新型耐火三元乙丙橡胶的研制及应用
- 格式:pdf
- 大小:179.97 KB
- 文档页数:3
三元乙丙橡胶是乙烯.丙烯以及非共轭二烯烃的三元共聚物,1963年开端贸易化临盆.每年全世界的花费量是80万吨.EPDM最重要的特点就是其优胜的耐氧化.抗臭氧和抗侵蚀的才能.因为三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特点.在所有橡胶当中,EPDM具有最低的比重.它能接收大量的填料和油而影响特点不大.是以可以制造成本低廉的橡胶化合物. 【1 】分子构造和特点三元乙丙是乙烯.丙烯和非共轭二烯烃的三元共聚物.二烯烃具有特别的构造,只有两键之一的才干共聚,不饱和的双键主如果作为交链处.另一个不饱和的不会成为聚合物主链,只会成为边侧链.三元乙丙的重要聚合物链是完整饱和的.这个特点使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧.三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有优胜的绝缘特点.在三元乙丙临盆进程中,经由过程转变三单体的数目,乙烯丙烯比,分子量及其散布以及硫化的办法可以调剂其特点.EPDM第三单体的选择第三二烯烃类型的单体是经由过程乙烯和丙烯的共聚,在聚合物中产生不饱和,以便实现硫化.第三单体的选择必须知足以下请求:最多两键:一个可聚合,一个可硫化反响相似于两种根本的单体主键随机聚合产生平均散布足够的挥发性,便于从聚合物中除去最终聚合物硫化速度适合二烯烃类型和含量对聚合物特点的影响三元乙丙临盆中主如果用ENB和DCPD.三元乙丙中最普遍运用的是ENB,它比DCPD产品硫化要快得多.在雷同的聚合前提下,第三单体的本质影响着长链支化,按以下次序递增:EPM<EPDM(ENB)<EPDM(DCPD)三元乙丙其他的受二烯烃第三单体影响的还有:ENB-快速硫化,高拉伸强度,低永远形变DCPD-防焦性,低永远应变,低成本跟着二烯烃第三单体的增长,将会有下列影响产生:更快硫化率,更低的紧缩形变,高定伸,促进剂选择的多样性,削减的防焦性和延展,更高的聚合物成本.乙烯丙烯比乙烯丙烯比可以在硫化阶段进行转变,贸易的三元乙丙聚合物乙烯丙烯比由80/20到50/50.当乙烯丙烯比由50/50变更到80/20时,正面的影响有:更高的压坯强度,更高的拉伸强度,更高的结晶化,更低的玻璃体转化温度,能将原材料聚合物转化成丸状,以及更好的挤出特点.不好的影响就是不好的压延混杂性,较差的低温特点,以及不好的紧缩形变.当丙烯比例更高时,利益就是更好的加工机能,更好的低温特点以及更好的紧缩形变等.分子量和分子量散布弹性体的分子量通经常运用门尼粘度暗示.在三元乙丙的门尼粘度中,这些值是在高温下得到的,平日为125℃,如许做的重要原因是要消去由高乙烯含量所产生的任何影响(结晶化),由此会掩饰聚合物的真正分子量.三元乙丙的门尼粘度规模在20到100之间.也有更高分子量的商用三元乙丙也有临盆,但一般都充油,以便混炼.分子量以及在三元乙丙中的散布可以在聚合进程中经由过程以下门路聚合:催化剂以及共催化剂的类型和浓度温度改性剂,如氢的浓度三元乙丙的分子量散布可以经由过程凝胶渗入渗出色谱法运用二氯苯作为溶剂在高温下(150℃)测量而得.分子量散布平日被称为是重量平均分子量与数目平均分子量的比例.根据通俗和高度支化的构造,这个值在2到5之间变更.因为有分键,含有DCPD的三元乙丙橡胶更宽的分子量散布.经由过程增长三元乙丙的分子量,正面影响有:更高的拉伸和扯破强度,在高温情形下更高的生坯强度,可以或许接收更多的油和填料(低成本).跟着分子量散布的增长,正面的影响有:增长的混炼和碾磨加工性.但是,较窄的分子量散布可以改良硫化速度,硫化状况以及注塑行动.硫化类型三元乙丙可以运用有机过氧化物或者硫来进行硫化.但是,比拟与硫磺硫化,过氧化物交链的三元乙丙用于电线电缆工业时具有更高的温度抗性,更低的紧缩形变以及改良的硫化特点.过氧化物硫化的不好的地方就在于更高的成本.正如前面所提到的,三元乙丙的交链速度和硫化时光跟着硫化类型和含量而转变.当三元乙丙与丁基,自然橡胶,丁苯橡胶混应时,在选择适合的三元乙丙产品时,必需要斟酌到下列身分:当与丁基进行混应时,因为丁基具有较低的不饱和度,为顺应丁基的硫化速度,最好选择相对较低含量的DCPD和ENB含量的三元乙丙.当与自然橡胶和丁苯橡胶混应时,最好选择8%到10%ENB含量的三元乙丙,以知足其硫化速度.三元乙丙橡胶(ethylene-Propylene terpolymer)是乙烯.丙烯和少量非共轭二烯烃的共聚物,是乙丙橡胶的重要品种.它除保持二元乙丙橡胶优秀的耐臭氧性.耐候性.耐热性等特点外.在硫化速度.合营和硫化胶机能等方面又不完整同于二元乙丙橡胶. 1.根本合营和质量磨练办法:三元乙丙橡胶的质量磨练,除国际尺度化组织(ISO)和美国材料实验学会(ASTM)制订的三元乙丙橡胶硫化胶机能磨练办法外,我国和其它国度今朝尚无同一的国度级和部级乙丙橡胶质量尺度及磨练办法,大多半临盆者均采取其公司或厂家的企业磨练办法和质量掌握尺度. ISO和ASTM三元乙丙橡胶硫化胶机能磨练办法三元乙丙橡胶100 氧化锌5 硫磺 1.5 硬脂酸1.0 油炉法炭黑②80 ASTM103号油③50 促进剂TMTD1.0 促进剂M0.5 ① y=在充油母炼胶中,每100份基本橡胶中油的份数. 如y大于50份,则配方3不在加油. ②现行工业参比炭黑,可用NB378炭黑代替,其成果稍有不合. ③ ASTM103号油特点:100℃时活动粘度为16.8±1.2mm2/S,粘度比重常数为0.889±0.002. ④实用于通用型三元乙丙橡胶. ⑤实用于乙烯含量大于67%的高生胶强度的压出类三元乙丙橡胶. ⑥实用于充油三元乙丙橡胶. 