基因表达调控-基本概念与原理
- 格式:ppt
- 大小:224.50 KB
- 文档页数:24
第一节概述围绕基因表达过程中发生的各种各样的调节方式都通称为基因表达调控(gene regulation或gene control)。
几个基本概念1、顺式作用元件和反式作用因子:基因活性的调控主要通过反式作用因子(通常是蛋白质)与顺式作用元件(通常在DNA 上)相互作用而实现。
顺式作用元件是指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因;同时,这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中,如启动子和终止子,都是典型的顺式作用元件。
反式作用因子是能调节与它们接触的基因的表达的各种扩散分子(通常是蛋白质),如RNA聚合酶、转录因子。
2、结构基因和调节基因:结构基因(structural gene)是编码蛋白质或RNA的基因。
细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或都不表达。
调节基因(regulator gene)是编码合成那些参与其他基因表达调控的RNA或蛋白质的特异DNA 序列。
调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。
比如:它能使结构基因在需要某种酶时就合成某种酶,不需要时,则停止合成,它对不同染色体上的结构基因有调节作用。
调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性)调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。
DNA位点通常位于受调节基因的上游,但也有例外.3、操纵基因和阻遏蛋白操纵基因(operator)是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过并作用于启动子启动转录。
但当它与调节基因所编码的阻遏蛋白结合时,就从开放状态逐渐转变为关闭状态,使转录过程不能发生。
阻遏蛋白(aporepressor)是负调控系统中由调节基因编码的调节蛋白,它本身或与辅阻遏物(corepressor)一起结合于操纵基因,阻遏操纵子结构基因的转录。
基因表达的调控与机制基因是生物体内控制生命活动的基本单位,而基因表达则是基因产生生物学效应的过程。
在生物体内,不同细胞的基因表达模式不同,这种差异称为基因表达调控。
基因表达调控是细胞分化、发育、生长、免疫应答和病变等过程中的关键因素。
基因表达调控的机制是深入研究的热点领域,对此我们有必要进行深入探讨。
1.基因表达的调控基因表达调控是生物学的关键过程,其目的是控制基因的转录和翻译,从而使生物能够适应内外环境的不同需要。
基因表达的调控有两种方式:一是属于遗传学范畴的突变和基因重组,二是属于分子生物学范畴的转录后调控和信号转导。
其中转录后调控和信号转导是生物体内基因表达调控的主要手段。
2. 转录后调控转录后调控是指基因转录后,需要进行各种后续加工和调整,才能产生成熟的mRNA和蛋白质。
转录后调控包括RNA加工、RNA剪接和RNA稳定化等。
在RNA加工方面,mRNA的5'端和3'端需要经历不同的修饰,才能够被稳定地存储和表达。
RNA剪接是指在基因转录之后,需要对mRNA进行选择性剪接,以产生不同的转录本。
这些转录本可以在翻译过程中产生不同的蛋白质。
RNA稳定化是指在mRNA合成之后,其稳定性需要得到精细的调控,以保证其能够长时间地存在。
3. 信号转导信号转导是生物体内基因表达调控的另一种方式,它是通过反应分子之间的交互作用来实现的。
信号转导包括细胞表面受体和细胞内信号转导通路两个方面。
细胞表面受体是指细胞表面上的受体分子,它们与外界的信号分子结合,通过改变受体的构象来转导信号。
细胞内信号转导通路是指信号转导的下游分子,它们接收来自上游的信号,从而调节基因表达。
