典型激光器介绍
- 格式:ppt
- 大小:8.17 MB
- 文档页数:46
He-Ne激光器谐振腔调整走进He-Ne激光器气体激光器的优点:1. 工作物质均匀性好,输出激光光束质量好2. 谱线宽,从远红外到紫外3. 输出功率大,转换效率高(电光转换)4. 结构简单,成本低氦氖激光器的结构:工作物质:He-Ne气体(He为辅助气体),气压比为5:1-7:1谐振腔:一般用平凹腔,平面镜为输出镜,透过率约1%-2%,凹面镜为全反射镜泵浦系统:一般采用放电激励激光管结构:按谐振腔与放电管的放置方式分为内腔式﹑外腔式﹑半内腔式按阴极及贮气室的位置不同分为同轴式﹑旁轴式﹑单细管式He-Ne激光器的特点:典型谱线:632.8nm 1.15μm 3.39μm其他谱线:612nm 594nm 543nm优点:1. 光束质量好Θ<1mrad2.单色质量好,带宽<22Hz3.稳定性高功率稳定(<2%)频率稳定(<5×10-15)4.在可见光区He-Ne激光器的输出功率:He-Ne激光器属于以非均匀加宽为主但又不能忽略均匀加宽影响的综合加宽线型,按照综合加宽的情况计算其输出功率。
输出功率的稳定性:He-He激光器在工作过程中,输出功率会随时间做周期性的或随即的波动。
造成漂移的原因有:1 放电电流波动造成输出功率的波动;2谐振腔光轴与毛细管轴线相对位置发生变化引起功率波动;3纵模的变化引起输出功率的波动。
在只有少数几个纵模振荡的短腔激光器中,温度的变化或其他原因导致腔长发生了变化,谐振腔的纵模也要发生改变,将造成增益曲线的烧孔面积变化,从而引起输出功率的波动。
解决方法:1.外部控制的办法减小功率漂移;2.根据产生漂移的原因,在器件结构和工艺上采取改进措施;He-He激光器的频率特性:在适当的放电条件下,He-He激光器已经获得了100多条谱线。
其中最主要的是0.6328μm和3.39μm两条。
He-Ne的实验调整相对一般光源,激光具有单色性好的特点,也就是说,它具有非常窄的谱线宽度。
这样窄的谱线,不是受激辐射后自然形成的,而是受激辐射经过谐振腔等多种机制的作用和相互干涉后形成的。
氦氖激光器的波长氦氖激光器的波长氦氖激光器是一种常见的激光器,它使用氦和氖气体混合而成的等离子体作为工作介质,产生波长为632.8纳米的激光光束。
这种激光器具有许多重要的应用,如医学、通信、测量等领域,因此,掌握其波长非常重要。
下面,我们将详细介绍氦氖激光器的波长。
一、氦氖激光器的激发机制氦氖激光器是一种气体放电激光器,其工作介质和基本结构如下:1. 工作介质氦氖激光器的工作介质是氦和氖气体混合物。
其中,氖占总气体的0.1%到1.5%,氦气则是用来提供电流通道的。
当氦气被加热并受激发时,会发射出短波长的紫外线,这些紫外线能够激发氖原子的电子跃迁,从而激发氖气体发出激光光束。
2. 基本结构氦氖激光器的基本结构包括气体放电管、光学腔和高压电源等三部分。
其中,气体放电管是产生激光的核心部分,光学腔是激光波长和输出方向的控制器,高压电源则是提供电流加热气体和产生气体放电的能源。
二、氦氖激光器的波长氦氖激光器的典型波长为632.8纳米,其对应的光子能量为1.96电子伏特。
这种波长被称为“氦氖线”,是可见光的一种。
这种波长的光束不仅颜色美丽,而且光学性质非常优异,具有好的相干性、单色性和方向性等特点。
因此,在通讯和测量领域中被广泛应用。
除了典型的632.8纳米波长外,氦氖激光器还能够产生一系列其他波长的激光光束。
例如:1. 543.5纳米波长的激光光束,对应光子能量为2.28电子伏特,属于绿光。
2. 594.1纳米波长的激光光束,对应光子能量为2.08电子伏特,属于黄光。
3. 612.3纳米波长的激光光束,对应光子能量为2.03电子伏特,属于橙光。
4. 1.15微米波长的激光光束,对应光子能量为1.08电子伏特,属于近红外光。
