定义域为R,当,0x时函数xf是减函数,则14.33fff,π,的
大小关系为
A.314.3fff>π B.314.3fff<<π
C.314.3fff>>π D.14.33fff<<π
6.函数322xxy的增区间是
A.13, B.11, C.3, D.,1
7.函数2944xxy的奇偶性是
A.奇函数 B.偶函数
C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数
8.函数xmxxf(其中Rm)的图像不可能的是
9.设函数xgxf,分别是定义在R上的偶函数和奇函数,且,12xxxgxf则
1f
A.1 B.2 C.3 D.4
10.已知函数1152>,,xxaxaxxxf是R上的增函数,则a的取值范围是
A.03<a B.23a C.2a D.0<a
11.若函数432xxxf的定义域为m,0,值域为4425,,则m的取值范围是
A.40, B.423, C.323, D.,23
12.定义在R上的函数xf对任意210xx<<都有12121<xxxfxf,且函数xfy的图象
关于原点对称,若22f,则不等式0>xxf的解集是
A.2002,, B.,,22
C.202,, D.,,202
二、填空题(每题5分,共20分)
13.函数xf是定义在上的奇函数,当0>x时,xxxf22,则0x时,xf______.
14.设偶函数xf的定义域为R,函数xf在,0上为单调函数,则满足xfxf21
的所有x的取值集合为_______.
15.已知函数,<,,02012xxxxxf则满足4322xfxxf>的x取值范围是_________.
16.已知函数xf是定义在R上的奇函数,当0>x时,,aaxxxf2其中,Ra若xf
的值域是R,则a的取值范围是____________.
三、解答题(共70分)
17.(10分)
已知全集,>0|xxU集合axaxCxxBxxA<<,<<,<5|102|73|.
(1)求
BACBA
U
,
;
(2)若,BAC求a的取值范围。
18.(12分)设函数axxaxf534为定义在,,00上的奇函数。
(1)求实数a的值;
(2)写出函数xf的单调区间,并用定义法证明xf在,0上的单调性;
19.(12分)函数xf对任意的以Rba,都有1bfafbaf,并且当0>x时,
1>xf
(1)判断函数xf是否为奇函数;
(2)证明:xf在R上是增函数;
(3)解不等式1232<mmf.
20.已知函数12bxaxxf(ba、为实数),.00<,>,,xxfxxfxFRx
设0000>,>,<,>anmnm且xf为偶函数,判断nFmF是否恒大于零?若是给
出证明,不是则说明理由.
21.(12分)设,,,,ybaxyxEZba63|2点,,E12但,,E01E23,.
(1)求ba、的值;
(2)若,,,,1121|63|22xcxcyyBRxybaxyA且,BA,
求c的取值集合。
22.(12分)已知定义在R上的函数22xxf.
(1)若不等式322xftxf<对一切20,x恒成立,求实数t的取值范围;
(2)设,xfxxg求函数xg在00>,mm上的最大值m的表达式。