当前位置:文档之家› 浅析永磁同步电机控制策略

浅析永磁同步电机控制策略

浅析永磁同步电机控制策略
浅析永磁同步电机控制策略

浅析永磁同步电机控制策略

【摘要】近年来,永磁同步电机凭借其体积小、损耗低、效率高等优点,被广泛应用于各种生产实践中。与此同时,对永磁同步电机的控制研究也得到了广泛的重视。本文就永磁同步电机的控制策略做出简单阐述,对比其优缺点,分析永磁同步电机控制侧率的发展方向。

【关键词】永磁同步电机;恒压频比开环控制;矢量控制;直接转矩控制

1.引言

近年来,随着电力电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电动机具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此。这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。

2.永磁同步电机的数学模型

永磁同步电机(PMSM)的永磁体和绕组,绕组和绕组之间的相互影响,电磁之间的关系十分复杂,由于磁路饱和等非线性因素,建立精确的数学模型是很困难的。为了简化PMSM的数学模型,我们通常作如下的假设:

(1)磁路不饱和,电机电感不受电流变化影响,不计涡流和磁滞损耗;

(2)忽略齿槽、换相过程和电枢反应的影响;

(3)三相绕组对称,永久磁钢的磁场沿气隙周围正弦分布;

(4)电枢绕组在定子内表面均匀连续分布;

(5)驱动二极管和续流二极管为理想元件;

(6)转子磁链在气隙中呈正弦分布。

对于永磁同步电机来说,即用固定转子的参考坐标来描述和分析其稳态和动态性能是十分方便的。此时,取永磁体基波励磁磁场轴线即永磁体磁极的轴线为d轴,而q轴逆时针方向朝前90o电角度。d轴与参考轴A之间夹角为。图1为永磁同步电机(PMSM)矢量图。

图1 PMSM空间向量图

Fig.1 Space vector diagram of PMSM

电梯永磁同步电机旋转编码器PG信对照表

电梯电机(永磁同步)变频器与编码器调试PG信号对照表附表一:ERN1387(或332200)PG信号(默纳克变频器)DB15三排公头: 变频器接口(DB15针 公头)(PG)信号电缆颜色 0.3mm2短线 15芯连接器(母 头) 14芯PCB接头 5 A 橙 5 6b 6 A- 黄 6 2a 8 B 绿8 3b 1 B- 蓝 1 5a 3 R 粉红 3 4b 4 R- 粉蓝 4 4a 10 C 紫10 7b 11 C- 灰11 1a 12 D 白12 2b 13 D- 棕13 6a 9 5V 红9 1b 7 0V 黑7 5b 附表二:ERN1387配科比变频器: 变频器接口(DB15针 公头)(PG)信号电缆颜色 0.3mm2短线 15芯连接器(母头)14芯PCB接头 8 A 橙8 6b 3 A- 黄 3 2a 9 B 绿9 3b 4 B- 蓝 4 5a 15 R 粉红15 4b 14 R- 粉蓝14 4a 6 C 紫 6 7b 1 C- 灰 1 1a 7 D 白7 2b 2 D- 棕 2 6a 12 5V 红12 1b 13 0V 黑13 5b DB15芯连接器 编码器端PCB插头 变频器DB15针插头

附表三:ERN1387配爱默生EV3100:

变频器接线端 子信号 电缆颜色 0.3mm 2短线 15芯连接器(母头) 12芯PCB 接头(参照14芯) 0V 黑 1 1a 5V 红 2 2a Ua1(A) 橙 3 6b *Ua1(A-) 黄 4 6a Ua2(B) 绿 5 5b *Ua2(B-) 蓝 6 5a Ua0(Z) 紫 7 4b *Ua0(Z-) 灰 8 4a 附表五:ECN1313配富士LIFT :(物料) 变频器接线端 子信号 电缆颜色 0.3mm 2短线 15芯连接器(母头) 12芯PCB 接头(参照14芯) 0V 黑 1 4b 5V 红 2 1b A 橙 3 2a A- 黄 4 5b B 绿 5 4a B- 蓝 6 3b CLOCK 紫 7 2b CLOCK - 灰 8 5a DA TE 白 9 6b DA TE- 棕 10 1a 散线带接线端子、信号标示管

