我国长江口及邻近海域铜藻生长和金潮分布变化特征
- 格式:pdf
- 大小:3.66 MB
- 文档页数:9
长江口横沙浅滩及邻近海域含沙量与沉积物特征分析徐海根;虞志英;钮建定;李身铎;郑建朝【摘要】长江口在河流动力和海洋动力相互作用和相互制约下,在河口口门形成了庞大的河口拦门沙系,在河口口外形成了巨大的水下三角洲.横沙浅滩是河口拦门沙系的重要组成部分.横沙浅滩含沙量不仅受到流域来水来沙条件的影响,更主要的是受到台风暴潮和寒潮大风的影响,除了大潮含沙量大于小潮含沙量的特征外,冬季含沙量大大大于夏季含沙量.横沙浅滩5 m水深含沙量的总体水平约为0.459 kg/m3.横沙浅滩邻近海域含沙量在向海方向上迅速降低.除潮汐大小含沙量呈现大小变化之外,冬季含沙量大于夏季含沙量是其主要特征.长江流域来沙近年来呈现减少趋势,邻近海域含沙量有所减少,局部海床出现冲刷现象.横沙浅滩沉积以细粉砂为主,水下三角洲沉积物以粘土质粉砂为主,横沙浅滩及邻近海域沉积物的平面分布和垂向分布均反映了横沙浅滩沉积物和水下三角洲沉积物的组合结构.拟建横沙浅滩挖入式港池和外航道沉积地层均为第四纪疏松沉积层,特别是水下三角洲地层,可挖性好,容易成槽,对工程建设有利.【期刊名称】《华东师范大学学报(自然科学版)》【年(卷),期】2013(000)004【总页数】13页(P42-54)【关键词】长江口;横沙浅滩;水下三角洲;含沙量;沉积物【作者】徐海根;虞志英;钮建定;李身铎;郑建朝【作者单位】华东师范大学河口海岸学国家重点实验室,上海 200062;华东师范大学河口海岸学国家重点实验室,上海 200062;中交第三航务工程勘察有限公司,上海200032;华东师范大学河口海岸学国家重点实验室,上海 200062;中交第三航务工程勘察有限公司,上海 200032【正文语种】中文【中图分类】P7510 引言拟选横沙浅滩挖入式港池及外航道位于长江口横沙浅滩及邻近海域.长江全长6 300 km,流域面积180万km2,流域来水来沙丰富.长江口潮汐强度属于中等.口门多年平均潮差2.66 m,最大潮差4.62 m.长江口潮量巨大.在多年平均流量和平均潮差的情况下,洪季大潮进潮量有53亿m3,枯季小潮进潮量也达13亿m3.长江河口河流作用显著,海洋作用强劲,两者相互作用和相互制约,导致在河口口门泥沙集聚和沉积,形成河口拦门沙系,包括拦门沙航道和拦门沙浅滩,两者相间分布.拦门沙浅滩有崇明东滩、横沙东滩和横沙浅滩、九段沙等.横沙东滩和横沙浅滩以N23丁坝分界,以西与横沙岛相接,称横沙东滩,以东为横沙浅滩.长江口拦门沙向海方向为巨大的长江水下三角洲.面积达1万km2以上,下界水深30~50 m,北面与苏北浅滩相接,南面连接杭州湾海底平原.它是长江入海泥沙扩散沉积形成的一个巨大地貌单元.1 含沙量横沙浅滩含沙量具有长江口拦门沙浅滩含沙量的共同特征.含沙量不仅受上游来水来沙的影响,更加受到台风、寒潮、波浪和潮汐潮流的巨大影响.我们在邻近的佘山水文站从1998年到2001年连续三年观测含沙量资料(见表1),得到多年平均含沙量为0.459 kg/m3.佘山水文站在崇明东滩5 m水深处,可以代表横沙浅滩5m水深处的含沙量总体水平.20世纪80年代,上海市海岸带和海涂资源综合调查时,横沙浅滩5 m水深处含沙量为0.5 kg/m3,与上述数据相当[1,2].横沙浅滩含沙量季节性变化明显(见图1).7月最小,11月最大,月均值前者为0.21 kg/m3,后者为0.74 kg/m3.11月最大含沙量曾出现过17.29 kg/m3.含沙量的季节性变化,显然不是上游来水来沙变化为主因,而是台风暴潮和寒潮大风影响的结果.表1 1998—2001年佘山站含沙量统计表Tab.1 Statistic table of concentration of Sheshan Station from1998 to 2001 kg·m-31 0.46 1.76 8 0.384.20 2 0.44 1.39 9 0.40 3.02 3 0.53 3.86 10 0.47 4.34 4 0.42 2.75 11 0.74 17.29 5 0.26 1.48 12 0.44 1.76 6 0.24 1.10 年平均0.42 17.29 7 0.21 1.81横沙浅滩邻近海域含沙量降低.如表2所示,北港口门含沙量比口外大.含沙量向海方向急剧降低,在洪季北港口门平均含沙量为0.786 kg/m3,口外20 m等深线附近仅为0.153 kg/m3.