基于FLUENT的混合器内部流场数值模拟
- 格式:pdf
- 大小:739.91 KB
- 文档页数:5
基于Fluent的齿轮泵内部流场动态模拟XXX(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)摘要:齿轮泵是液压传动及润滑系统中的常用部件,为了准确地捕捉泵内流场的变化,采用动网格技术对齿轮泵进行动态数值模拟,分析齿轮泵在齿轮旋转情况下的内部流场的变化。
关键词:齿轮泵;内部流场;动态模拟Dynamic simulation of flow field inside of gear pump based on FluentXXX(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)Abstract: The gear pump is an important component in hydraulic transmission and lubrication system. In order to catch the variation of flow field inside of gear pump, the moving grid technology is used to dynamic simulate the flow in gear pump, and the flow variation inside of gear pump with gear rotating is analyzed.Key words: gear pump; inside flow field; dynamic simulation1 概述齿轮泵适用于输送不含固体颗粒和纤维、腐蚀性的润滑油或性质类似润滑油的其他液体,以及液压传动系统。
齿轮泵的内部流动对齿轮泵的性能有较大的影响,在齿轮泵的设计初期就应该考虑泵内结构对流动的影响,以便设计符合要求的齿轮泵。
齿轮泵的内部流场的动模拟为齿轮泵内部结构设计提供重要的参考数据,是现代齿轮泵设计的一项重要辅助手段。
由于齿轮泵内齿轮运动及工作介质流动的复杂性,其数值模拟工作比较复杂,国内对齿轮泵的模拟仅局限于流量模拟,没有进行详细的泵内流场模拟,国外对泵内流场模拟相对较多。
基于数值模拟的混流式水轮机顶盖内流场分析摘要:本文以某高水头电站为研究对象,采用数值模拟方法研究了漏水量和顶盖压力分布。
分析结果表明水轮机采用适当的止漏环间隙值、装设适当数目的减压排水管和泵板,可以起到减小漏水量、顶盖压力和转轮轴向水推力的效果。
关键词:间隙流道;漏水量;轴向水推力;数值模拟0 引言混流式水轮机的应用最为广泛,这种机组形式具有结构紧凑,运行可靠,能适应很宽的水头范围以及满载时效率高等优点。
但是国内外许多电站在投产运行后出现了不同程度的顶盖压力过高、主轴密封漏水量大和水力振动问题。
工程界对于如何降低顶盖压力和减小主轴密封漏水量,主要是采取设置减压结构的方法。
减压排水管、泵板、引水板和卸荷孔等是比较常用的结构形式。
本文以某高水头电站为研究对象,使用ANSYS FLUENT商业软件,采用RNG模型对密封间隙流道和顶盖上腔部分进行数值模拟,得到止漏环处的漏水量和主轴密封处的压力,计算出减压排水管流速,并分析了密封、减压排水管和泵板的减压效果。
1 数值计算方法本文的计算对象是密封间隙流道和顶盖上腔部分。
采用有限体积法在空间上离散控制方程,在时间离散上使用二阶全隐式格式,压力项应用二阶中心差分格式,其他项采用二阶迎风格式,使用SIMPLEC算法实现压力和速度的分离求解。
边界条件采用压力进口,压力出口条件[2]。
2 物理模型以某高水头电站为研究对象,水轮机的参数是额定水头214.5m,最大水头236.0m,转轮直径1600mm,额定转速600r/min,额定流量16.8 m3/s,额定出力33.2MW。
原始转轮密封间隙为1.35mm,装设2根Ф80mm减压排水管,泵板为径向式,均布8个。
顶盖与转轮上冠间隙流道部分的网格单元数约为825万。
新转轮密封间隙为1.0mm,装设4根Ф80mm减压排水管,泵板为斜向式,均布8个。