浅析无齿轮永磁同步电梯曳引机

浅析无齿轮永磁同步电梯曳引机 摘要:无齿轮永磁同步曳引电梯因简单的结构、低噪声、低能耗的特点在业内受到高度关注。本文通过对永磁同步无齿轮曳引机的结构和工作原理阐述,分析了无齿轮永磁同步曳引机与传统曳引机相比的优点和缺点,但是作为新型的曳引机的发展方向,其以小型化和灵活性,为电梯行业的发展提供了更广阔的空间。 关键词:无齿轮永磁同步电梯曳引机;工作原理;优点;缺点 随着科技的进步,永磁材料和永磁电机技术有了长足的发展,永磁电机被各领域广泛应用,其中包括在电梯曳引机上的应用。这些年来我国高档电梯越来越多,这都与永磁同步调速电机和曳引机无齿轮化的有机结合分不开,永磁同步无齿轮曳引电梯因简单的结构、低噪声、低能耗的特点在业内受到高度关注。由于永磁同步无齿轮曳引机的小型化和灵活性,可以布置出各种曳引方式的无机房电梯,这样不仅大大节约了电梯成本,同样也减少了电梯对空间的占用,为电梯行业的发展提供了更广阔的空间。 1.无齿轮永磁同步电梯曳引机的结构 齿轮永磁同步电梯曳引机结构主要由永磁同步电动机、曳引轮及制动系统和盘车装置组成。曳引轮与制动轮为同轴固定联接,并直接安装在电动机的轴伸端。而曳引机的制动系统由制动体、制动轮、制动臂和制动瓦等组成。无齿轮曳引机由于采用的是电机直接驱动曳引轮,制动力矩很大,无法用手轮直接盘车。需通过齿轮比来减小盘车时需用的力,因此需专门设计盘车装置。 2.无齿轮永磁同步电梯曳引机的工作原理 永磁同步无齿曳引机工作原理是电动机动力由轴伸端通过曳引轮输出扭矩,再通过曳引轮和钢丝绳的摩擦来带动电梯轿厢的的上、下运动。当电梯停止运行时则由常闭制动器通过制动瓦刹住制动轮,从而保持轿厢静止不动。其动力控制其原理是通过电机上安装的变频装置(编码器)和高精度的速度传感器,对电机运行电流快速跟踪、检测、反馈和控制,控制永磁电机以同步转速进行转动,由于永磁电机具有线性、恒定转矩及可调节速度的特性,使曳引轮能够平稳运行。 3.无齿轮永磁同步电梯曳引机与传统曳引机的比较 3.1无齿轮永磁同步电梯曳引机的优点 3.1.1 结构简化 无齿轮曳引机没有机械减速装置,不同于有齿轮曳引机复杂的机械减速机构。有齿曳引机中的减速机构如蜗轮蜗杆、行星齿轮在加工过程中都需要机械加工精度,同时为了这些齿轮的正常运转必须配备复杂的润滑系统。而无齿曳引机

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

永磁同步电机矢量控制原理

永磁交流同步电机矢量控制理论基础 0、失量控制的理论基础是两个坐标系变换,这是每一个学习过交流调速的人应 该熟记的两种变换。介于目前市面上流行的各类书籍的这一部分总有些这里那里的问题(也就是错误)。为了自己不被误导,干脆自己推导一边,整理如下。所有的推导针对3相永磁同步电机的矢量控制。 1、永磁交流同步电机的物理模型。 首先看几张搜集的图/照片,图1~7: 现分别说明如下: a.图1~3可以看出电机定子的情况。我和大家都比较熟悉圆圈中间加个“叉” 或者“点”的定子,通过这几张图应该比较清楚地认识定子的结构了。 b.图1中留出4个抽头,其中一个应该是中线,但是,在伺服用的永磁同步 电机,只连接3根线的。 c.图2是一个模型,红蓝黄三色代表三相绕组,在定子齿槽中上下穿梭,形 成回路的。 d.定子绕线连接可以从图7很清楚地看到,从A进入开始,分别经过1(上), 7(下),2(上),8(下),14(上),8(下),13(上),7(下),