图1 佘山全年含沙量Fig.1 Monthly suspended sediment concentration at Sheshan Station表2 1982年含沙量同步观测结果Tab.2 Observed suspended sediment concentration in 1982 kg·m-32301(北港口门) 0.728 0.844 0.7860.803 0.746 0.774 2302(北港口外) 0.167 0.139 0.153 2401(北槽口门)0.329 0.587 0.458 1.130 1.068 1.091 2402(北槽口外) 0.242 0.238 0.2401982年洪季平均含沙量分布如图2所示.大潮含沙量大,小潮含沙量小;含沙量等值线大潮外推,小潮内移;含沙量分布向海方向急剧降低.图2 洪季大小潮平均含沙量分布图(kg·m-3)Fig.2 Distribution of average concentration of flood season(kg·m-3)1982年枯季平均含沙量分布如图3所示.大潮含沙量大,小潮含沙量小;含沙量等值线大潮外推,小潮内移;含沙量平面分布,向海方向急剧降低.图3 枯季大小潮平均含沙量分布图(kg·m-3)Fig.3 Distribution of average concentration of dry season(kg·m-3)根据图2和图3分析,含沙量季节性变化明显.冬季含沙量比夏季大.0.2 kg/m3含沙量等值线,洪季大潮分布在20 m等深线以西,枯季大潮可东移到40 m等深线附近.1998年北槽深水航道建设工程开始,横沙东滩促淤圈围工程跟着开工建设,到2004年横沙浅滩及邻近海域的含沙量有如下的分布特征.如表3所示,横沙浅滩5 m水深以浅地区,平均含沙量均在0.5 kg/m3至1.0kg/m3;在横沙浅滩东侧前沿水深5~10 m的鸡骨礁附近含沙量明显降低,平均含沙量降至0.5 kg/m3以下.实测最大含沙量分布在底层,可达1.0kg/m3 以上[5].表3 2004年含沙量同步观测结果Tab.3 Observed suspended sediment concentration in 2004 kg·m-312 N2(北导堤外) 0.40 0.60 0.43 0.89 N4(横沙鸡骨礁-10 m) 0.19 0.35 0.22 0.54 CS5D(-10 m航道侧)0.53 0.86 1.07 1.CS4D(口内) 0.42 0.59 0.74 1.512004年北槽口及附近海域含沙量平面分布如图4所示.从中可以看出,北槽口含沙量大,向海方向急剧降低.0.1 kg/m3含沙量等值线介于10 m和20 m等深线之间,含沙量等值线走向与地形等深线走向相似.长江流域来沙近年发生了显著变化,对河口含沙量已经产生了影响.长江多年平均径流总量约9 000亿m3,年内分布具有季节性(见图5).流域来沙,在各种因素的影响下近年呈现减少趋势.以安徽大通站为例,年均输沙量1951—1989年为4.71亿t,1990—2000年为3.46亿吨,2000—2009年为1.92亿t,2006年为0.848亿t,2011年仅为0.77亿t(见表4和图6).流域来沙减少已致长江口口内含沙量降低,邻近海域也有所降低[4].长江口邻近海域海底地形出现冲刷带,可能与流域来沙减少有关.不过,这方面还得进行进一步的现场测量和研究工作.图4 2004年长江口全潮平均含沙量分布图Fig.4 Distribution of average tidal concentration of Changjiang Estuary in 2004表4 长江大通站输沙量Tab.4 Sediment discharge of Changjiang Datong Stationmm 1950—2000 4.33 0.486 0.年份年输沙量/亿t 年均含沙量/(kg·m-3) D50/017 2003 2.06 0.223 0.010 2011 0.77图5 大通站年径流量变化过程Fig.5 Annual runoff of the Changjiang River in Datong Station图6 大通站年输沙量变化过程Fig.6 Annual sediment discharges of the Changjiang River in Datong Station2 沉积物横沙浅滩及邻近海域动力条件和泥沙运动十分复杂,沉积环境也有多样,因此沉积物类型较多.沉积物类型,粗至细砂,细至粘土,各种类型都有.如细砂、粉砂质砂、砂质粉砂、粉砂、粘土质粉砂、粉砂质粘土和粘土[2,3,5,7].但是,它们分布有序,很有规律.横沙浅滩基本上由粉细砂物质组成.图7为取样站,表5为颗粒分析成果表.有细砂、粉砂质砂、砂质粉砂组成.个别滩地也有粘土质粉砂等细物质沉积,但不是主要的. 图7 横沙浅滩沉积物取样站位图Fig.7 Sediment sampling stations around Hengsha Shoal1982年横沙浅滩及邻近海域沉积物平面分布如图8所示.