4.基因表达调控的机制基因表达调控的机制是指影响基因表达的各类分子机制。
这些机制中,蛋白质-蛋白质相互作用及其调控、DNA甲基化、组蛋白修饰、RNA干扰等是较为常见的。
在蛋白质-蛋白质相互作用及其调控方面,蛋白质相互作用是一种广为应用的基因表达调控机制,如转录因子结合DNA,促进或抑制基因转录。
基因表达与调控知识点总结基因表达和调控是生物学中非常重要的概念,关乎着生物个体的生长发育、适应环境以及疾病的产生。
本文将对基因表达和调控的相关知识点进行总结,以帮助读者更好地理解这一领域。
一、基因表达的概念与过程基因表达是指通过DNA转录成RNA,再通过RNA翻译成蛋白质的过程。
这个过程可分为三个主要步骤:转录、剪接和翻译。
1. 转录:转录是指DNA模板上的信息被RNA聚合酶酶依据碱基互补配对的原则合成成为一条mRNA链的过程。
转录分为起始、延伸和终止三个阶段,其中起始阶段涉及到转录起始因子和启动子的结合,延伸阶段则是RNA链的合成过程,终止阶段是转录终止信号的识别和RNA链的释放。
2. 剪接:在转录后,mRNA经历了剪接这一过程。
剪接是指将mRNA上含有内含子(introns)的序列剪除,只保留外显子(exons)的过程。
这是因为在真核生物中,基因上的非编码区域和编码区域是交错存在的,剪接的目的是产生功能蛋白质所需的成熟mRNA。
3. 翻译:翻译是指mRNA上的信息被核糖体翻译成蛋白质链的过程。
翻译过程中,mRNA的密码子与tRNA上的氨基酸互相匹配,从而合成出特定顺序的氨基酸链。
翻译完成后,蛋白质会进一步经历折叠和修饰过程,最终形成功能蛋白质。
二、基因调控的方式及相关机制基因表达的调控是指细胞根据环境和内部信号对基因表达的调整和控制。
基因调控主要包括转录水平的调控和转录后的调控。
1. 转录水平的调控(1)启动子和转录因子:启动子是位于基因的上游区域,能够招募转录因子结合并促进或抑制基因转录。
转录因子是一类能够识别和结合到启动子上的蛋白质。
不同基因的启动子和转录因子组合形成了复杂的转录调控网络,大大影响基因的表达水平。
(2)组蛋白修饰:组蛋白修饰是指对染色质上的组蛋白进行化学修饰,从而影响染色质的结构和染色质的开放程度。
这些化学修饰包括甲基化、磷酸化、乙酰化等,能够影响基因的可及性和转录因子的结合。
基因表达的调控机制基因表达是指基因通过转录和翻译过程将DNA信息转化为蛋白质的过程。
在细胞内,基因表达的调控机制起着至关重要的作用,决定了细胞的功能和特性。
本文将介绍基因表达的调控机制,包括转录调控、转录后调控和翻译调控。
一、转录调控转录调控是指通过调控基因的转录过程来控制基因表达水平。
转录调控主要包括启动子区域的结构和转录因子的结合。
1. 启动子区域的结构启动子是位于基因上游的DNA序列,包含转录起始位点和调控元件。
调控元件包括增强子和抑制子,它们可以与转录因子结合,促进或抑制转录的发生。
启动子区域的结构可以通过DNA甲基化、组蛋白修饰和染色质重塑等方式进行调控。
2. 转录因子的结合转录因子是一类能够结合到DNA上的蛋白质,它们通过与启动子区域的调控元件结合来调控基因的转录。
转录因子可以分为激活子和抑制子,激活子能够促进转录的发生,而抑制子则能够抑制转录的发生。
转录因子的结合与DNA序列的亲和性有关,不同的转录因子结合到不同的DNA序列上,从而实现对基因的调控。
二、转录后调控转录后调控是指在转录完成后,通过调控RNA的加工、修饰和稳定性来控制基因表达水平。
转录后调控主要包括RNA剪接、RNA修饰和RNA降解。
1. RNA剪接RNA剪接是指在转录过程中,将前体mRNA中的内含子剪接掉,将外显子连接起来形成成熟的mRNA。
通过剪接的方式,可以产生不同的mRNA亚型,从而调控基因的表达。
RNA剪接的调控主要依赖于剪接因子的结合和剪接位点的选择。
2. RNA修饰RNA修饰是指在转录后,通过添加化学修饰基团来改变RNA的结构和功能。
常见的RNA修饰包括甲基化、腺苷酸转换和伪尿苷酸转换等。
RNA修饰可以影响RNA的稳定性、转运和翻译效率,从而调控基因的表达。