13(上),19(下),14(上),20(下),2(上),20(下),1(上), 19(下)然后到X。一相绕组经过8个齿槽,占全部齿槽的1/3,每个齿 槽过两次,但每次方向是相同的。最后上上下下的方向如同图6所示。 e.三相绕组通电后,形成如同图6所示的电流分布,每相邻的6根是电流同 方向的。这样,如果把1和24像纸的里面拉,将这一长排围城一个圆, 则,1和7之间向里形成N(磁力线出)极的中心,12和13之间形成S (磁力线入)极的中心。这里,个人认为图6中的N、S分段有些错误, 中心偏移了,不知道是不是理解错误,欢迎指正,这图是我找的,不是我 画的,版权不属我:)。 f.同极磁场的分布有中心向两侧减弱的,大家都说是正弦分布,我是没分析 过,权且认同吧,如图5所示。 g.如图1同步电机的运转就是通过旋转定子磁场,转子永磁磁极与定子的磁 极是对应的N、S相吸,可以同步地运行。 h.实际电机定子槽数较多,绕线方式也有不同。旋转磁场的旋转是通过如图 6中的一个磁极6个齿槽一起向右/左侧移位 2、永磁同步电机数学模型 这才是本文的重点。学习这部分,先不要考虑电机,直接死记两种变换。 这两个变换都是定子侧的电流旋转,旋转的原则是,不论怎么变换都是其实都是一种假想的坐标系,一种变换游戏,都只有原始的三相绕线,通三相电流。 变换的目的是从中找出另外一个与电机转矩又直接关系的“状态量”——转矩电流,来控制转矩。实际矢量控制时,这一切变换都是在计算机里完成,最后又通过控制三相电流的,但此时的三相电流给定值可以保证这个“状态量”是我想要的那个数值。为什么非要变换?因为要对电机进行控制(速度控制),使电机按照你的意图运转,必须控制加到电机转子上的转矩,而转矩与三相电流之间的直接对应关系是没法直接写出来的,(如同质量与重量之间的关系,速度与位移之间的关系这么简单)。只有通过变换,才可以清楚地找出这个对应关系,其实, 图8定子静止三相到静止两图9 静止两相到旋转两相的变换

电梯电机发展及永磁同步电机优势分析

电梯电机发展及永磁同步电机优势分析 摘要:随着城市高楼建设逐渐增加,电梯作为垂直运输工具,其地位愈发重要, 俨然成为现代文明的标志。无论是高层建筑,还是大型商场等公共场合,电梯作 为运货、载人的运输设备,极大地方便了公众日常生活。其中电机作为电梯运行的 驱动部件,其发展壮大不仅是生产力提高的有力表现,更是人类生活水平提高的 重要指标。本文经过调查研究,并结合工作实践,对电梯电机的发展历程展开探讨,并就主流电机的优缺点展开讨论,对应用最广泛的永磁同步电机进行简要论述。 引言 电梯的作用在新时期体现得更加明显。作为高层建筑的关键工具,在人们的 日常生活中扮演了重要的角色。所以,对于电梯的设计、安装质量和日常检修保 养工作都需要高度重视,确保其安全运行。 1现阶段电梯运行故障与原因 电梯在运行的过程中可能会出现各种各样的问题,造成电梯故障产生的原因 也是多种多样,电梯在运行过程中会产生较多的安全隐患,商场管理人员并未及 时的进行处理,没有安排专业人员进行检修,长时间运行下去也会导致电梯出现 故障。通常情况下,电梯出现故障主要表现在以下方面。第一,电梯控制系统故障。电梯控制系统故障主要表现在电路短路和断路。首先电梯短路是指电流没有 经过电气元件直接接通,导致电气系统不能正常运行,产生的原因有内部线路绝 缘老化、电路安装不规范、维护保养不及时等;其次电梯线路断路会导致电梯无法正常运行,产生的原因有线路连接部位不牢固、开关触头部位接触不良等。第二,电梯安全管理问题。电梯管理人员和检验人员安全意识淡薄,认为只要电梯能够 正常运行就不需要进行安全管理,当电梯出现故障时,不能提供有效的解决措施。电梯作为我国的特种设备,政府明确要求对电梯进行定期检测和维护,然而,在 实际执行的过程中,工作人员仅仅是做表面上的功夫,没有抓住问题的本质并做 充足的预防措施,导致电梯的使用寿命降低,提高了电梯出现故障的几率。于此 同时,电梯检测人员没有认识到自身工作的重要性,责任心不强,为电梯故障的 发生埋下隐患。 2电梯电机控制技术发展历程 乘坐电梯是为了节省时间,同时保证安全舒适,因此对于频繁启动、制动的 电梯而言,越短的制动、启动时间以及越平稳快速的运行,越能增强用户的体验 感受。由于电力拖动控制比较简单,耗损小,调节性能好,经济节能,可以实现 远程自动控制,当前大多数电机都采用了电力拖动来控制电机运行,使其驱动电 梯实现可靠性高、精准度高和响应快速的运行目标。随着电机设计水平、测量技术、控制技术、半导体材料、磁性材料以及加工制造技术的发展,电机不断向小 型化、轻量化、智能化、程序化、低噪音、高效率、环保节能、经济实用的方向 发展,特别是近几年电梯事故频发,能确保电梯运行安全、可靠、抗震的电机成 为发展主流。 3异步电机优缺点及应用现状 3.1解析异步电机原理 在异步电机中,定子旋转磁场切割转子导体而产生的感应电流产生了转子磁场,转子则由定转子磁场的相互作用而转动。转子和旋转磁场的速度差越大,转 子电流就越大,定转子磁场的作用就越强烈。随着转速提高,转子电流越来越小,