2混炼办法:ISO混炼办法有办法A和办法B两种. 办法A为凋谢式混炼办法; 办法B为密炼机混炼,开炼机加硫化系统及下片的办法. ASATM用于磨练三元乙丙橡胶的混炼办法有密炼机法.微型密炼机办法和开炼机办法三种办法.办法出处 ISO 4097—1980(E) ASTM D3568—81a一.构造特点乙丙橡胶系以乙烯和丙烯为基本单体合成的弹性体合成物.乙丙橡胶依分子链中单体单元构成不合,有二元乙炳胶合三元乙丙胶之分.前者为乙烯和丙烯两种组分的共聚物,后者为乙烯.丙烯和少量的第三单体(非共轭二烯听)的共聚物. 乙丙橡胶分子链段的序列构成属聚亚甲基型构造.按国际合成橡胶定名法,二元乙丙橡胶和三元乙丙橡胶分离定名为: EPM(ethylene propylene methylene) 和 EPDM ( ethyl-ene propylene diene methylene ) ; 两者统称为乙丙橡胶( ethylene propylene rubber, EPR ).二.品种商标的划分(1)划分原则乙丙橡胶商品商标的划分,主如果根据分子构造与物性关系的基起源基本理.根据这个道理,分子量与分子量散布.构成与构成散布是决议物性的最重要的分子构造参数.集合态构造也对物性有重要影响.这些构造身分及其互相感化,使乙丙橡胶具有多样的性质,从而顺应多方面的运用.根据这种构造 - 物性 - 运用关系,工业上制订出多种多样的商品商标总计超出 200 种,个中各具特色.不相反复的商标亦有 50 余种. (二)品种商标的标记及其寄义①.按单体单元构成不合,有二元乙丙橡胶( EPM )和三元乙丙橡胶( EPDM )两大类,例如, Dutral CO 和 Dutral TER 分属之.②.依第三单体种类不合,三元乙丙橡胶有乙叉降冰片烯型.双环戊二烯型 1 , 4- 已二烯型三大类,例如, Dutral TER 054/E .三井 EPT1045 和 Nordel 分属之.③.二元乙丙橡胶和三元乙丙橡胶各按不合门尼粘度区分.例如, Dutral CO 054 . Dutral TER 048/ 的门尼粘度( ML 100 ℃ 1+4 )分离为 40 和 80 .④. 二元乙丙橡胶和三元乙丙橡胶各按不合联合丙烯(或乙烯)含量区分.例如, Dutral CO 034 和 Dutral TER 235/E2 的联合丙烯含量分离约为 30% 和 40% .⑤.同一类型三元乙丙橡胶按不合第三单体含量(或碘值)区分.例如, Dutral TER054/E . Dutral TER/E2 和 Dutral TER 046/ 的第三单体含量分离为尺度值. 2 倍尺度值和 3 倍尺度值.⑥.二元乙丙橡胶和三元乙丙橡胶各有充油与否以及充油时不合充油量之分.例如, Dutral CO 054 . Dutral CO 554P . Dutral TER 048/E . Dutral TER 535/E 的充油量分离为 0 . 50 . 0 和 50% ;后缀字母 P 暗示白腊系油品.⑦.特别商标:高乙烯含量结晶型商标.例如, JSR EP 912P . JSR EP 01P ,重要用于聚烯烃树脂改性,后缀字母 P 暗示橡胶为粉末状;构成散布平均.低分子量和窄分子量散布商标.例如, Dutral CO 043 ,重要用于润滑油改性.以上重要经由过程对 Dutral 系列二元和三元乙丙橡胶品种商标编制规矩,说清楚明了分类原则.其他商品商标系列亦大同小异.因为以上分子构造的特色,在现实运用中,往往进一步细分为通用型.易加工型.尺度硫化型.快速硫化型.超快速硫化型.高填充型.余二烯烃橡胶并用型和聚烯烃改性型等运用等级.。
三元乙丙橡胶的简要介绍及其制备工艺的分析随着目前经济的极大发展,橡胶工业的发展和市场需求加速扩大,本文就当前使用广泛的三元乙丙橡胶的工艺进行说明。
标签:乙丙橡胶二元乙丙橡胶三元乙丙橡胶乙丙橡胶(EPR)是继Zieg1er一Natta催化剂的发明、聚乙烯和聚丙烯的出现后问世的一种以乙烯,丙烯为基本单体的共聚橡胶,分为二元乙丙橡胶(EPM)和三元乙丙橡胶(EPDM)两大类。
前者是乙烯和丙烯的共聚物;后者是乙烯、丙烯和少量非共轭二烯烃的共聚物。
一.目前市场上不同硬度的三元乙丙橡胶1.硬度57三元乙丙橡胶配方:三元乙丙胶,100;拉伸强度(Mpa),13;硫磺,0.5;扯断伸长率(%),520;过氧化二异丙苯(DCP),6.5;永久变形(%),7;硬脂酸,1.5;硬度(邵氏),57;高耐磨碳黑,20;撕裂强度(KN/m),半补强碳黑,20;脆性温度,凡士林/防老剂,D5/1.5;合计55,硫化条件:158℃×40;混炼工艺:生胶→碳黑→软化剂→硫磺→防老剂。
用途和性能:该胶料制成胶管、密封件、垫片。
耐中等浓酸、有机酸、无机酸、80%H2SO4.2.硬度65三元乙丙橡胶配方,三元乙丙胶,00;拉伸强度(Mpa),8.8;促进剂M,0.5;扯断伸长率(%),478;促进剂TMTM, 1.5;永久变形(%),22;硫磺,1.5;硬度(邵氏),65;氧化锌,5;撕裂强度(KN/m),28;硬脂酸,1;脆性温度℃,-70;高耐磨碳黑,80;50#机油,50;合计239.5,硫化条件:160℃×60′混炼工艺:生胶→填料、软化剂→ZnO→促进剂→S→硬脂酸,混匀后要经十次薄通。
用途和性能:该胶料具有耐天候、耐臭氧、耐酸性能、耐磨、耐高低温、电绝缘和弹性等。
介质:耐过热水、耐臭氧、耐辐射。