横沙浅滩由粉砂质砂组成.拦门沙航道由粘土质粉砂组成.邻近海域水下三角洲由粉砂和粘土质粉砂等细颗粒物质组成.2004年横沙浅滩及邻近海域沉积物平面分布如图9所示.横沙浅滩由粉砂质砂组成.拦门沙航道由粘土质粉砂组成.邻近海域5~10 m等深线之间沉积物由粉砂组成,10 m等深线以深的水下三角洲由粘土质粉砂组成.表5 沉积物粒度分析成果统计Tab.5 Statistics of sediment grain sizeQ179 65.8 20.4 13.8 0.126 0.116 TS 2001.5 Q180 50.4 34.9 14.3 0.063 0.067 TS 2001.5 Q181 44 40.5 15 0.051 0.054 TS 2001.5 Q182 75.3 14.75 9.95 0.136 0.125 S 2001.5 Q188 60.52 39.44 27.34 0.122 0.111 Y-TS 2001.5 Q189 76.7 15.58 7.54 0.140 0.129 S 2001.5 Q190 12.5 61.78 25 0.012 0.028 YT 2001.5 Q191 70.9 18.85 10 0.132 0.128 S 2001.5 Q199 20.3 60.56 18.6 0.0200.048 ST 2001.5 Q200 20.2 60.15 19.1 0.019 0.047 ST 2001.5 Q201 73.1 15.29 11.3 0.139 0.120 S 2001.5 Q208 57.7 29.03 12.90.096 0.093 TS 2001.5 Q209 50.9 31.87 16.7 0.067 0.076 TS 2001.5图8 1982年长江口底砂D50(mm)分布图Fig.8 Distributions of Changjiang Estuary sediment(D50)in 1982图9 2004年长江口底砂D50(mm)分布图Fig.9 Distributions of Changjiang Estuary sediment(D50)in 2004长江口表层沉积物中泥的百分含量平面分布图(见图10)和砂的百分含量平面分布图(见图11),是20世纪80年代上海市海岸带和海涂资源综合调查沉积调查的资料.从中可以看出,横沙浅滩表层沉积物泥的百分含量不足10%或20%,砂的百分含量在50%~80%以上.横沙浅滩邻近海域水下三角洲表层沉积物中泥的百分含量在50%以上,砂的百分含量不足20%.应予指出,长江口东北部分,东经122°30′以东和北纬31°20′以北一大片海域,泥的百分含量不足10%,砂的百分含量大于80%,是一个粗颗粒沉积物的存在区.横沙浅滩拟建挖入式港池建议提出以后[6],中交第三航务工程勘察设计院有限公司在横沙浅滩及邻近海域布置和进行了4个工程地质钻孔(见表6,图12和图13),为研究工程区域沉积物垂向分布提供了资料[7].地质历史上,长江口经过复杂的变化.冰后期海侵,长江口成为溺谷.河流入海泥沙堆积,溺谷变成河口湾,再变成三角洲河口.三角洲河口发育阶段,河口拦门沙发育(包括拦门沙航道和拦门沙浅滩),水下三角洲发育.C3孔可以代表河口拦门沙沉积剖面.表层为河口拦门沙航道沉积,物质细,粉质粘土,第二层为河口拦门沙浅滩沉积,物质粗,粉细砂.根据历史海图分析,1842年北港口航道在佘山附近入海,现在北港口航道已在佘山以南,已经移到以前的横沙浅滩位置.根据目前横沙浅滩表层沉积物对比分析,实际上第二层粗物质粉细砂与目前滩面表层沉积物相似.所以C3孔可以代表横沙浅滩沉积物的沉积剖面.横沙浅滩粉细砂沉积层的底板高程约在鸡骨礁(122°22.9′E、31°10.4′N)理论最低潮面下13.20 m 左右.第三层、第四层、第五层,物质变细,粉质粘土、淤泥粘土到粘土,为全新世水下三角洲沉积.底板高程约在鸡骨礁理论最低潮面下48.50 m左右.第六层,物质有所粗化,粉质粘土夹粉砂,属晚更新世沉积地层.图10 长江口沉积物泥百分含量分布图Fig.10 Distributions of Changjiang Estuary mud percentage concentration图11 长江口沉积物砂百分比含量分布图Fig.11 Distributions of Changjiang Estuary sand percentage concentration表6 勘探点位置表Tab.6 Locations of drilling coresC1 31°14.9997′122°25.0110′ 长江口锚地,鸡骨礁外C2 31°15.0029′ 122°20.2960′ 横沙浅滩东侧,鸡骨礁北约8 km C3 31°20.3153′ 122°07.9836′ 横沙浅滩北侧,长江口北港水道C4 31°7.4900′ 122°19.9900′ 横沙浅滩南侧,鸡骨礁南约5 km,长江口南港水道C1孔位于横沙浅滩以东邻近海域,在10 m等深线以外的水下三角洲上.