永磁同步电机控制方法以及常见问题

永磁同步电机控制方法以及常见问题永磁同步电机控制方法以及常见问题。永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 1.掌握永磁同步电机的成熟控制方法和开发内容后如何转型 (1)仿真:连续simulink+线性电机模型仿真,离散模型+线性电机+线性电机模型,q 格式离散模型+线性电机模型,simplorer+ansoft+无位置开环和闭环q格式仿真,模拟实际电机的线性电机模型建立,matlabgui+simulink仿真。都是无位置开环切闭环模式,各种仿真变着花样玩,ekf,hfi,pll,atan,磁连观测,扩展反电视等各种无位置仿真。仿真和实际跑板子其实只要电流采样底层做得好,过调制出得来都可以和仿真对的上。 (2)电机参数识别,通过变频器激励与响应实现,其余的表示不靠谱,可以在电机启动前10s内辨识出来。没啥用。 (3) 控制性能优化,6次谐波自适应陷波滤波,sogi等手段。 (4) 压缩机驱动自动力矩补偿。

(5) svpwm简单快速实现与单电阻采样结合研究。 (6) 各种各样电机调试与性能测试,我调试的电机型号应该有上千款了,仅限于 10w-20kw永磁同步电机,都快调试吐了,测试电机单体性能,带变频器运行极限测试 2.永磁同步电机初始角设置的问题 电机控制的调试里除却方波驱动,基本都会有一个类似于超前角的变量,该变量非常重要,直接影响速度,效率和抖动性。改变该角可以降低输出转矩,但可能会带来其他问题。 旋转转子使d轴指向A+与A-的中心线,就找到了初始角!但是对模型的初始角修改一下之后,在同样Thet角下,转矩下降好多!现在问题是在在修改初始角之后输出转矩能够稳定吗?这个输出转矩应该是与负载大小有关! 修改后的初始角与原来A相反电势为0对应的初始角,他们对应的输出转矩一定会变化的,且修改后的初始角中设定的功率角不是真正的模型功率角;至于设定负载我还没尝试过,不过我觉得你说的应该是对的。 其实我刚开始主要是对修改初始角后模型输出转矩稳定性有疑问,按照你的说法现在转矩应该是稳定的!那么对于一个永磁同步电机模型,峰值转矩可以达到,但是要求的额定转矩却过大,当修改模型之后达到要求的额定转矩时,峰值转矩却达不到,敢问你觉得应该从方面修改模型??或是我修改模型的思路有问题 3.永磁同步电机控制的建模问题讨论,如模型仿真慢、联合仿真问题、PI控制问题等 两种控制方式不一样的所有输出量不一样。 永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 无刷电机是电压源控制模式,而且计算出来都是开环的。性能由空载转速,电阻,电感

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

永磁同步电机控制系统仿真模型的建立与实现资料

永磁同步电机控制系统仿真模型的建立与 实现

电机的控制 本文设计的电机效率特性如图 转矩(Nm) 转速(rpm) 异步电机效率特性 PMSM 电机效率特性 本文设计的电动汽车电机采用SVPWM 控制技术是一种先进的控制技术,它是以“磁链跟踪控制”为目标,能明显减少逆变器输出电流的谐波成份及电机的谐波损耗,能有效降低脉动转矩,适用于各种交流电动机调速,有替代传统SPWM 的趋势[2]。 基于上述原因,本文结合0=d i 和SVPWM 控制技术设计PMSM 双闭环PI 调速控制。其中,内环为电流环[3],外环为速度环,根据经典的PID 控制设计理论,将内环按典型Ⅰ系统,外环按典型Ⅱ系统设计PI 控制器参数[4]。 1. PMSM 控制系统总模型 首先给出PMSM 的交流伺服系统矢量控制框图。忽略粘性阻尼系数的影响, PMSM 的状态方程可表示为 ??????????-+????????????????????----=??????????J T L u L u i i P J P L R P P L R i i L q d m q d f n f n m n m n m q d ///002/30//ωψψωωω& && (1) 将0=d i 带入上式,有 ???? ??????-+??????????? ??? ??--=????? ?????J T L u L u i J P P L R P i i L q d m q f n f n m n m q d ///02/3/0ωψψωω& && (2) 转 矩 (N m )转速 (n /(m i n )) 效率 转速 (rpm) 转矩 (N m )