温度:-40℃~160℃3.硬度70三元乙丙橡胶配方,三元乙丙胶,100;拉伸强度(Mpa),13.5;氧化锌5;扯断伸长率(%),350;硬脂酸,1;永久变形(%),8;高耐磨碳黑,50;硬度(邵氏),70;聚苯硫醚,10;撕裂强度(KN/m),28;硫磺,0.3;脆性温度,-65;DCP,3.5;合计169.8,硫化条件:160℃×30′混炼工艺:生胶→碳黑→聚苯硫醚→氧化锌→DCP→硬脂酸,薄通十次下片。
三元乙丙(EPDM)橡胶配方的配合体系介绍三元乙丙橡胶可以采用二烯烃类橡胶用的普通硫化方法硫化,但由于硫化速度较慢,故近年发展了高不饱和度三元乙丙橡胶,其硫化速度不低于高不饱和橡胶的。
三元乙丙橡胶通常可用硫黄、过氧化物、醌肟和反应性树脂等多种硫化体系进行硫化。
不同的硫化体系对其混炼胶的门尼粘度、焦烧时间、硫化速度以及硫化胶的次联键型、物理机械性能(如应力-应变、滞后、压缩变形以及耐热等性能)亦有着直接的影响。
硫化体系的选择要根据所用乙丙橡胶的类型、产品物理机械性能、操作安全性、喷霜以及成等因素加以综合考虑。
一、硫化体系乙丙橡胶常见交联剂体系的适用性和特点1硫黄硫化体系硫黄硫化体系是三元乙丙橡胶使用最广泛最主要的硫化体系。
在硫黄硫化体系中,由于硫黄在乙丙橡胶中溶解度较小,容易喷霜,不宜多用。
一般硫黄用量应控制在1~2份范围内。
在一定硫黄用量范围内,随硫黄用量增加,胶料硫化速度加快,焦烧时间缩短,硫化胶拉伸强度、定伸应力和硬度增高,拉断伸长率下降。
硫黄用量超过2份时,耐热性有下降,高温下压缩永久变形增大。
为使胶料不喷霜,促进剂的用量亦必须保持在三元乙丙橡胶的喷霜极限溶解度以下。
实际上,在工业生产中,基于以下原因几乎都是采用二种或多种促进剂的并用体系。
(1)多种促进剂并用,容易达到硫化作用平衡。
(2)许多促进剂在较低浓度时,就会发生喷霜,因此用量不宜太高。
(3)促进剂这间的协同效应,有利于导致硫化时间的缩短和交联密度的提高。
硫黄硫化体系中,促进剂的用量还可以通过增加硬脂酸的用量来提高,当其它条件不变的情况下,硬脂酸用量增加会导致交联密度、单硫和双硫交联键增加。
氧化锌用量的增加亦有助于在交联时形成促进剂,从而提高胶料的交联密度及抗返原性,改善动态疲劳性能和耐热性能。
2硫黄给予体硫化采用硫黄给予体代替部分硫黄,可使其生成的硫化胶主要具有单硫键或双硫键,因而可以改善胶料的耐热和高温下的压缩变形性能,延长焦烧时间。
三井三元乙丙胶的技术指标摘要:1.三井三元乙丙胶简介2.技术指标概述3.技术指标详细解读4.技术指标优势与行业应用正文:三井三元乙丙胶的技术指标三井三元乙丙胶作为一种高性能的橡胶材料,广泛应用于各个行业领域。
本文将详细介绍三井三元乙丙胶的技术指标,以及其在行业中的应用优势。
1.三井三元乙丙胶简介三元乙丙胶(EPDM)是一种具有良好耐热、耐候、耐化学腐蚀性能的橡胶材料。
三井三元乙丙胶源自日本三井化学公司,采用独特的生产工艺和配方,使其性能更加优越。
2.技术指标概述三井三元乙丙胶的技术指标主要包括以下几个方面:- 硬度:三井三元乙丙胶的硬度范围较广,可以根据不同应用场景选择合适的硬度。
- 拉伸强度:具有较高的拉伸强度,能够满足各种强度要求。
- 耐磨性:耐磨性能优异,使用寿命长。
- 耐热性:耐热性能良好,适应高温环境。
- 耐候性:耐候性能优越,适应各种气候条件。
- 耐化学腐蚀性:耐化学腐蚀性能强,抵抗多种化学物质的侵蚀。
3.技术指标详细解读- 硬度:三井三元乙丙胶的硬度范围在30-90shoreA 之间,可以满足不同产品的需求。
硬度较高的产品适用于轴承等高强度要求的场景,而硬度较低的产品则适用于密封件等低强度要求的场景。
- 拉伸强度:三井三元乙丙胶具有较高的拉伸强度,最大可达15MPa。
这使得其可以应用于各种受力较大的场合,如轮胎、输送带等。
- 耐磨性:三井三元乙丙胶的耐磨性能十分优异,磨损量仅为其他橡胶材料的1/5。
这使得产品在长时间使用过程中,仍能保持良好的性能。
- 耐热性:三井三元乙丙胶的耐热性能良好,可在-40℃至150℃的温度范围内长期使用。
这使得其可以应用于汽车、航空航天等高温环境。
- 耐候性:三井三元乙丙胶具有优异的耐候性能,可抵抗紫外线、臭氧、水分等气候因素的影响。
这使得产品在户外长时间使用,仍能保持良好的性能。
- 耐化学腐蚀性:三井三元乙丙胶的耐化学腐蚀性能强,能抵抗多种化学物质的侵蚀。
三元乙丙橡胶百科名片EPDM三元乙丙橡胶三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。
每年全世界的消费量是80万吨。
EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。
由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。
在所有橡胶当中,EPDM具有最低的比重。
它能吸收大量的填料和油而影响特性不大。
因此可以制作成本低廉的橡胶化合物。
目录基本信息分子结构和特性EPDM第三单体的选择分子量和分子量分布乙丙橡胶以乙烯和丙烯为主要原材料合成一、1、低密度高填充性二、乙丙橡胶改性品种.其他编辑本段基本信息EPDM中文名:三元乙丙橡胶编辑本段分子结构和特性三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。
二烯烃具有特殊的结构,只三元乙丙橡胶有两键之一的才能共聚,不饱和的双键主要是作为交链处。
另一个不饱和的不会成为聚合物主链,只会成为边侧链。
三元乙丙的主要聚合物链是完全饱和的。
这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。
三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。
在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。