第一层,淤泥;第二层,淤泥质粉质粘土;第三层,淤泥质粘土;第四层,粘土.都是细颗粒沉积物,都属第四纪全新世水下三角洲沉积.与C3孔水下三角洲沉积剖面相似.底板高程在鸡骨礁理论最低潮面下58 m左右.第四层向下的地层为晚更新世沉积地层.C2孔介于C1孔和C3孔之间,在横沙浅滩东侧5 m等深线附近.第一层为粉细砂,属于河口拦门沙浅滩沉积.第二层,淤泥质粘土;第三层,粘土,属于水下三角洲沉积.这与C3、C1的水下三角洲沉积剖面相似.底板高程在鸡骨礁理论最低潮面下46.80 m左右.该层以下为晚更新世沉积地层.实际上,C3、C2、C1三个钻孔可以构成从横沙浅滩到水下三角洲的一个沉积纵剖面.剖面上部河口拦门沙浅滩沉积,以灰色粉细沙为主,局部为灰黄色,饱和,松散~稍密,砂质不纯,颗粒较均匀,含云母和贝壳碎片,夹粘性泥层.剖面下部呈现灰黄色淤泥质粉质粘土,饱和,流塑,土质均匀,切面较光滑,夹少量粉砂层,含少量有机质,偶见粉砂小团块,摇振见反应,韧性中等,再现灰色淤泥质粘土,饱和,流塑,土质均匀,切面光滑,有光泽,夹少量粉砂或粉土微粒层,含少量贝壳碎片,无摇振反应,韧性高,标准贯入击数<1;最后为灰色粘土,饱和,软塑,土质均匀,切面光滑,有光泽,夹粉砂微粒层,含少量贝壳碎片,无摇振反应,韧性高,标准贯入击数2~5击.构成的沉积纵剖面,从横沙浅滩到水下三角洲,沉积物有两大类型,上部为河口拦门沙浅滩沉积,物质粗,向海方向尖灭;下部为水下三角洲沉积,物质细,遍及横沙浅滩和水下三角洲.晚更新世地层在全新世地层之下,标准贯入击数高.这种沉积物沉积剖面结构对横沙浅滩挖入式港池和外航道建设十分有利.C4孔位于横沙浅滩南侧10 m等深线附近,依然显示河口浅滩沉积和水下三角洲沉积的二元结构特征.但是,在鸡骨礁理论最低潮面下48.00m以下的晚更新世地层确为粉细砂,并不是其余3个钻孔所显示的粉质粘土夹粉砂,说明晚更新世沉积地层平面变化比较复杂.在现有资料情况下,C3、C2、C1沉积物垂向分布特征,已经包涵了横沙浅滩及邻近海域,而且沉积物分布有序、规律,可以作为拟选工程横沙浅滩挖入式港池和外航道建设的沉积物分布的特征资料.疏松沉积层,可控性好,对拟建工程建设有利.3 小结综合以上讨论分析,可得:① 长江口在河流和海洋相互作用与相互制约下,形成了庞大的河口拦门沙系和水下三角洲两大地貌单元.拟选横沙浅滩挖入式港池和外航道就在河口拦门沙浅滩和水下三角洲上.② 横沙浅滩5 m水深处含沙量在0.459 kg/m3左右.大潮含沙量大于小潮,冬季含沙量大于夏季,台风暴潮、寒潮大风对浅滩地区泥沙运动作用明显.邻近海域含沙量低,向海方向急剧减小.含沙量大潮大于小潮,冬季大于夏季.近年来长江流域来沙呈现减小趋势,邻近海域含沙量也因此有所降低,局部海床有所冲刷.③ 横沙浅滩表层沉积物粗,以粉细砂为主,水下三角洲表层沉积物细,以粘土质粉砂为主.根据地质钻孔资料分析,C3孔、C2孔、C1孔显示的沉积物垂向分布,全新世地层可以分为两层,上层由粉细砂组成,属于河口拦门沙浅滩沉积,下层由淤泥质粉质粘土、淤泥质粘土、粘土组成,属于水下三角洲沉积.都是疏松沉积层,可挖性好,对横沙浅滩挖入式港池和外航道建设有利.上述意见仅根据现有资料所做的初步分析.实际上,含沙量和沉积物特征及其分布十分复杂,随着研究工作进展,还应做更多、更广泛的调查研究工作.[参考文献][1]陈吉余.中国河口海岸研究与实践[M].北京:高等教育出版社,2007.[2]陈吉余.上海市海岸带和海涂资源综合调查报告[M].上海:上海科学技术出版社,1988.[3]郭蓄民,许世远,王靖泰,等.长江河口地区全新统的分层与分区[G]//严钦尚,许世远.长江三角洲现代沉积研究.上海:华东师范大学出版社,1987. [4]何青.河口泥沙[M]//陈吉余.21世纪的长江河口初探.北京:海洋出版社,2009.[5]虞志英.长江口北槽口外水下地形[G]//沉积环境变化和对三期外航道的影响.上海:华东师范大学河口海岸国家重点实验室,2004.[6]中交第三航务工程勘察设计院有限公司,华东师范大学河口海岸国家重点实验室.上海国际航运中心横沙浅滩挖入式港池规划方案研究报告[R].上海:华东师范大学,2012.[7]中交第三航务工程勘察设计院有限公司.上海新港区选址(横沙)项目研究前期工作报告[R].上海:中交第三航务工程勘察设计院有限公司,2012.。