(完整word版)开题报告:永磁同步电机控制系统仿真

1.课题背景及意义 1.1课题研究背景、目的及意义 近年来,随着电力电子技术、微电子技术、微型计算机技术、传感器技术、稀土永磁材料与电动机控制理论的发展,交流伺服控制技术有了长足的进步,交流伺服系统将逐步取代直流伺服系统,借助于计算机技术、现代控制理论的发展,人们可以构成高精度、快速响应的交流伺服驱动系统。因此,近年来,世界各国在高精度速度和位置控制场合,己经由交流电力传动取代液压和直流传动[1][2]。 二十世纪八十年代以来,随着价格低廉的钕铁硼(REFEB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电机伺服系统是主要的发展趋势。永磁同步电机的控制技术将逐渐走向成熟并日趋完善[3]。以往同步电机的概念和应用范围己被当今的永磁同步电机大大扩展。可以毫不夸张地说,永磁同步电机已在从小到大,从一般控制驱动到高精度的伺服驱动,从人们日常生活到各种高精尖的科技领域作为最主要的驱动电机出现,而且前景会越来越明显。 由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合获得广泛的应用[4][5]。 尽管永磁同步电动机的控制技术得到了很大的发展,各种控制技术的应用 - 1 -

浅谈电梯工程中永磁同步检验及电机性能分析

浅谈电梯工程中永磁同步检验及电机性能分析 发表时间:2018-07-05T16:08:14.310Z 来源:《电力设备》2018年第9期作者:方兴林 [导读] 摘要:电梯的门机控制系统是电梯系统中的一个重要部分,其运行性能直接影响到电梯的安全性和乘客的感官舒适度。 (日立电梯(中国)有限公司广东广州 510000) 摘要:电梯的门机控制系统是电梯系统中的一个重要部分,其运行性能直接影响到电梯的安全性和乘客的感官舒适度。本文分析了永磁同步电梯系统技术要点,对现有检验方法进行了补充探讨,为永磁同步电梯检验提供参考。 关键词:永磁同步电动机;门机控制;控制方式;保护措施 一、引言 现代常用的驱动电机有交流异步电动机、有刷直流电动机和永磁同步电动机三大类,永磁同步电动机由于其体积小、重量轻、高效节能等一系列优点,越来越引起人们重视,其控制技术日趋成熟,中小功率的异步电动机变频调速正逐步为永磁同步电动机调速系统所取代。另外永磁同步电动机和感应电动机相比,具有以下优点:省去了转子线圈或鼠笼,使体积减小;功率因数提高;减小了电动机的铜损和铁损,使温升大幅降低,并节约了电能损耗。可在额定转速内保持恒转矩,使门机系统运行更稳定,并在低频段可提供足够的转矩,使门机在开启/关闭初期和末期的低速段也能运行平稳,避免低速段转矩不足引起的抖动。由于效率提高,且启动运行时电流不大,因此在选择变频装置时,无需考虑提高功率配置,降低了变频装置的成本。 二、永磁同步电动机的门机控制系统技术要点 2.1门控制系统的行程开关 为满足电气系统的控制,应在门架上设置三个行程开关:开门到位开关,关门到位开关和门锁开关。 开门到位开关:当门运行至全开状态时,该开关动作; 关门到位开关:当门运行至全闭状态时,该开关动作; 门锁开关:当门运行至全闭状态,且门锁挂钩锁紧时,该开关动作,并且门锁开关作为电梯运行安全回路的一部分,电梯控制系统只有在收到门锁关闭信号后才能允许电梯运行。 2.2速度曲线图形 开关门速度曲线图形是决定电梯运行效率和乘客感官舒适度的重要指标之一,因此选择适当的速度指令曲线也是十分重要的。 2.2.1开门速度曲线 A段:低速运行,使轿门门刀和厅门门球装置夹紧,并以低速试开门。当电梯到达指定层站平层开门时,为防止有意外的阻碍物阻挡,应先以低速运行试开门,如不能正常开启则表明有阻碍物。此举可避免一开始即高速运行导致发生的意外撞击。 B段:加速段,为提高效率而提高运行速度,直至达到预设定的速度。 C段:以高速运行开门。 D段:减速段,为防止高速撞击引起的噪声,在门开启80%左右时开始减速,直至全部开启。 2.2.2关门速度曲线 E段:加速段,为提高效率而提高运行速度,直至达到预设定的速度。 F段:以高速运行关门。 G段:减速段,为防止高速撞击引起的噪声,应在门关闭80%左 右时开始减速,直至门全部关闭。 H段:在门全部关闭后,应再提高速度以加快轿门门球和厅门门刀装置的松开,使电梯向其它层站运行。此段速度曲线可使乘客的等待时间减少,提高电梯的运行效率。 2.3初始化设置 在安装好门机后,应使控制系统进入自学习状态,其中包括两方面内容: 2.3.1读取转子磁极位置和编码器零位的夹角α,转子磁极位置和定子空间磁场的夹角θ由永磁同步电动机的结构和控制理论决定:编码器应选用绝对值编码器和增量编码器合二为一的特殊编码器,其中绝对值编码器部分用于检测转子的磁极位置,增量编码器部分用于对脉冲记数。α为编码器和转子的机械安装位置所决定,将读取的角度α应存入FLASHROM,以避免断电后不必要的再次自学习,以提高运行效率和维护的方便性。在第一次运行或在断电检修后时,电动机的转子磁极与定子空间磁场的夹角θ是不确定的。因此此时需检测转子磁极位置,只有检测出转子的实际空间位置后,控制系统才能确定控制模式和输出准确的电流频率和相位。在绝对值编码器中有F0~F3四个检测相位,把一圈分为16段,每段为360/16=22.5°,如果某永磁电机为20极对数,则22.5/20=1.125°,即只须在上电后,电机以特定慢速转过 1.125°机械角(折算到门的运行距离是微乎其微的),就能检测到转子磁极位置,然后即可加以矢量控制。 2.3.2读取门宽度尺寸,并自动设置运行曲线 由于电梯载重量的不同,门宽度尺寸也不尽相同,为使该门机控制系统有广泛的适应性,在第一次运行时,应自动设置运行曲线。具体实施过程如下: 使门从全开状态慢速运行至全闭状态:以开门到位开关动作为其起始状态,关门到位开关动作为其结束状态,将编码器脉冲累计数存入FLASHROM。由于在开门过程中的A段、B段、D段和关门过程中的E段、F段、G段的行程都是固定不变的,门宽度尺寸的不同只需改变高速段C段和F段的行程即可。因此经过运算可设置各速度曲线变化点的位置,并存入FLASHROM。另外,门机长时间运行中可能产生程序出错使存储器中的数据丢失、门机结构发生变形使门宽度尺寸发生变化,从而引起门系统发生故障。为避免上述情况的产生,应定时刷新FLASHROM中的脉冲累积数以及各速度曲线变化点的位置。 三、对永磁同步电梯检验及电机性能分析 3.1基于等效磁路的失磁检验方法 等效磁网络是根据等效磁通原理,把电机中磁通分布较均匀"几何形状又较为规则的部分作为一个单元,计算其等效磁导,各单元之间通过节点连接,利用磁网络与电网络的相似性,求出各节点的磁位或通过单元的磁通进而求得有关参数,与正常运行的电机进行对比,进