编辑本段EPDM第三单体的选择第三二烯烃类型的单体是通过乙烯和丙烯的共聚,在聚合物中产生不三元乙丙橡胶饱和,以便实现硫化。
第三单体的选择必须满足以下要求:最多两键:一个可聚合,一个可硫化反应类似于两种基本的单体主键随机聚合产生均匀分布足够的挥发性,便于从聚合物中除去最终聚合物硫化速度合适二烯烃类型和含量对聚合物特性的影响三元乙丙生产中主要是用乙叉降冰片烯(ENB)和双环戊二烯(DCPD)。
三元乙丙中最广泛使用的是ENB,它比DCPD产品硫化要快得多。
在相同的聚合条件下,第三单体的本质影响着长链支化,按以下顺序递增:EPM<EPDM(ENB)<EPDM(DCPD)三元乙丙其他的受二烯烃第三单体影响的还有:ENB-快速硫化,高拉伸强度,低永久形变DCPD-防焦性,低永久应变,低成本随着二烯烃第三单体的增加,将会有下列影响发生:更快硫化率,更低的压缩形变,高定伸,促进剂选择的多样性,减少的防焦性和延展,更高的聚合物成本。
三元乙丙的成分摘要:一、三元乙丙橡胶简介1.三元乙丙橡胶的简称2.广泛应用于汽车、建筑、电线电缆等领域二、三元乙丙橡胶的成分1.主要成分:乙烯、丙烯和少量的非共轭二烯烃2.辅助成分:硫磺、碳黑、氧化锌、硬脂酸等三、各成分的作用1.乙烯:提供弹性、耐磨性和耐老化性2.丙烯:增加硬度、耐磨性和耐热性3.非共轭二烯烃:调整硫化速度和加工性能4.硫磺:硫化剂,增加强度和耐磨性5.碳黑:提高耐磨性和抗老化性6.氧化锌:硫化剂,增强耐热性和耐老化性7.硬脂酸:增加加工性能和抗老化性四、三元乙丙橡胶的性能及应用1.优异的耐候性、耐臭氧性和耐化学腐蚀性2.良好的耐热性、耐寒性和电绝缘性3.适用于各种介质和环境正文:三元乙丙橡胶(EPDM)是一种广泛应用于汽车、建筑、电线电缆等领域的橡胶材料。
它具有优异的耐候性、耐臭氧性和耐化学腐蚀性,良好的耐热性、耐寒性和电绝缘性,适用于各种介质和环境。
三元乙丙橡胶的主要成分包括乙烯、丙烯和少量的非共轭二烯烃。
乙烯作为提供弹性和耐磨性的主要成分,使三元乙丙橡胶具有良好的回弹性和耐磨性。
丙烯则增加硬度、耐磨性和耐热性,使三元乙丙橡胶在高温环境下依然保持良好的性能。
非共轭二烯烃用于调整硫化速度和加工性能,以满足不同应用场景的需求。
除了主要成分外,三元乙丙橡胶还包含辅助成分,如硫磺、碳黑、氧化锌和硬脂酸。
硫磺作为硫化剂,增加三元乙丙橡胶的强度和耐磨性。
碳黑则进一步提高耐磨性和抗老化性,延长材料的使用寿命。
氧化锌同样作为硫化剂,增强耐热性和耐老化性。
硬脂酸则增加加工性能和抗老化性,使三元乙丙橡胶在生产过程中更容易加工。
由于三元乙丙橡胶具有这些优异的性能,它被广泛应用于汽车密封件、建筑密封胶、电线电缆护套等领域。
在汽车行业,三元乙丙橡胶可用于制作轮胎、密封件、垫片等部件,以应对各种严苛的工况。
在建筑行业,三元乙丙橡胶可用于制作门窗密封胶条、防水卷材等,提供良好的密封性能。
在电线电缆行业,三元乙丙橡胶可用作护套,保护电线电缆免受外部环境的影响。
之阳早格格创做三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共散物,1963年启初商业化死产.每年齐天下的消耗量是80万吨.EPDM最主要的个性便是其劣良的耐氧化、抗臭氧战抗侵害的本领.由于三元乙丙橡胶属于散烯烃家属,它具备极佳的硫化个性.正在所有橡胶核心,EPDM具备最矮的比沉.它能吸支洪量的挖料战油而效率个性没有大.果此不妨创造成本矮廉的橡胶化合物. 分子结媾战个性三元乙丙是乙烯、丙烯战非共轭二烯烃的三元共散物.二烯烃具备特殊的结构,惟有二键之一的才搞共散,没有鼓战的单键主假如动做接链处.另一个没有鼓战的没有会成为散合物主链,只会成为边侧链.三元乙丙的主要散合物链是真足鼓战的.那个个性使得三元乙丙不妨抵挡热,光,氧气,更加是臭氧.三元乙丙真量上是无极性的,对于极性溶液战化教物具备抗性,吸火率矮,具备良佳的绝缘个性. 正在三元乙丙死产历程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分散以及硫化的要领不妨安排其个性. EPDM第三单体的采用第三二烯烃典型的单体是通过乙烯战丙烯的共散,正在散合物中爆收没有鼓战,以便真止硫化.第三单体的采用必须谦脚以下央供:最多二键:一个可散合,一个可硫化反应类似于二种基础的单体主键随机散合爆收匀称分散脚够的挥收性,便于从散合物中与消最后散合物硫化速度符合二烯烃典型战含量对于散合物个性的效率三元乙丙死产中主假如用ENB战DCPD. 三元乙丙中最广大使用的是ENB,它比DCPD产品硫化要快得多.正在相共的散合条件下,第三单体的真量效率着少链支化,按以下程序递加:EPM<EPDM(ENB)<EPDM(DCPD)三元乙丙其余的受二烯烃第三单体效率的另有:ENB-赶快硫化,下推伸强度,矮永暂形变DCPD-防焦性,矮永暂应变,矮成本随着二烯烃第三单体的减少,将会有下列效率爆收:更快硫化率,更矮的压缩形变,下定伸,促进剂采用的百般性,缩小的防焦性战延展,更下的散合物成本. 乙烯丙烯比乙烯丙烯比不妨正在硫化阶段举止改变,商业的三元乙丙散合物乙烯丙烯比由80/20到50/50.当乙烯丙烯比由50/50变更到80/20时,正里的效率有:更下的压坯强度,更下的推伸强度,更下的结晶化,更矮的玻璃体转移温度,能将本资料散合物转移成丸状,以及更佳的挤出个性.短佳的效率便是短佳的压延混同性,较好的矮温个性,以及短佳的压缩形变.当丙烯比率更下时,佳处便是更佳的加工本能,更佳的矮温个性以及更佳的压缩形变等. 分子量战分子量分散弹性体的分子量通时常使用门僧粘度表示.