3. RNA降解RNA降解是指通过核酸酶将RNA分解为小片段,从而降低基因的表达水平。
RNA降解的速度受到RNA的稳定性和降解酶的活性的影响。
不同的RNA分子具有不同的稳定性,一些RNA分子具有较长的半衰期,而另一些RNA分子则具有较短的半衰期。
基因调控网络描述基因和蛋白质之间的复杂调控网络基因调控是生物体内一种重要的生命过程。
通过基因调控网络,基因与蛋白质之间建立了复杂的调控关系,这种调控网络起着控制基因表达水平和蛋白质功能的重要作用。
本文将从基本概念、组成要素、工作原理和重要意义等方面来描述基因调控网络。
一、基本概念基因调控网络是指在生物体内,基因和蛋白质之间通过相互作用和调控形成的复杂网络系统。
它由基因调控元件、转录因子和信号通路等组成,通过正负反馈机制对基因表达进行调控。
二、组成要素1.基因调控元件:指基因调控网络中的DNA区域,包括启动子、增强子和沉默子等。
它们作为基因的调控序列,在转录和翻译过程中发挥重要作用。
2.转录因子:是一类能结合到基因调控元件的蛋白质。
转录因子的结合与特定基因区域的DNA序列,并通过调节转录速率来影响基因表达水平。
3.信号通路:是基因调控网络中的一种传递信号的机制。
它可以通过化学信号、细胞因子、激素等方式,将外部信号传递到转录因子或其他调控元件上,从而改变基因的表达水平。
三、工作原理基因调控网络的工作原理涉及多种调控机制,包括阳性调控、阴性调控和反馈调控等。
1.阳性调控:某些转录因子结合到基因调控元件上,增加基因的转录速率,从而促进基因的表达。
2.阴性调控:某些转录因子结合到基因调控元件上,抑制基因的转录速率,从而减少基因的表达。
3.反馈调控:当特定蛋白质产生后,它可以影响其自身的转录因子或信号通路,形成正反馈或负反馈环路,从而达到自我调节的目的。
四、重要意义基因调控网络在生物体内发挥着至关重要的作用。
1.稳态维持:基因调控网络能够维持生物体内的稳态,使得基因表达在合适的水平上进行,从而维持细胞和组织的正常功能。
2.发育调控:基因调控网络在发育过程中起着重要作用,它可以通过控制特定基因的表达和调控关系,决定细胞分化的方向和发育的轨迹。
3.环境适应:基因调控网络使得生物体能够对外界环境变化做出及时反应,通过改变特定基因的转录速率来适应不同的环境压力。
SECTION 5转录与转录水平得调控重点:转录得反应体系,原核生物RNA聚合酶与真核生物中得RNA聚合酶得特点,RNA得转录过程大体可分为起始、延长、终止三个阶段。
真核RNA得转录后加工,包括各种RNA前体得加工过程。
基因表达调控得基本概念、特点、基本原理。
乳糖操纵子得结构、负性调控、正性调控、协调调节、转录衰减、SOS 反应。
难点:转录模板得不对称性极其命名,原核生物及真核生物得转录起始,真核生物得转录终止,mRNA前体得剪接机制(套索得形成及剪接),第Ⅰ、Ⅱ类与第Ⅳ类内含子得剪接过程,四膜虫rRNA前体得加工,核酶得作用机理。
真核基因及基因表达调控得特点、顺式作用元件与反式作用因子得概念、种类与特点、以及它们在转录激活中得作用。
一。
模板与酶:要点1.模板RNA得转录合成需要DNA做模板,DNA双链中只有一股链起模板作用,指导RNA合成得一股DNA链称为模板链(template strand),与之相对得另一股链为编码链(coding strand),不对称转录有两方面含义:一就是DNA链上只有部分得区段作为转录模板(有意义链或模板链),二就是模板链并非自始至终位于同一股DNA单链上。
2.RNA聚合酶转录需要RNA聚合酶。
原核生物得RNA聚合酶由多个亚基组成:α2ββ'称为核心酶,转录延长只需核心酶即可。
α2ββ'σ称为全酶,转录起始前需要σ亚基辨认起始点,所以全酶就是转录起始必需得。
真核生物RNA聚合酶有RN A-polⅠ、Ⅱ、Ⅲ三种,分别转录45s-rRNA; mRNA(其前体就是hnRNA);以及5s—rRNA、snRNA与tRNA、3。
模板与酶得辨认结合转录模板上有被RNA聚合酶辨认与结合得位点。
在转录起始之前被RNA聚合酶结合得DNA部位称为启动子。