基于MTPA的永磁同步电动机矢量控制系统分解

基于MTPA的永磁同步电动机矢量控制系统 1 引言 永磁同步电动机由于自身结构的优点,再加上近年来永磁材料的发展,以及电力电子技术和控制技术的发展,永磁同步电动机的应用越来越广泛。而对于凸极式永磁同步电动机,由于具有更高的功率密度和更好的动态性能,在实际应用中越来越受到人们的重视[1]。 高性能的永磁同步电动机控制系统主要采用的矢量控制。交流电机的矢量控制由德国学者blaschke在1971年提出,从而在理论上解决了交流电动机转矩的高性能控制问题。该控制方法首先应用在感应电机上,但很快被移植到同步电机。事实上,在永磁同步电动机上更容易实现矢量控制。因为该类电机在矢量控制过程中不存在感应电机中的转差频率电流而且控制受参数(主要是转子参数)的影响也小。 永磁同步电动机的矢量控制从本质上讲,就是对定子电流在转子旋转坐标系(dq0坐标系)中的两个分量的控制。因为电机电磁转矩的大小取决于上述的两个定子电流分量。对于给定的输出转矩,可以有多个不同的d、q轴电流的控制组合。不同的组合将影响系统的效率、功率因数、电机端电压以及转矩输出能力,由此形成了各种永磁同步电动机的电流控制方法。[2]针对凸极式永磁同步

电动机的特点,本文采用最优转矩控制(mtpa),并用一种更符合实际应用的方法进行实现,并进行了仿真验证。

图1 电流id、iq和转矩te关系曲线 2 永磁同步电动机的数学模型 首先,需要建立永磁同步电动机在转子旋转dq0坐标系下的数学模型,这种模型不仅可用于分析电机的稳态运行性能,还可以用于分析电机的暂态性能。 为建立永磁同步电机的dq0轴系数学模型,首先假设: (1)忽略电动机铁芯的饱和; (2)不计电动机中的涡流和磁滞损耗; (3)转子上没有阻尼绕组; (4)电动机的反电动势是正弦的。 这样,就得到永磁同步电动机dq0轴系下数学模型的电压、磁链和电磁转矩方程,分别如下所示:

基于SVPWM的永磁同步电机控制系统的仿真

基于SVPWM的永磁同步电机控制系统的仿真 随着电动机在社会生产中的广泛应用,由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合已获得广泛的应用。我国制作永磁电机永磁材料的稀土资源丰富,稀土资占全世界的80%以上,发展永磁电机具有广阔的前景。 第一章永磁同步电机的矢量控制原理 1.1 永磁同步电机控制中应用的坐标系 交流电机的数学模型具有高阶次,多变量耦合,非线性等特征,难以直接应用于系统的设计和控制,与直流电机单变量,自然解耦和线性的数学模型相比较,交流电机显得异常复杂。因此需要通过适当的转换,将交流电机的控制变换为类似直流电机的控制将大大简化交流电机控制的复杂程度。 永磁同步电机矢量控制的基本思想是把交流电机当成直流电机来控制,即模拟直流电机的控制特点进行永磁同步电机的控制。为简化感应电机模型,可将电机三相绕组电流产生的磁动势按平面矢量的叠加原理进行合成和分解,使得能够用两相正交绕组来等效实际电动机的三相绕组。由于两相绕组的正交性,变量之间的耦合大大减小。 1.1.1系统中的坐标系 1)三相定子坐标系(U-V-W坐标系) 其中三相交流电机绕组轴线分别为U、V、W,彼此之间互差120度空间电角度,构成了一个U-V-W三相坐标系。空间任意一矢量在三个坐标上的投影代表了该矢量在三个绕组上的分量。 2)两相定子坐标系(α-β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α-β坐标系。它的轴α和三相定子坐标系的A轴重合,β轴逆时针超

浅析永磁同步电机控制技术在电梯技术上的应用

浅析永磁同步电机控制技术在电梯技术上的应用 摘要:在当今社会,永磁同步电机在运动控制系统中得到了广泛的应用,电梯 用永磁同步电动机是目前电机应用领域的研究重点之一。永磁同步电机在电梯技 术上的应用减轻了日常维护工作量,提高了电梯系统的可靠性,其研究具有重要 的科学意义和实用价值。 关键词:永磁同步电机;控制技术;电梯技术 引言:近几年来,永磁同步电机在电梯设计上的研发具有很大的实用价值。 永磁同步电动机以其节能、控制性能好、通过频率的变化进行调速、结构简单易 维护等优点,在电梯技术上得到了广泛应用。 1.永磁同步电机概述 永磁材料的应用是永磁同步电机的关键技术。永磁材料在近年来开发的很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴5(Sm Co5),第二代钐钻2:17(Sm 2Co17)和第三代钕铁硼(N d—Fe—B )。80 年代初开发的钕铁 硼 (Nd—Fe—B ) 稀土永磁材料,性能十分优越,(BH )max,3800kJ/m3,到 90 年代,其 (BH )max,500kJ/m。Nd—Fe—B 稀土材料不含价格昂贵的钴,其可加工 性能也比较好,价格相对便宜。我国又是稀土大国,储量世界第一。开发应用前 景广泛,适合在永磁同步电机中应用。永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高。和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因为效率高,功率因数高,力 矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但 它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它 省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实 现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制 系统引起了国内外学者的广泛关注。我国是盛产永磁材料的国家.特别是稀土永 磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍 左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际 先进水平。因此,对于我国来说,永磁同步电动机有很好的应用前景。 2.永磁同步电机在电梯开发应用的安全性和可靠性 永磁同步电机技术在电梯的设计中得以开发利用,有效地提高了电梯曳引系 统安全性,可以满足我国现行标准GB7588-2003《电梯制造与安装安全规范》中 安全保护装置的要求。 2.1 运用永磁同步结构技术,保证电梯系统的安全可靠性 采用永磁同步结构形式可以保证在电梯实际使用中的安全可靠性。传统的以 异步机驱动的蜗轮蜗杆曳引机,机械制动装置作用于电机轴上,因减速机构的存在,没有直接作用于曳引轮。当减速机构出现损坏(如联轴器故障、蜗杆轴断裂等),会造成机械制动装置制动无效、电梯溜车的危险。GB7588-2003《电梯制 造与安装安全规范》在有关“上行超速保护装置”的条文中也作出了具体的规定, 要求上行超速保护装置应直接作用于轿厢、或对重、或曳引轮(例如直接作用在 曳引轮,或作用于最靠近曳引轮的曳引轮轴上)。永磁同步电机因其低速性能好 的特点,可以无需减速机构,直接驱动曳引轮,将电机轴与曳引轮构成一个整体,机械制动装置直接作用于电机轴—曳引轮整体上,使得曳引机整体结构更加紧凑 的同时,也满足了标准的要求,规避了传统曳引减速机构可能引起的安全风险, 保证了电梯系统的安全可靠性。