正在三元乙丙的门僧粘度中,那些值是正在下温下得到的,常常为125℃,那样搞的主要本果是要消去由下乙烯含量所爆收的所有效率(结晶化),由此会掩盖散合物的真真分子量.三元乙丙的门僧粘度范畴正在20到100之间.也有更下分子量的商用三元乙丙也有死产,然而普遍皆充油,以便混炼. 分子量以及正在三元乙丙中的分散不妨正在散合历程中通过以下道路散合:催化剂以及共催化剂的典型战浓度温度改性剂,如氢的浓度三元乙丙的分子量分散不妨通过凝胶渗透色谱法使用二氯苯动做溶剂正在下温下(150℃)丈量而得.分子量分散常常被称为是沉量仄衡分子量与数量仄衡分子量的比率.根据一般战下度支化的结构,那个值正在2到5之间变更.由于有分键,含有DCPD的三元乙丙橡胶更宽的分子量分散.通过减少三元乙丙的分子量,正里效率有:更下的推伸战撕裂强度,正在下温情况下更下的死坯强度,不妨吸支更多的油战挖料(矮成本).随着分子量分散的减少,正里的效率有:减少的混炼战碾磨加工性.然而是,较窄的分子量分散不妨矫正硫化速度,硫化状态以及注塑止为. 硫化典型三元乙丙不妨利用有机过氧化物大概者硫去举止硫化.然而是,相比与硫磺硫化,过氧化物接链的三元乙丙用于电线电缆工业时具备更下的温度抗性,更矮的压缩形变以及矫正的硫化个性.过氧化物硫化的短佳的场合便正在于更下的成本. 正如前里所提到的,三元乙丙的接链速度战硫化时间随着硫化典型战含量而改变.当三元乙丙与丁基,天然橡胶,丁苯橡胶混同时,正在采用符合的三元乙丙产品时,必须要思量到下列果素:当与丁基举止混同时,由于丁基具备较矮的没有鼓战度,为符合丁基的硫化速度,最佳采用相对于较矮含量的DCPD 战ENB含量的三元乙丙. 当与天然橡胶战丁苯橡胶混同时,最佳采用8%到10%ENB含量的三元乙丙,以谦脚其硫化速度.三元乙丙橡胶(ethylene-Propylene terpolymer)是乙烯、丙烯战少量非共轭二烯烃的共散物,是乙丙橡胶的主要品种.它除脆持二元乙丙橡胶劣良的耐臭氧性、耐候性、耐热性等个性中.正在硫化速度、协共战硫化胶本能等圆里又没有真足共于二元乙丙橡胶. 1.基础协共战品量考验要领:三元乙丙橡胶的品量考验,除国际尺度化构造(ISO)战好国资料考查教会(ASTM)造定的三元乙丙橡胶硫化胶本能考验要领中,尔国战其余国家暂时尚无统一的国家级战部级乙丙橡胶品量尺度及考验要领,大普遍死产者均采与其公司大概厂家的企业考验要领战品量统造尺度. ISO战ASTM三元乙丙橡胶硫化胶本能考验要领三元乙丙橡胶100 氧化锌5 硫磺 1.5 硬脂酸 1.0 油炉法冰乌②80 ASTM103号油③50 促进剂TMTD1.0 促进剂M0.5 ① y=正在充油母炼胶中,每100份前提橡胶中油的份数. 如y大于50份,则配圆3没有正在加油. ②现止工业参比冰乌,可用NB378冰乌代替,其截止稍有分歧. ③ ASTM103号油个性:100℃时疏通粘度为16.8±1.2mm2/S,粘度比沉常数为0.889±0.002. ④适用于通用型三元乙丙橡胶. ⑤适用于乙烯含量大于67%的下死胶强度的压出类三元乙丙橡胶. ⑥适用于充油三元乙丙橡胶. 2混炼要领:ISO混炼要领有要领A战要领B二种. 要领A为启搁式混炼要领;要领B为稀炼机混炼,启炼机加硫化体系及下片的要领. ASATM用于考验三元乙丙橡胶的混炼要领有稀炼机法、微型稀炼机要领战启炼机要领三种要领.要领出处 ISO 4097—1980(E) ASTM D3568—81a一、结构个性乙丙橡胶系以乙烯战丙烯为前提单体合成的弹性体合成物.乙丙橡胶依分子链中单体单元组身分歧,有二元乙炳胶合三元乙丙胶之分.前者为乙烯战丙烯二种组分的共散物,后者为乙烯、丙烯战少量的第三单体(非共轭二烯听)的共散物. 乙丙橡胶分子链段的序列组成属散亚甲基型结构.按国际合成橡胶命名法,二元乙丙橡胶战三元乙丙橡胶分别定名为: EPM(ethylene propylene methylene) 战 EPDM ( ethyl-ene propylene diene methylene ) ; 二者统称为乙丙橡胶( ethylene propylene rubber, EPR ).二、品种牌号的区别(1)区别准则乙丙橡胶商品牌号的区别,主假如依据分子结构与物性闭系的基根源基本理.根据那个本理,分子量与分子量分散、组成与组身分散是决断物性的最要害的分子结构参数.汇集态结构也对于物性有要害效率.那些结构果素及其相互效率,使乙丙橡胶具备百般的本量,进而符合多圆里的应用.根据那种结构 - 物性 - 应用闭系,工业上造定出多种百般的商品牌号总计超出 200 种,其中各具个性、没有相沉复的牌号亦有 50 余种. (二)品种牌号的标记及其含意①、按单体单元组身分歧,有二元乙丙橡胶( EPM )战三元乙丙橡胶( EPDM )二大类,比圆, Dutral CO 战 Dutral TER 分属之.②、依第三单体种类分歧,三元乙丙橡胶有乙叉落龙脑烯型、单环戊二烯型 1 , 4- 已二烯型三大类,比圆, Dutral TER 054/E 、三井 EPT1045 战 Nordel 分属之.③、二元乙丙橡胶战三元乙丙橡胶各按分歧门僧粘度区别.比圆, Dutral CO 054 、 Dutral TER 048/ 的门僧粘度( ML 100 ℃ 1+4 )分别为 40 战 80 .④、二元乙丙橡胶战三元乙丙橡胶各按分歧分离丙烯(大概乙烯)含量区别.比圆, Dutral CO 034 战 Dutral TER 235/E2 的分离丙烯含量分别约为 30% 战 40% .⑤、共一典型三元乙丙橡胶按分歧第三单体含量(大概碘值)区别.比圆, Dutral TER054/E 、 Dutral TER/E2 战 Dutral TER 046/ 的第三单体含量分别为尺度值、 2 倍尺度值战 3 倍尺度值.