典型得原核生物启动子序列就是—35区得TTGA CA序列与—10区得Pribnow盒即TATAAT序列。
真核生物得转录上游调控序列统称为顺式作用元件,主要有TATA盒、、CG盒、上游活化序列(酵母细胞)、增强子等等。
基因表达调控名词解释基因表达调控名词解释,又称为基因调控,是一种过程,它通过影响基因表达水平而调节生物体的特性。
调节这一过程包括对基因在何时,何处,以及如何表达的调节,以及影响基因表达水平的遗传因子的调节。
它是由外部刺激(环境信号)和内部机制(遗传因素)共同作用产生的。
基因表达调控包括以下几个方面:1.转录调控:转录调控是指控制基因转录成mRNA(信使核酸)的过程,也就是控制DNA上的信息被转换成mRNA 的过程。
转录调控可以通过调节转录因子(TF)的活性或改变DNA序列来实现。
2.加工调控:加工调控是指在mRNA被转录之后,mRNA 被进一步加工,以减少它的长度或改变它的结构的过程。
加工调控包括剪切、编码和标记等加工过程。
3.翻译调控:翻译调控是指调节翻译过程的过程,这一过程是将mRNA转换成蛋白质的过程。
翻译调控可以通过调节转录因子的活性或改变mRNA序列来实现。
4.蛋白质表达调控:蛋白质表达调控是指在蛋白质被合成之后,它们的表达水平进一步调节的过程。
蛋白质表达调控可以通过调节转录因子的活性或改变蛋白质序列来实现。
5.基因组学调控:基因组学调控是指改变基因组结构和功能的过程,包括基因组编辑、基因重新排列和基因组组装等过程。
基因组学调控可以通过调节转录因子的活性或改变基因序列来实现。
6.转录因子调控:转录因子调控是指调节转录因子在基因表达过程中所起的作用。
转录因子可以激活或抑制基因表达,调节基因启动子,从而调节基因表达水平。
7.基因突变调控:基因突变调控是指改变基因序列的过程,该过程可以改变基因的结构和功能,从而影响基因表达水平。
基因突变可以在遗传过程中发生,也可以由外界刺激引起。
基因表达调控是生物体发育和遗传的基本原理,它可以帮助我们了解基因如何调节和控制特定的生物过程,从而更好地为人类提供服务。
原核生物的基因表达和调控机制原核生物是指不含细胞核和其他复杂的细胞器官的生物,包括细菌和蓝藻等。
这些生物虽然简单,但仍具有复杂的基因表达和调控机制,通过调控基因的转录和翻译来响应环境变化和完成生物学功能。
本文将探讨原核生物的基因表达和调控机制。
基因表达和调控的基本概念基因是指DNA分子上编码一个蛋白质的序列,是生物体内传递遗传信息的基本单位。
基因表达指的是将基因的信息转化为蛋白质的过程,包括转录和翻译两个步骤。
其中,转录是指将DNA序列转化为mRNA(信使RNA)的过程,而翻译是指将mRNA上的三联体密码子翻译为相应的氨基酸序列的过程。
基因表达的过程涉及到基因启动子、转录因子、RNA聚合酶等多个分子的相互作用,需要经过复杂的调控机制来保证在特定的时空条件下进行。
原核生物中基因的表达和调控原核生物虽然没有细胞核和其他复杂的细胞器官,但其基因的表达和调控机制同样有其特殊性。
以下将从基因的结构、转录、RNA的修饰和翻译等方面探讨原核生物中基因的表达和调控。
基因结构原核生物中,基因通常呈现为一条连续的DNA链,其中编码区域与非编码区域相互交错,没有剪切和剪接等后加工处理。
编码区通常以ATG作为起始密码子,以TAG、TAA或TGA作为终止密码子。
在非编码区,存在启动子、转录因子结合位点、RNA剪切位点和终止符等辅助元素,有助于调控基因的表达。
相比于真核生物中复杂的基因结构,原核生物中基因的紧凑结构为调控提供了更多的可能性。
转录的调控在原核生物中,转录的调控可以通过多种方式实现,包括转录起始的选择、负向调控和正向调控等。
转录起始的选择:在原核生物中,转录的起始位点可以在基因内或外,不同的起始位点可以产生不同长度的转录产物,从而产生不同的蛋白质或非编码RNA。
此外,在一些条件下,同一基因的多个启动子甚至可以同时被使用,进一步增加了基因表达的多样性。
负向调控和正向调控:在原核生物中,负向调控指的是一些转录抑制因子的作用,可以通过抑制转录因子的结合来阻止基因的转录。