以上这些波长的激光光束具有自己独特的特性,可以广泛应用于医学、生物科学、材料加工等领域。
三、总结氦氖激光器是非常重要的光学设备之一,具有优异的激光性能和重要的应用前景。
掌握其波长对于设计和应用氦氖激光器具有非常重要的意义。
激光器分类可以有两种方法对激光器进行分类。
一种是从激活媒质的物质状态面分类。
这样可分为气体、液体、固体和半导体激光器。
各类激光器各有特色。
气体激光器的单色性强,如氦—氖激光器的单色性比普通光源要高1亿倍,而且气体激光器工作物质种类繁多,因此可产生许多不同频率的激光。
但是,由于气体密度低,激光输出功率相应较小;固体激光器则正好相反,能量高,输出功率大,但工作物质种类较少,而且单色性差;液体激光器的最大特点是激光的波长可以在一定范围内连续变换。
这种激光器特别适合于对激光波长有着严格要求的场合;半导体激光器的特点则是体积小,重量轻,结构简单,但输出的功率较小,单色性也较差。
另一种分类方式是按激活媒质的粒子结构来分类,可以分为原子、离子、分子和自由电子激光器。
氦——氖激光器产生的激光是由氖原子发射的,红宝石激光器产生的激光则是由铬离子发射的。
另外还有二氧化碳分子激光器,它的频率可以连续变化。
而且可以覆盖很宽的频率范围。
各种激光器中激活媒质的方法也不尽相同。
一般来说可分为三种方法:使用高强度的光,从带电源来的电子,以及较少用的第三种方法——核辐射。
光纤通信所用的激光器在光纤通信中,所用的光源有三种:半导体激光器、半导体发光二极管和非半导体激光器。
在实际的光纤通信系统中,通常选用前两种。
而非半导体激光器,如气体激光器、固体激光器等,虽然它们是最早制成的相干光源,但由于其体积太大,不适宜与体积小的光纤配合使用,只用于一些特殊场所。
半导体激光器半导体激光器即为激光二极管,记作LD。
它是前苏联科学家H.Γ.巴索夫于1960年发明的。
半导体激光器的结构通常由P层、N层和形成双异质结的有源层构成。
半导体激光器的发光是利用光的受激辐射原理。
处于粒子数反转分布状态的大多数电子在受到外来入射光子激励时,会同步发射光子,受激辐射的光子和入射光子不仅波长相同,而且相位、方向也相同。
这样由弱的入射光激励而得到了强的发射光,起到了光放大作用。
常见激光技术总结目前常见的激光器按工作介质分气体激光器、固体激光器、半导体激光器、光纤激光器和染料激光器5大类,近来还发展了自由电子激光器。
大功率激光器通常都脉冲方式输出已获得较大的峰值功率。
单脉冲激光指的是几分钟才输出一个脉冲的激光,重频激光指的是每分钟输出几次到每秒输出数百次甚至更高的激光。
一、气体激光器1.He-Ne激光器:典型的惰性气体原子激光器,输出连续光,谱线有632.8nm(最常用),1015nm,3390nm,近来又向短波延伸。
这种激光器输出地功率最大能达到1W,但光束质量很好,主要用于精密测量,检测,准直,导向,水中照明,信息处理,医疗及光学研究等方面。
2.Ar离子激光器:典型的惰性气体离子激光器,是利用气体放电试管内氩原子电离并激发,在离子激发态能级间实现粒子数反转而产生激光。
它发射的激光谱线在可见光和紫外区域,在可见光区它是输出连续功率最高的器件,商品化的最高也达30-50W。
它的能量转换率最高可达0.6%,频率稳定度在3E-11,寿命超过1000h,光谱在蓝绿波段(488/514.5),功率大,主要用于拉曼光谱、泵浦染料激光、全息、非线性光学等研究领域以及医疗诊断、打印分色、计量测定材料加工及信息处理等方面。
3.CO2激光器:波长为9~12um(典型波长10.6um)的CO2激光器因其效率高,光束质量好,功率范围大(几瓦之几万瓦),既能连续又能脉冲等多优点成为气体激光器中最重要的,用途最广泛的一种激光器。
主要用于材料加工,科学研究,检测国防等方面。