顶盖与转轮上冠间隙流道部分的网格单元数约为880万。
3 压力记录点为了分析密封、泵板和减压排水管的减压效果,在顶盖与转轮上冠间隙流道部分设置有上止漏环进口(P11)、密封前(P12)、密封中间(P13)、密封后(P14)、中间腔体(P15)和主轴密封处(P16)共6个测点。
基于FLUENT的房间内组分的流动特性仿真分析1、设计参数FLUENT已经广泛用于复杂的化工反应工程、流线设计及环境监测等诸多领域,可以用于解决流体的流动特性、相间转换过程、热质耦合传递等复杂问题,可以直接形象地分析在空间和时间域上连续性的物理场,为优化操作条件提供了丰富的理论指导和可靠的依据为了更好地了解内部的传热传质过程,充分研究床层内部的流动特性具有重要意义。
计算流体动力学(CFD)在流体流动和传热传质过程中,数值数学和计算机科学结合的产物,是一门具有强大生命力的交叉科学。
ANSYS FLUENT是一种将流体力学,有限元结合的数值求解平台,同时具有图像显示功能。
该平台主要应用各种离散化的数学方法,对流体力学的各类问题进行数值计算和分析研究,以解决各种实际问题。
计算流体力学ANSYS FLUENT与实验法相比有以下几个优点:相对试验过程,可以提供比更加细致、全面的数据;研发费用低,明显缩短产品的研发周期,提高科研工作者工作效率的特点;数值平台仿真分析,可以为试验提供一定的理论参考和指导作用。
本文模拟了房间里的气流和传热,这个房间排风系排烟过程。
几何尺寸,其中长宽高分别为7.8m,4.2m,3.1m,房间壁面厚度为0.2m,壁面材料混凝土(密度2719kg/m3,定压比容1500J/kg.K,热导率200.4W/m.K),具体的布局图。
研究对象:某南方城市的房间模型如下图所示,房间高3.3m,在每个房间上方布置了组分进风口和回风口。
速度为0.6m/s,温度为40.5℃,如图0所示。
2、建立计算模型与划分网格本文主要是分析利用FLUENT进行房间内流动的仿真计算,因此主要分析fluent的过程。
针对网格划分过程简略。
图1 房间内流域模型2.2划分网格图2 数值计算流域的几何模型(1)几何模型的建立通过三维软件建好后,然后保存为step格式,然后导入到ICEM中,如图2所示。
(2)划分流域的面网格单击选中操作工具栏中的网格绘制图标,并在绘制网格mesh界面下单击选中体网格。
FLUENT模拟泵内部流动的设置教程本教程以泵内定常流动数值模拟为例,详细讲述了如何应用FLUENT进行泵内流计算以及如何应用FLUENT进行简单的后处理。
基本步骤:1、启动FLUENT,选择3d求解器。
2、读入网格(×.msh);3、检查网格,确保最小体积为正,选择grid→check菜单;4、缩放网格;5、光顺/交换网格;6、求解器设置;7、设置计算模型;8、设置运行环境,对于离心泵数值模拟一般不考虑重力;9、设置转速单位;10、定义材料,也可以进行自定义材料;11、定义边界条件;12、设置交界面;13、设置求解参数;14、监视残差;15、初始化流场;16、保存case文件;17、开始迭代计算;18、FLUENT后处理。
1、启动FLUENT,选择3d求解器。
启动后FLUENT界面如下图所示:2、读入网格(×.msh),选择file→read→case菜单;3、检查网格,确保最小体积为正,选择grid→check菜单。
Check无误后才可以进行下面的操作。
4、缩放网格,选择grid→scale菜单,弹出下图的对话框,直接输入Scale Factors点击Scale即可,一般缩小1000倍到毫米。
由于FLUENT默认的单位是米,所以必须进行网格缩放。
5、光顺/交换网格,选择grid→smooth/swap菜单,进入下面的界面;先点击Smooth,然后点击Swap直至Number Swapped为0。
6、求解器设置,选择define→models→solver菜单,进入求解器设置界面,如下图所示。
一般定常求解设置为分离求解器、隐式算法、三维空间、稳态流动、绝对速度、压力梯度为单元压力梯度计算;7、设置计算模型,选择define→models→viscous菜单,弹出湍流模型选择对话框。