长江流域藻类多样性及其生态学意义长江流域是中国最大的河流流域,也是世界第三大河流流域。
在长江流域分布着丰富的生物多样性,其中藻类是一类非常重要的生物。
藻类在水生生态系统中占有非常重要的位置,不仅可以光合作用为其他生物提供生命所需的营养物质,还能够影响水质、环境、生态平衡等多个方面。
长江流域的藻类多样性非常丰富,包括硅质藻、红藻、绿藻、金藻、裸藻等多种类型。
其中,硅质藻在整个长江流域的生态系统中扮演着至关重要的角色。
硅质藻是属于硅藻门的藻类,其细胞壁含有较高的硅质物质,许多种类的硅质藻是水生生态系统中最重要的一种原生生物。
许多硅质藻有着非常美丽的形态,形成了水下的一道道独特的风景线。
同时,硅质藻还能在水中吸收营养物质,控制水质,对长江生态环境的保护具有至关重要的生态学意义。
在长江流域中常见的硅质藻有许多种类,包括栅板藻、骨条藻、鳞状硅藻等。
其中,栅板藻是比较常见的一种硅质藻,其整体形态呈现为长方形,在显微镜下观察可见到许多具有一定排列方式的栅板结构。
通过栅板藻的数量和种类可以反映出长江流域水体的营养水平和藻类生态系统的状态,从而为水质监测和环境保护提供了可靠的科学依据。
除了硅质藻,长江流域中还存在着丰富的其他类型藻类。
红藻是一种常见的海洋生物,但在长江流域中也有一些种类存在。
红藻在长江流域中分布广泛,它们有许多美丽的形态,如人们所熟知的海带和紫菜等等。
绿藻也是一种重要的长江藻类,它具有多样化的形态和种类,在厦门、青岛等地也有重要食用藻类。
藻类是长江流域水生生态系统的重要组成部分,它们在水体生态系统中起到着非常重要的作用。
一方面,藻类可以为其他生物提供营养物质和氧气,维持着生态系统的稳定性和生命的延续;另一方面,由于藻类对环境的响应感非常灵敏,它们可以在最短时间内对环境的变化做出响应,从而可以提供准确可靠的水质监测手段,为生态环境的保护和可持续发展提供决策依据。
总之,长江流域的藻类多样性非常丰富,其中硅质藻是水生生态系统中至关重要的一类生物,它们不仅可以影响水体的质量和环境,还可以为其他生物提供生存所需的营养物质和氧气。
长江口海域春季浮游植物的年际变化林梅;李扬【摘要】于2014年5月在长江口海域采集海水样品,分析了浮游植物种类组成、细胞丰度、优势种等群落结构特征.共鉴定浮游植物105种,其中硅藻30属56种,甲藻19属41种,以及隶属于金藻、蓝藻等的8个种.浮游硅藻以近岸半咸水种为主,优势种类是中肋骨条藻(Skeletonema costatum);浮游甲藻以沿岸广布种为主,典型代表是东海原甲藻(Prorocentrum donghaiense).为了更好地了解长江口海域浮游植物的年际变化趋势,本文收集整理了该海域1986-2014年间的春季数据,分析了浮游硅藻、浮游甲藻主要群落特征的年际变化,以及浮游硅藻优势种类细胞粒径的变化趋势.结果表明:(1)浮游硅藻、浮游甲藻的种类数均呈现不同程度的上升趋势,浮游甲藻的上升幅度更为明显;(2)浮游甲藻种类数在浮游植物种类数中的占有比例呈上升趋势,而浮游硅藻所占比例呈下降趋势;(3)浮游硅藻优势种类的细胞粒径呈现小型化趋势.%Water samples were collected from Changjiang River estuary in May,2014.The phytoplankton assemblage were analyzed and characterized in terms of species composition,cellabundance,members,and ecological distribution of the dominant species.Totally,105 taxa were recorded,containing 56 taxa belonging to 30 genera in Bacillariophyta and 41 taxa belonging to 19 genera in Dinophyta.The ecotypse of most diatom species wereeurythermal,euryhaline,and cosmopolitan.Skeletonema costatum (Greville) Cleve was the dominant.Most dinoflagellates were near-shore cosmopolitans represented by Prorocentrum donghaienseLu.Meanwhile,to understand the interdecadal variation of phytoplanktonassemblage in the study areas,relative