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park 变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM的控制信

浅析永磁同步曳引机的优劣

浅析永磁同步曳引机的优劣 2010-03-25 01:04 来源:安徽中菱电梯有限公司admin 点击: 701次 电梯是为高层建筑交通运 电梯是为高层建筑交通运输服务的比较复杂的机电一体化设备。近年来,随着城市的发展,高层建筑的迅速增多,对高性能电梯的电力拖动系统提出了新的要求,更加舒适、小型、节能、可靠和精确有效的速度控制是其发展方向,而电机技术、功率电子技术、微计算机技术及电机控制理论的发展,使其实现成为了可能。 如果说控制柜是电梯的大脑,那么曳引机就是电梯的心脏。作为电梯的核心部件,曳引机技术经过了蜗轮蜗杆传动曳引机、行星齿轮和斜齿轮传动曳引机、无齿轮传动曳引机三个发展阶段。 蜗轮蜗杆传动曳引机,传动效率较低,只有70%左右,由于传动转矩能力大、技术成熟,目前依然广泛应用于低速电梯和各种货梯。 行星齿轮和斜齿轮传动曳引机,传动效率能达到90%,但要求齿轮加工精度高,成本也比较高,这两种曳引机产品在中国并没有得到广泛地应用,随着成本较低的永磁同步无齿轮传动曳引机技术的发展,行星齿轮和斜齿轮传动曳引机已逐渐被淘汰。 永磁同步电机与异步电机的主要区别及特点 由于异步电机是靠电机定子电流为电机转子励磁的,而永磁电机转子是用永磁体直接产生磁场不需要电励磁,因此永磁同步电机具有结构简单、运行可靠、体积小、重量轻、效率高、形状和尺寸灵活多样等特点。 交流永磁同步曳引机的主要优点有: 1、结构简单运行可靠,由于永磁电机转子不需要励磁,省去了线圈或鼠笼,简化了结构,实现了无刷,减少了故障,维修方便简单,维修复杂系数大大降低。 2、低温升、小体积永磁同步电机与感应电机相比,因为不需要无功励磁电流,而具备:(1)功率因数高,近于l; (2)反电势正弦波降低了高次谐波的幅值,有效地解决了对电源的干扰的问题; (3)减小了电机的铜损和铁损; (4)同步电机发热温升小(约38K),电机外形小,体积与异步电机相比,降低一至两个机座号。

浅析电梯永磁同步电机

浅析电梯永磁同步电机 浅析电梯永磁同步电机 摘要:本文重点介绍稀土永磁同步电机在电梯应用的现状和发展,通过对永磁同步电机结构特点、控制方式、驱动系统和安全性可靠性的分析,说明永磁同步电机在技术应用方面具有明显的技术优势,指出其在电梯的设计和应用具有重大的现实意义。 1、引言 随着稀土永磁同步电机的开发与应用,以及和变频控制实现了机电一体化,永磁同步电动机已被广泛应用于机械、石油、冶金、建材、食品、印刷、包装、造纸、造船、塑料、纺织化纤、军工等行业。其种类很多,用量非常大。永磁同步电动机以其体积小、节能、控制性能好、又容易做成低速直接驱动,消除齿轮减速装置,可通过频率的变化进行调速等优点,在电梯技术上也得以开发应用。其运行低噪声、电梯平层精度和乘客舒适感都优于以前的驱动系统。特别是KONE电梯公司研发的无机房电梯,率先应用了永磁同步电机,使得永磁同步电机无齿轮曳引技术崭露头角,显示了巨大的优越性,得到业内人士的普遍看好,永磁同步电机在电梯设计上的研发具有很大的实用价值。 2、永磁同步电机的结构特点 永磁同步电动机的定子部分与一般的异步电机无多大不同,其转子结构与异步电机的转子区别是多了一套永磁体。其结构随永磁材料性能不同和应用领域的差异而不同,根据剩磁密度Br和矫顽力Hc等技术参数的不同,而磁极结构不同。电梯技术上开发应用的稀土永磁同步电机常做成瓦片式,贴在转子的表面,或嵌在转子铁心中,分内转子型和外转子型两种。 永磁材料的应用是永磁同步电机的关键技术。永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴 5(SmCo5),第二代钐钴2:17(Sm2Co17)和第三代钕铁硼(Nd-Fe-B)。铝镍钴是20世纪三十年代研制成功的永磁材料,

相关主题
文本预览
相关文档 最新文档