一般选用标准k-ε模型,进入k-ε模型设置界面,一般保持默认即可;8、设置运行环境,选择define→operating condition菜单,弹出下面的对话框。
作为油水分离的最基本、最重要的装置,重力式油水分离器在工程上得到广泛的应用。
为了提高油水的分离效率,人们对油水分离设备的分离特性开展了很多研究[1-3],包括对设备内流体的流场特性进行模拟分析,但对于溢流堰出油的研究还很少。
随着计算机技术的发展,数值模拟将成为结构优化设计的重要手段之一。
1数值模拟计算方法在油水的分离过程中,设定油和水为不可压缩的连续流体,且密度和黏度为定值,流体的流动形式视为定常流动。
分离器内流体的动力学控制方程包括连续性方程和动量方程。
该不可压缩流体的连续性方程为:∂μx ∂x +∂μy ∂y +∂μz ∂z=0(1)式中μx 、μy 、μz 是速度矢量在x 、y 、z 方向的分量。
对黏性为常数的不可压缩流体,主要受到压力、黏性力与单位质量力的作用,动量方程为:d (ρμx )dt =-∂p ∂x +▽·(μ▽μx )+ρf xd (ρμy )dt =-∂p ∂y +▽·(μ▽μy )+ρf yd (ρμz )dt =-∂p ∂z +▽·(μ▽μz )+ρf z(2)式中ρ为密度;t 为时间;p 为流体压强;μ为流体的动力黏度;f x 、f y 、f z 为单位质量力。
2油水分离器的模型建立与网格划分2.1几何模型建立根据刚盖假定,本文的计算模型简化如图1所示。
上端表面为采用刚盖假定的自由表面,油出口位于挡板之上,由于挡板之后的流场不影响挡板之前的流场,因此只计算挡板之前,自由表面之下的流体区域。
2.2网格划分本文选取的是三种最为常见的入口构件,无构件式入口构件,挡板式入口构件以及孔箱式入口构件,入口构件都采用下入口构件。
利用Fluent 软件的前处理器Gambit 对所建三维模型进行网格划分。
为了提高划分的网格的质量以及兼顾Fluent 的计算速度,采用局部加密的非结构化四面体网格,生成的网格结构如图2:图2网格结构2.3计算模型设置本文选用Fluent 软件进行数值计算,对边界条件及物性参数作如下设置:①油水分离器的入口设为速度入口边界条件,入口速度为0.46m /s ;②出口设置为自由出流边界条件,水出口流量权重80%,油出口流量权重20%;③自由表面设置为对称边界条件,其余为壁面边界;④湍流强度为4.7%,水力直径D H 为0.04m 。
2020年增刊前言水泥工程系统粉体物料的主要输送方式是气力输送,包括气力输送泵,气力提升泵,仓式泵,料封泵,空气输送斜槽等设备。
气力输送系统由气力输送设备和管道组成,在输送过程中,由于粉体和输送管道的相互作用,导致输送过程效率下降,同时粉体颗粒对管道造成冲蚀磨损。
计算流体力学(CFD )是计算机辅助工程(CAE )的主要分支,广泛应用于科学研究、工程设计中。
Fluent 是目前国际上通用的商用CFD 软件包,用于模拟复杂条件下的流动、热传递和化学反应。
本文基于Fluent 软件对气力输送管路的弯管两相流场进行了定性仿真模拟,简要介绍Fluent 程序求解步骤,为输送管路的优化设计和复杂流体分析提供理论依据。
1模型建立本文选用某工程输送管道一段80°弯管建立简化模型:弯管内径d =150mm ,弯管半径R =300mm ,进口直段长度500mm ,弯管出口角度80°,出口直段长度500mm ,模型剖面示意见图1。
入口出口50050080°150ΦR 300图1弯管模型基于Fluent 软件平台对流场的模拟包括:(1)前处理器:可以通过GAMBIT 模块建立计算模型、进行网格划分,也可以通过导入其它主流建模软件模型或中间格式,使用Fluent Meshing 模块划分网格;(2)求解器:基于Fluent 进行参数设置和求解计算。
求解器是流体计算软件的核心.可对基于非结构化网格进行求解;(3)后处理器:通过对计算结果的后处理,实现图形图表化的输出显示。