data in the spring from 1986 to 2014 were collected and compared.Results show that in the past nearly 30 years,the species diversity climbed in both diatoms and dinoflagellates,of which dinoflagellates were much more remarkable;the contribution of diatom diversity to total phytoplankton diversity declined,while the proportion of dinoflagellates diversity increased correspondingly;and the average cell size of the dominant diatom species presented a tread of miniaturization.【期刊名称】《海洋与湖沼》【年(卷),期】2017(048)002【总页数】9页(P303-311)【关键词】浮游植物;长江口;春季;年际变化;硅藻;甲藻;小型化【作者】林梅;李扬【作者单位】华南师范大学生命科学学院广州市亚热带生物多样性与环境生物监测重点实验室广州 510631;华南师范大学生命科学学院广州市亚热带生物多样性与环境生物监测重点实验室广州 510631【正文语种】中文【中图分类】Q178.1浮游植物是海洋生态系统的初级生产者, 具有种类多、数量大、繁殖快等特点, 是物质循环和能量转化中的关键环节, 具有重要的生态意义(Armbrust,2009; 高亚辉等, 2011; 孙晓霞等, 2011)。
长江口邻近海域浮游十足类生态特征周晓东;徐兆礼【期刊名称】《水产学报》【年(卷),期】2009(033)001【摘要】根据2002-2003年长江口29°00′~32°00′N、122°00′~123°30′E海域4个季节的海洋调查资料,运用定量、定性方法,探讨了长江口邻近海域浮游十足类丰度的季节变化、水团对丰度分布的影响、优势种对总丰度的贡献以及其生态适应特征.结果表明,长江口邻近海域浮游十足类丰度季节变化主要受温度影响,平面分布变化主要受盐度影响.夏季平均丰度最高(10.42 ind/m3),主要集中在长江口羽状锋(122°40′~123°30′ E)处,冬季丰度最低(0.00 4 ind/m3) .中型莹虾 (Lucifer intermedius)和细螯虾(Leptochela gracilis)是最主要的优势种.夏季,中型莹虾的贡献率(0.97)远大于细螯虾(0.12).中型莹虾平均丰度夏季最高(8.93 ind/m3),春季为0.28 ind/m3,秋季为0.14 ind/m3,冬季最低 (0.005 ind/m3).细螯虾在春季平均丰度0.11 ind/m3, 夏季0.67 ind/m3,秋季0.13 ind/m3,冬季0.004 ind/m3.【总页数】7页(P30-36)【作者】周晓东;徐兆礼【作者单位】中国水产科学研究院东海水产研究所农业部海洋与河口渔业重点开放实验室,上海,200090;上海海洋大学海洋科学学院,上海,201306;中国水产科学研究院东海水产研究所农业部海洋与河口渔业重点开放实验室,上海,200090【正文语种】中文【中图分类】S932.5【相关文献】1.夏季长江口及邻近海域水母类生态特征研究 [J], 陈洪举;刘光兴2.丰、枯水期长江口邻近海域浮游植物群落r结构特征及其环境影响初探 [J], 李照;宋书群;李才文;俞志明3.长江口及邻近海域浮游端足类分布特征 [J], 蔡萌;徐兆礼;朱德弟4.中国海及其邻近海域浮游介形类大尺度生态研究Ⅲ.浮游介形类的物种与生态类群多样性 [J], 陈瑞祥;林景宏5.长江口及邻近海域浮游介形类的分布与季节变化 [J], 陈华;徐兆礼因版权原因,仅展示原文概要,查看原文内容请购买。