⑥、二元乙丙橡胶战三元乙丙橡胶各有充油与可以及充油时分歧充油量之分.比圆, Dutral CO 054 、 Dutral CO 554P 、 Dutral TER 048/E 、 Dutral TER 535/E 的充油量分别为 0 、 50 、 0 战 50% ;后缀字母 P 表示石蜡系油品.⑦、特殊牌号:下乙烯含量结晶型牌号.比圆, JSR EP 912P 、 JSR EP 01P ,主要用于散烯烃树脂改性,后缀字母 P 表示橡胶为粉终状;组身分散匀称、矮分子量战窄分子量分散牌号.比圆, Dutral CO 043 ,主要用于润滑油改性.以上主要通过对于 Dutral 系列二元战三元乙丙橡胶品种牌号体例准则,证明白分类准则.其余商品牌号系列亦大共小同.由于以上分子结构的个性,正在本量应用中,往往进一步细分为通用型、易加工型、尺度硫化型、赶快硫化型、超赶快硫化型、下弥补型、余二烯烃橡胶并用型战散烯烃改性型等使用品级.。
三元乙丙橡胶在电线电缆领域应用————————————————————————————————作者:————————————————————————————————日期:2三元乙丙橡胶在电线电缆领域应用众所周知,EPDM橡胶是一种非极性聚合物,其主要由乙烯、丙烯,及不饱和的第三单体三元共聚而成;具有优良的耐热性和耐气候性,及化学结构稳定性;特别是在电气性能方面更具特色;具有优异的高绝缘电阻率特点,更适用于电线电缆的绝缘材料部分;就目前市场而言,三元乙丙橡胶的牌号种类繁多,各有所长;但比较能适合于电线电缆行业加工和挤出,以及具有比较稳定电气性能的EPDM橡胶牌号,则相对而言就没那么多了,本文以德国朗盛公司TELTAN EPDM 2470L三元乙丙橡胶为例,向大家介绍下其在线缆领域的应用。
EPDM 在绝缘性能应用方面试验介绍表1 EPDM K2470L & KEP210橡胶参数3本次试验配方:EPBM K2470L ,100,硬脂酸 1,氧化锌(间接法) 5.0,防老剂RD 1.0,防老剂MB 1.5,56℃白石蜡 5.0,高温煅烧陶土和超细滑石粉140,偶联剂A-172 0.5,过氧化物硫化剂DCP 2.8;文中所举德国朗盛公司的EPDM K2470L产品是一种高乙烯含量、中等的第三单体含量、及低门尼粘度的橡胶(见表1),从橡胶本身的结构方面而言,由于K2470L本身具有比较高的乙烯含量,从而赋予材料有比较好的力学性能;相对于比较低的门尼粘度聚合物,其加工时所需的能耗也比较小,既节约了能耗,同时又能帮助填料在其橡胶内部均匀地分散,无需任何其他软化剂的条件下,即可得到比较柔软的、性能比较稳定的混炼料;表2 混炼料的硫化特性从表2可以看出,由EPDM K2470L和KEP210橡胶分别所制得的混炼料,其门尼粘度非常接近,从混炼加工方面而言也是比较类似;则说明混炼加工速度比较快;从混炼料的门尼粘度值反映,其比较适宜于挤出加工类的产品制作,相对而言,这得归功于原有橡胶本身的门尼粘度值比较低的缘故;同时,又可说明混炼料的流动性能比较好,在高4速挤出条件下,具有挤出口模时的膨胀率比较小,其外观表面质量非常光滑;有利于提高挤出速率,提高生产效率也是每个企业所追求的目标之一;这类高乙烯、低门尼的聚合物,非常适应于电线电缆行业的加工和挤出。
三元乙丙是什么材料三元乙丙是一种常见的建筑材料,它具有良好的防火性能和耐候性,被广泛应用于建筑领域。
三元乙丙是一种合成材料,由三种元素组成,具有独特的物理和化学特性。
下面我们将详细介绍三元乙丙的定义、特性、用途和优缺点。
三元乙丙是一种聚合物材料,由乙烯、丙烯和不饱和酯单体共聚而成。
它具有良好的柔韧性和耐候性,能够抵御紫外线、酸雨和化学腐蚀。
同时,三元乙丙还具有优异的阻燃性能,可以有效阻止火焰蔓延,减少火灾造成的损失。
这使得三元乙丙成为一种理想的建筑材料,被广泛用于屋顶、墙体、地板和隔热材料等方面。
在建筑领域,三元乙丙被广泛应用于防水、隔热、防火和装饰等方面。
它可以制成各种型号的板材、卷材和复合材料,满足不同建筑结构的需求。
同时,三元乙丙还可以添加颜料和纹理,使其具有良好的装饰效果,提升建筑物的美观性。
此外,三元乙丙还可以制成各种形状的制品,如管道、管件、阀门和储罐等,用于建筑设备和管道系统。
然而,三元乙丙也存在一些缺点。
首先,它的生产工艺较为复杂,需要严格控制原材料比例和生产条件,成本较高。
其次,三元乙丙在长时间暴露于紫外线和高温环境下会发生老化和变色,降低使用寿命。
此外,三元乙丙的可塑性较差,不适用于一些需要复杂造型和精细加工的场合。
综上所述,三元乙丙作为一种合成材料,在建筑领域具有重要的应用前景。
它具有良好的防火性能和耐候性,被广泛用于建筑防水、隔热、防火和装饰等方面。
然而,三元乙丙的生产成本较高,且存在一定的使用限制,需要在实际应用中进行合理选择和设计。
希望本文能够对大家对三元乙丙的认识有所帮助。
三元乙丙橡胶的用途
嘿,朋友们!今天咱来聊聊三元乙丙橡胶呀!这玩意儿可真是个宝呢!
你想想看,它就像一个超级万能胶,但可比普通万能胶厉害多啦!三元乙丙橡胶在汽车行业那可是大显身手啊。
就说汽车的门窗密封条吧,要是没有它,那车子跑起来不就呼呼地往里灌风啊,那得多难受!三元乙丙橡胶做的密封条就能把那些缝隙封得严严实实的,让你在车里舒舒服服的,就像在家里一样自在。
这难道不神奇吗?
还有啊,建筑领域也少不了它呢!它能用来做防水卷材,就像是给房子穿上了一层坚固又防水的外衣。
下雨天的时候,你就不用担心雨水会渗进来啦,它能帮你把房子保护得好好的,这多靠谱呀!
三元乙丙橡胶在电线电缆上也有它的一席之地哟!它就像给电线穿上了一层保护铠甲,让电线能够安全地传输电流,还能防止电线被外界的环境破坏。
这多重要啊,要是没有它,那咱们家里的电说不定啥时候就出问题啦!