本次使用SolidWorks 软件3D 建模,导入FluentFlow Meshing 模块进行划分网格,网格划分质量会直接影响到计算结果。
为了平衡计算工作量和计算的准确性,此次计算共划分弯管六面体网格数量75540个。
经检查网格质量良好,见图2。
图2弯管网格模型2求解计算粉体颗粒随高速气流在管道里流动,气体是连续相,粉体是离散相,这是典型的气固两相流模型。
基于FLUENT的建筑物风沙两相流场数值模拟摘要:本探究基于FLUENT软件,对建筑物风沙两相流场进行了数值模拟。
通过建立合适的数学模型和边界条件,对风沙流场在建筑物表面的运动和沉积进行了探究,利用FLUENT软件进行了数值模拟,并对模拟结果进行了分析和谈论。
探究结果表明,该数值模拟方法能较好地模拟风沙两相流场在建筑物表面的运动和沉积过程,可为建筑物防风沙设计提供参考依据。
关键词:FLUENT;建筑物;风沙;两相流场;数值模拟1. 引言在沙漠地区以及风沙频发的地区,风沙对建筑物的冲刷和侵蚀是一个普遍存在的问题。
风沙的冲刷会导致建筑物表面的损坏和老化,给建筑物的使用寿命和安全性带来恐吓。
因此,探究风沙流场的运动规律和在建筑物表面的沉积过程,对于建筑物防风沙设计具有重要意义。
2. 方法和模型2.1 数学模型建立建筑物风沙两相流场数值模拟模型是探究的关键工作之一。
建筑物表面的沉积过程是一个多相流问题,需要思量气相的运动和颗粒物的输运。
我们接受了Eulerian-Eulerian模型来描述两相流场的运动。
在此模型中,气相和颗粒物被视为两个互相作用的连续介质,分别由Navier-Stokes方程和扩散输运方程描述。
此外,还思量了颗粒物的颗粒颗粒碰撞、颗粒物与建筑物表面的碰撞等过程。
2.2 边界条件在建筑物风沙两相流场数值模拟中,选择合适的边界条件是保证模拟结果准确性的关键。
在建筑物表面,思量到风沙的沉积和建筑物的阻挡作用,设定了颗粒物和气相的不同边界条件。
对于建筑物表面,思量了阻尼层的存在,设定了颗粒物的边界条件为零通量边界。
对于建筑物四周的气相,设定了进口和出口边界条件,以保证气相流场的稳定运动。
3. 数值模拟结果和分析通过FLUENT软件对建筑物风沙两相流场进行了数值模拟,并得到了相应的模拟结果。
我们对模拟结果进行了分析和谈论,得出了以下几点结论:3.1 风沙的运动规律模拟结果显示,风沙在建筑物表面呈现出不同的运动规律。
fluent 湍流数值模拟方法湍流数值模拟方法是一种在计算流体力学中用于模拟湍流现象的数值方法。
它能够通过数值模拟来预测流体中的湍流运动和湍流相关的现象。
湍流是一种复杂的流动状态,它涉及到大范围的速度和压力变化,以及涡旋的产生和传输。
传统的流体力学模型往往难以处理湍流问题,因此需要采用数值模拟方法。
湍流数值模拟方法通常基于雷诺平均的Navier-Stokes方程,即雷诺平均Navier-Stokes方程(RANS)。
该方程将流场分解为平均部分和脉动部分,并通过对平均部分施加平均性质来减小方程的复杂性。
湍流数值模拟方法的核心是湍流模型。
湍流模型是用来描述湍流运动和湍流相关现象的数学模型,常见的湍流模型有雷诺平均应力模型(Reynolds-Averaged Navier-Stokes model,简称RANS模型)和大涡模拟(Large Eddy Simulation,简称LES)模型。
RANS模型是常用的湍流模型,它基于雷诺应力的概念,通过近似计算湍流运动的影响。
RANS模型通常采用湍流能量方程和湍流运输方程来描述湍流的能量传输和湍流量的传输。
LES模型是一种更为详细的湍流模型,它不仅考虑了雷诺平均流动的影响,还能够模拟湍流中的大尺度湍流涡旋。
LES模型通常通过将流场分解为大尺度和小尺度湍流结构来描述湍流运动。
湍流数值模拟方法的求解过程通常分为网格生成、离散化、求解和后处理四个步骤。
其中网格生成是将流场划分为离散网格的过程,离散化是将Navier-Stokes方程离散成代数方程组的过程,求解是通过迭代计算求解方程组的过程,后处理是对计算结果进行分析和可视化的过程。
湍流数值模拟方法是研究湍流现象和湍流相关问题的重要工具,它在航空航天、汽车工程、能源领域等众多领域具有广泛应用。