第33卷㊀第5期2020年5月环㊀境㊀科㊀学㊀研㊀究ResearchofEnvironmentalSciencesVol.33ꎬNo.5Mayꎬ2020收稿日期:2020 ̄02 ̄04㊀㊀㊀修订日期:2020 ̄03 ̄21作者简介:王孝程(1990 ̄)ꎬ男ꎬ黑龙江哈尔滨人ꎬ工程师ꎬ博士ꎬ主要从事海洋生态学研究ꎬxcwang@nmemc.org.cn.∗责任作者ꎬ李宏俊(1982 ̄)ꎬ男ꎬ辽宁丹东人ꎬ研究员ꎬ博士ꎬ主要从事海洋生态学研究ꎬhjli@nmemc.org.cn基金项目:自然资源部海洋灾害预报技术重点实验室开放基金项目(No.LOMF1805)ꎻ国家海洋环境监测中心博士科研启动经费项目SupportedbyOpenFoundationofKeyLaboratoryofMarineHazardsForecastingꎬMinistryofNaturalResourcesꎬChina(No.LOMF1805)ꎻDoctoralFoundationofNationalMarineEnvironmentalMonitoringCenterꎬChina长江口海域生态环境状况及保护对策王孝程1ꎬ2ꎬ解鹏飞1ꎬ李㊀晴1ꎬ张金勇1ꎬ李宏俊1∗1.国家海洋环境监测中心ꎬ辽宁大连㊀1160232.自然资源部海洋灾害预报技术重点实验室ꎬ北京㊀100081摘要:为加快推进长江口海域的生态环境保护和修复工作ꎬ结合长江经济带大保护ꎬ系统总结分析了近20年长江口环境质量和生态监控区的监测结果.结果表明:①长江口海域生态系统长期处于亚健康状态.②长江径流总量呈现波动变化ꎬ年均流量无明显的变化ꎬ而长江口海域海水环境状况一直较差.③营养盐污染严重ꎬ主要污染物是无机氮和活性磷酸盐ꎻ浮游生物和底栖生物群落结构不稳定ꎬ存在生境破碎化严重㊁外来生物入侵㊁赤潮频发㊁低氧区等诸多生态问题.为加强长江口海域生态环境的保护与修复ꎬ建议:①加强顶层设计ꎬ推进落实陆海统筹ꎻ②科学规划临港产业布局ꎬ加强涉海产业的污染管理ꎻ③加强污染物入海排放管控ꎬ提升海洋环境保护意识ꎻ④保障海洋生态建设资金ꎬ强化海洋生态保护与建设.关键词:长江口ꎻ生态环境ꎻ变化趋势ꎻ生态问题ꎻ保护对策中图分类号:X321㊀㊀㊀㊀㊀文章编号:1001 ̄6929(2020)05 ̄1197 ̄09文献标志码:ADOI:10 13198∕j issn 1001 ̄6929 2020 03 29EcologicalEnvironmentoftheYangtzeEstuaryandProtectionCountermeasuresWANGXiaocheng1ꎬ2ꎬXIEPengfei1ꎬLIQing1ꎬZHANGJinyong1ꎬLIHongjun1∗1.NationalMarineEnvironmentalMonitoringCenterꎬDalian116023ꎬChina2.KeyLaboratoryofMarineHazardsForecastingꎬMinistryofNaturalResourcesꎬBeijing100081ꎬChinaAbstract:InordertopromotetheprotectionandrestorationoftheYangtzeestuaryundertheprotectionstrategyofYangtzeRiverEconomicBeltꎬwesystematicallyanalyzedthemonitoringdataoftheYangtzeestuarymarineecologicalmonitoringprogramsinrecent20years.Theresultsindicatedthattheecosystemwasinasub ̄healthlong ̄termstate.Thetotalrunofffluctuatedwhiletherewasnoobviouschangeintheannualaverageflow.Howeverꎬitisnoteworthythattheconditionofseawaterwaspoor.Nutrientsweremainpollutants(i.e.inorganicnitrogenandphosphate).Manyotherproblemssuchasbiodiversitylossꎬdamagedhabitatꎬalieninvasionꎬfrequentredtideꎬandlow ̄oxygenzonesalsoexist.Werecommendimprovingtheprotectionandrestorationoftheecologicalenvironmentfromthefollowingaspects:(1)Strengthenthetop ̄leveldesignandpromotecoordinatedlandandseadevelopmentꎻ(2)Plananddesignthelayoutofport ̄vicinityindustryscientificallyandimprovethepollutionmanagementofsea ̄relatedindustriesꎻ(3)Tightenthecontrolofpollutantdischargeandincreasetheawarenessofmarineenvironmentalprotectionꎻ(4)Ensuresufficientfundsformarineecologicalconstructionandstrengthenitsprotectionandconstruction.Keywords:Yangtzeestuaryꎻecologicalenvironmentꎻhealthconditionꎻecologicalproblemꎻprotectioncountermeasure㊀㊀长江口是世界第三大河口ꎬ生态环境状况特殊[1].