常用形式有:封离型纵向电激励二氧化碳激光器、TEA二氧化碳激光器、轴快流高功率二氧化碳激光器、横流高功率二氧化碳激光器。
4.N2分子激光器:气体激光器,输出紫外光,峰值功率可达数十兆瓦,脉宽小于10ns,重复频率为数十至数千赫,作可调谐燃料激光器的泵浦源,也可用于荧光分析,检测污染等方面。
5.准分子激光器:以准分子为工作物质的一类气体激光器件。
DFB 蝶形封装激光器1,描述分布式反馈特定波长激光器, 波长1550±2nm,输出光功率≥10mw,内置 光隔离器, 带制冷的14脚蝶形外壳,直径为900um 紧套管,长度为1m 的 单模尾纤,连接器FC/APC2,性能规格2.1,极限值参数符号最小最大单位激光器反向电压 V RLMAX — 2.0 V 正向电流 I FLMAX — 150 mA 工作温度范围 T O -20 70 ℃ 贮藏温度范围 T stg -40 85 ℃ 光电二极管反向电压 V RPDMAX — 10 V 光电二极管正向电流 I FPDMAX — 2 mA 热敏电阻温度 — — 100 ℃ 制冷器工作电流——1.9A2.2,电特性 参数符号测试条件最小典型最大单位峰值光功率 P P — 10 — — mW 阈值电流 I TH CW — 14 25 mA 驱动电流 — P O =10mW — 100 — mA 激光器正向电压 V LF P O =10mW— 1.4 2.0 V 激光器工作温度 T LD — 22 — 30 ℃ 监视器反向压 V RMON — 3 5 10 V 监视器电流 I RMON P O =10mW 0.01 — 2 mA 监视器暗电流 I D I F =0mA,V R MON =5V— 0.01 0.1 µA 输入阻抗 Z IN — — 25 — Ω 热敏电阻电流 I TC — 10 — 100 µA 热敏电阻阻抗 R TH T L =25℃ 9.5 — 10.5 k Ω 制冷器电流I TECT L =25℃, T around =70℃ ——1.2A制冷器电压 V TEC T L =25℃, T around =70℃— — 3.5 V2.3,光学特性参数符号测试条件最小典型最大单位中心波长λCCWT L=15~35℃1548 1550 1552 nm线宽LW CW 5mW — 3 —MHz 带宽(@-3dB) BW 5mW,-3dB 2.5 ——GHz 杂讯比RIN 5mW,50MHz-2.5GHz —-140 —dB/Hz 边模抑制比SMSR CW 35 42 —dB 光隔离度—0℃~70℃30 ——dB 波长飘移—25 years ——±0.1 nm 温度波长系数dλ/d T ——0.09 —nm/℃动态谱宽△λ 2.5GHz, @-20dB —0.32 —nm2.4,光纤和连接器参数符号描述最小典型最大单位尾纤长度L 单模光纤 1.00 — 1.10 m连接器类型—FC/APC ————3,封装尺寸引脚定义01引脚定义02编号Pin No. 针脚定义/Pin Function1 热敏电阻/ Thermistor2 热敏电阻/ Thermistor3 激光器直流负极/Laser DC bias cathode (-)4 光电二极管正极/ PD monitor anode (-)15 光电二极管负极/ PD monitor cathode (+)26 制冷器正极/ Thermoelectric cooler (+)7 制冷器负极/ Thermoelectric cooler (-)8 无/ NC9 无/ NC10 无/ NC11 激光器正极,接外壳/Laser anode (+),Case12 激光器射频负极/ Laser RF cathode(-)13 激光器正极,接外壳/Laser anode (+),Case14 无/ NC。