再说说管道吧,三元乙丙橡胶做的密封垫圈能让管道连接得稳稳当当,不会漏水也不会漏气。
这不就像是给管道打了个牢固的结一样吗?它能确保那些水啊气啊都乖乖地按照我们的要求流动,不会乱跑乱漏。
你说三元乙丙橡胶厉不厉害?它在这么多地方都能发挥大作用,难道不是我们生活中的好帮手吗?它虽然不起眼,但是却默默地为我们的生活提供着便利和保障。
所以啊,可别小瞧了这小小的三元乙丙橡胶,它真的是无处不在,而且至关重要啊!没有它,我们的生活说不定会变得一团糟呢!它就像是一个默默奉献的小英雄,在我们看不见的地方努力工作着。
让我们为三元乙丙橡胶点个赞吧!。
新型耐火三元乙丙橡胶的研制及应用曹中海(北京市城南橡塑技术研究所,北京 102605)
摘要:研制新型耐火三元乙丙橡胶(EPDM),并在电线电缆中进行了应用。耐火EPDM以过氧化物DCP/共硫化剂TAIC体系作硫化体系,以滑石粉/超细碳酸钙/煅烧陶土体系作填料,在常态下具备EPDM的基本特性;经400℃以上的火焰烧灼,形成类似陶瓷状的坚硬保护层,从而起到隔绝火焰、防火的作用。用其制作的防火电缆在火灾的情况下可安全使用。关键词:三元乙丙橡胶;耐火橡胶;电线电缆;过氧化物;填料
近些年来,特别是美国9.11事件,以及国内几家大型公共娱乐场所、医院、化工企业、煤矿、商厦等发生大型火灾造成惨重的人民生命和财产的重大损失以后,人们对消防、防火安全有了更加深刻的认识。随着城市的扩大,高层建筑、宾馆酒店、大型超市、医院、车站、机场、地铁、隧道、大型公共体育和娱乐场所,以及煤矿、化工、石油、医药、军事、核电站、钢铁、冶金、矿山、舰船等的消防和防火安全的重要性愈来愈凸显出来。如何在火灾情况下,在一定时间内保障电力和通讯通畅,最大限度地赢得宝贵的抢救时间,减少人员伤亡和财产损失,是人们一直不断探索的课题。目前,国内外采用的防火电缆大多是氧化镁矿物防火绝缘电缆(结构如图1)和云母带缠绕的耐火电缆。氧化镁矿物防火绝缘电缆需要专门的生产加工设备生产,这种设备需要进口,并且非常昂贵,资金投入太大;其次,氧化镁矿物防火绝缘电缆的外护套是全铜的,造价较高,在实际应用方面受到一定程度的限制;另外,氧化镁矿物防火绝缘电缆图1 氧化镁矿物防火绝缘电缆的结构在生产加工、运输、线路的敷设安装和使用等过程中有特殊要求,如氧化镁矿物防火绝缘电缆的生产加工不像高分子材料电缆那样便捷,原材料成本高,敷设安装难度大,很难大规模地普及使用,
特别难以在民用建筑上推广使用。云母带缠绕的耐火电缆在生产过程中需要多层缠绕,由于工艺条件的限制,往往易造成搭接缝处出现缺陷,火烧后云母带发脆,容易脱落,耐火效果差,难以保障通讯、电力在火灾情况下安全畅通。新型耐火EPDM不同于普通橡胶和阻燃橡胶,在常温下具备普通EPDM的性能,在高温火焰的灼烧下形成坚硬的外壳,继续保护内部物体不受灼烧。发生火灾时,用新型耐火EPDM制成的电线电缆能保证线缆的电力和通讯畅通,为疏散和抢救赢得宝贵的时间。现将新型耐火EPDM的研制及其在电线电缆中的应用简介如下。
1 研制1.1 实验1.1.1 原材料EPDM4045,碘值为22,乙烯基质量分数为56%,门尼粘度[ML(1+4)100℃]为38~52,第三单体为亚乙基降冰片烯(ENB),吉林市大宇化工有限公司产品;过氧化物DCP,上海高桥化工有限公司产品;三聚异氰酸三烯丙酯(TAIC),湖南浏阳化工有限公司产品;超细碳酸钙,顺德梅林
・31・2010年第5
期 橡 胶 科 技 市 场 化工有限公司产品;超细滑石粉,桂广滑石粉有限公司产品;其余为市售品。1.1.2 试验设备和仪器D160×320型开炼机,无锡市橡胶塑料机械厂产品;QLB2350×350×2(D)平板硫化机,江苏宜兴市轻工机械厂产品;T2000E电力拉力机,北京友深电子仪器有限公司产品;401B型热老化箱,江苏启东双棱测试设备厂产品;YDY21型空气弹(氧弹)老化仪,呼和浩特市机电研究所产品;SKM275L/VVF250HP密炼机,中国台湾省产品;D75冷喂料挤出机,英国Francis公司产品。1.1.3 试验配方EPDM4045 100,TAIC 5,DCP 4.5,填料 140,A2172 1,氧化锌 8,硬脂酸 1,防老剂RD 0.5,增塑剂 5,磁化粉 适量,加工助剂 4,其它 9,含胶率36%。1.1.4 工艺流程开炼机辊距调至1mm,加入EPDM4045,生胶包辊成透明状后,打三角包,下片;辊距调至2~3mm,再加入生胶,生胶包辊后,加入防老剂,分批加入氧化锌、硬脂酸、增塑剂、磁化粉、填料(留下少量超细碳酸钙),待粉料完全混入后加入硫化剂和余下的超细碳酸钙,扫干净托盘内粉料并加入,混合均匀后,薄通打三角包和枕头包各3次,调大辊距出片。用平板硫化机硫化片,硫化条件为160℃×20min。EPDM不像天然橡胶那样需要专门塑炼,混炼前将其稍薄通就可以了。生产表明,国产EPDM4045的包辊性能良好,无脱辊现象,各种配合剂能迅速均匀地分布在胶料中,混炼胶片平整光滑。1.2 结果与讨论1.2.1 填料与硫化体系选用(1)填料。常用的填料有滑石粉、超细碳酸钙、煅烧陶土、白炭黑等。白炭黑具有非常良好的补强效果,加入10份,可使胶料的强度有较大提高,有关资料显示,在乙丙橡胶中,白炭黑最多可用到25份,胶料的电气性能也不会发生较明显的下降。滑石粉、超细碳酸钙、煅烧陶土均属弱补强材料,对EPDM的补强作用不是很大,更多地起填充作用。在这3种填料中,填充煅烧陶土的硫化胶的电性能最高。为改善陶土对橡胶的补强作用,可加入一定量的硅烷偶联剂,经硅烷偶联剂处理后,偶联剂的一端封闭了陶土粒子表面的羟基团,另一端与橡胶分子连接,陶土由亲水性变为疏水性,补强性得到增强。在硫化过程中,陶土与橡胶通过偶联剂的作用,形成了较强的橡胶2填料键,改善了硫化胶的性能。要注意的是,陶土呈微酸性,如果胶料采用过氧化物硫化,陶土会与过氧化物产生离子型化学反应,降低硫化剂的硫化效率,故在必要的时候要加入三乙醇胺类的碱性物质进行调节。过多的滑石粉会使胶料过于硬化。本研究填料选用滑石粉、超细碳酸钙、煅烧陶土并用。(2)硫化体系。新型耐火EPDM间接与铜导
体接触,如果采用硫黄或含硫助剂硫化,在高温下,硫与铜逐渐生成黑色的硫化铜,故选用过氧化物DCP来进行硫化。采用过氧化物硫化的胶料,
对铜线的腐蚀性很小,可长时间保持铜线的光亮。过氧化物DCP的硫化原理是,过氧化物DCP在高温下分解为自由基,夺去EPDM分子中活泼的氢原子,使EPDM分子间产生碳2碳交联。理论上,每100gEPDM所用的过氧化物DCP为217g,但考虑到过氧化物DCP的纯度、有效利用率、硫化时产生的副反应以及实际生产中胶料难免混炼不均匀等因素,必须加大其用量,以确保胶料的综合性能。EPDM采用过氧化物DCP硫化体系时,交联和断裂同时发生,添加具有官能团的共硫化剂后,可抑制断裂反应。共硫化剂可大大加快硫化速度,提高交联密度,改善硫化胶的耐温性能。适用的共硫化剂有三聚氰酸三烯丙酯(TAC)、TAIC、三羟甲基三甲基丙烯酸酯
(TMPTM)等,其中以TAC和TAIC共硫化效果
较好,选用TAIC作共硫化剂。硫化剂及共硫化剂用量的选择非常重要,因为实际生产中,须保证胶料较高的挤出速度,而实际生产所用的硫化管道较短,这样挤出的胶料通过高压蒸汽管道的时间短,即硫化时间短。为了满足胶料的硫化要求,
一方面可加大硫化管道的蒸汽压力,提高硫化温度;另一方面,须加大配方中硫化剂和硫化助剂的用量,以在一定程度上加快硫化速度。但硫化剂用量过大,又容易焦烧,而且会影响到胶料的其它性能。考虑到绝缘线芯还要在下道工序与挤出的
・41・ 橡 胶 科 技 市 场 2010年第5期护套一起二次硫化,实际生产中为保证胶料的加工安全性,可让一次硫化绝缘线芯处于一种略微欠硫状态。经多次生产试验确定,硫化剂DCP的用量为4.5份,共硫化剂TAIC为5份,可满足产品性能及生产要求。1.2.2 胶料耐火性能新型耐火EPDM既不是阻燃橡胶,也不是难燃橡胶。阻燃橡胶和难燃橡胶的作用机理是在高分子材料中加入有机和无机阻燃材料,在燃烧过程中生成可以使火焰逐渐熄灭的物质,从而达到阻燃的效果。但是在火灾中,火焰是在持续不断燃烧的,两种橡胶被烧以后都会变成灰烬,所以起不到消防、防火的作用,制成的电线电缆在火灾中不能保证通讯、电力运行,所以人员和财产的安全也就难以得到保证。耐火EPDM的耐火性能见表1。表1 灼烧试验结果 项 目试样1试样2厚度/mm25灼烧结果 450℃×90min硬硬 500℃×90min硬硬 600℃×90min坚硬坚硬 750℃×90min坚硬坚硬 900℃×90min坚硬坚硬 700~800℃×90min(丙火焰)坚硬坚硬 新型耐火EPDM在常温下具有优越的耐氧化、耐臭氧和耐侵蚀的能力,具有很好的柔软性和弹性,具备了EPDM的特质;而在500℃以上的高温和火焰烧蚀下,其有机成分会在很短的时间内转化成坚硬的陶瓷状物质,形成一层良好的隔绝层,阻挡火焰继续燃烧,而且烧蚀时间越长,温度越高,隔绝层越坚硬。有的新型耐火EPDM可以耐1000~1200℃的高温。新型耐火EPDM具备良好的加工性。1.2.3 防火机理新型耐火EPDM在火焰的灼烧下,燃烧1~2min后即开始烧结成坚硬的陶瓷状壳体的隔绝层。这种坚硬的陶瓷状壳体的隔绝层可以非常有效的阻挡火焰继续燃烧,而且在燃烧2~3min后完全断烟,在接下来阻挡火焰的过程中,本身不再产生烟雾,同时在前期的2~3min内产生的烟雾无毒、无卤。2 新型耐火EPDM在电线电缆中应用2.1 加工性能新型耐火EPDM和普通EPDM的加工工艺是完全相同的,它具备很好的挤出性和模压性,可以直接用电线电缆设备挤出、硫化成电线电缆,其用于电线电缆生产无需增加设备,更无需像制造氧化镁矿物防火绝缘电缆那样投入巨额的设备购置费,也无需像用云母带缠绕的耐火电缆那样要经过多次缠绕,费工费时,可以大幅度降低加工成本。用新型耐火EPDM生产的电线电缆可以大幅度降低敷设安装成本,无需像氧化镁矿物防火绝缘电缆那样复杂敷设,可以像普通电线电缆一样便捷安装,为防火电线电缆的广泛普及和应用提供了前提条件和基础。2.2 成品电线电缆性能对新型耐火EPDM及其制成的电线电缆的性能测试结果如表2所示。
表2 新型耐火EPDM及其制成电线电缆的性能 项 目硫化胶成品线芯标准拉伸强度/MPa7.25~6>5
拉断伸长率/%450350~430>250
(100±2)℃×168h老化后
拉伸强度变化率/%+3+5~+12-25~+25
拉断伸长率变化率/%-2-5~-8-25~+25
(127±2)℃×40h老化后
拉伸强度变化率/%+8+10~+17-30~+30
拉断伸长率变化率/%-5-10~+2-30~+30
3 结语新型耐火EPDM电线电缆所具备的良好消防、防火特性,使它具有广阔的应用前景,可以广泛应用于防火安全要求非常高的场所,如普通民宅、高层建筑、电梯、大小型商场和超市、地铁、机场、车站、医院、银行、写字楼、宾馆酒店、邮政通讯大楼、展览馆、图书馆、博物馆、古代建筑、学校、电力大厦、公共娱乐场所、隧道、地下建筑、仓库等,
还可用于冶金、钢铁、焦炭、煤矿、电厂、输变电站、船舶、石油、化工、医药、核电站、航天航空、军事、造纸等行业,以及家电、汽车等。