长江口海域在海洋水团的共同作用下ꎬ水温状况复杂多变ꎬ营养盐丰富ꎬ生产力高ꎬ磷酸盐㊁硝酸盐和硅酸盐显著高于我国其他河口海域[2 ̄3].营养盐含量从近海向河口区逐渐递增ꎬ导致河口海域成为高生产力区[4 ̄5].长江径流带来的营养物质ꎬ孕育了大量的浮游生物和滩涂植物ꎬ为水生动物和底栖生物提供了充足的食源[6 ̄7]ꎬ是众多溯河性和降河性长途洄游性物种ꎬ如中华鲟(Acipensersinensis)㊁鳗鲡(Anguillajaponica)等鱼类的必经通道[8 ̄11]ꎬ是我国凤鲚(Coiliamystus)和中华绒螯蟹(Eriocheirsinensis)的最主要产卵场之一ꎬ还是珍稀物种中华鲟幼鲟的集中分布区[12 ̄17].滩涂湿地是鸟类亚太迁徙路线中的重要驿站[18].但是随着人类干扰的不断增多ꎬ长江口海域的㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第33卷生态环境状况也受到了严重影响ꎬ生境破碎化严重ꎬ生态系统长期处于亚健康状态ꎬ其保护和修复工作亟需更高质量的推进.中共中央㊁国务院高度重视长江生态环境保护工作ꎬ推动长江经济带发展是党中央作出的重大决策ꎬ是关系国家发展全局的重大战略.随着长江大保护的持续推进ꎬ长江经济带地表水环境质量呈好转趋势ꎬ总体优于全国平均水平ꎬ并且生态环境质量正逐渐好转ꎬ保护和修复成果显著.而海纳百川ꎬ长江最终于崇明岛以东汇入我国东海ꎬ海洋是其保护成效的最终体现者之一ꎬ长江口作为重要的陆海连接区域ꎬ是长江保护和修复成效的重要体现者ꎬ所以长江口海域的生态环境质量评价工作对于评估长江保护和修复的成效具有重要意义ꎬ其生态环境状况尤为重要.该研究系统总结了近20年来长江口海域的业务化监测结果ꎬ对生态环境状况及其变化趋势进行了分析ꎬ剖析长江口海域存在的主要生态问题ꎬ并提出了相应的保护修复和管理对策ꎬ以期为长江经济带的保护成效评估提供参考ꎬ为长江口海域的保护和修复工作提供科学依据.1㊀长江口海域生态环境状况及其变化趋势1 1㊀长江口海域水体和沉积物环境1 1 1㊀长江口径流和泥沙特性长江口是我国最大的河口ꎬ近10年来ꎬ长江流域及长三角区域经济发展迅速㊁人口相对集中㊁海上倾废㊁海洋运输㊁污染物的排放及水利工程的建设等对河口及其邻近海域水动力和水环境条件㊁地貌演变等都产生了重要影响.长江口的水体环境与流域自然因素和人类活动影响密切ꎬ而在长江经济带的发展中ꎬ人类活动加剧ꎬ长江上游兴建了大量的水利水电工程ꎬ特别是三峡工程的关闸蓄水ꎬ中下游实施了大量的诸如滩涂围垦㊁河道整治㊁取排水㊁采砂㊁深水航道建设等工程ꎬ在一定程度上对长江的水文㊁泥沙特性产生了影响[19].长江三峡水利枢纽工程是中国也是世界上最大的水利枢纽工程ꎬ具有巨大的防洪㊁发电㊁航运㊁水资源利用等综合效益.但是三峡工程的建设和运营并未对长江年径流量和日均流量产生明显影响ꎬ自20世纪50年代至今ꎬ长江年径流量和日均流量均呈现波动变化ꎬ总体趋势和周期变化不明显[20]ꎬ2003年以前大通站年均流量㊁年最大流量㊁年最小流量的历史平均值分别为28635㊁60114和8428m3∕sꎬ2003年后历史平均值分别为26443㊁52191和9486m3∕sꎬ可见三峡工程运营以来ꎬ年均流量变幅不显著ꎬ年最大流量减少ꎬ年最小流量增加[21].对于最大日流量ꎬ2003年为最大日流量的显著拐点.2003年前ꎬ最大日流量呈现增加趋势ꎻ而2003年后ꎬ最大日流量值明显小于历史平均ꎬ且具有下降趋势.而日均流量在2003年前后并未发生显著差异ꎬ其趋势也不明显[21].而由于人为控制水文动力过程ꎬ三峡工程对径流年内变化趋势㊁突变特性和分配特征产生了一定的影响ꎬ洪枯季和最大日流量都有明显变化趋势ꎬ流量年内分配不均ꎬ主要集中于洪季ꎬ枯季占比较小.大通站流量丰枯率(为汛期与非汛期径流总量的比值ꎬ体现径流量年内分配)在20世纪五六十年代均较大ꎻ60年代中期到80年代末期有所减小ꎻ90年代增大ꎬ且在90年代末出现极大值ꎻ进入21世纪初以来ꎬ开始减少ꎬ并保持于一个相对较小值内[22].三峡工程的修建拦截了一部分径流ꎬ同时ꎬ水土保持及水库建成等造成的截沙效应超过水土流失造成的增沙效应ꎬ入河口输沙量降低[19]ꎬ直接影响长江口的径流来沙量ꎬ下游来沙量大幅减少ꎬ且这种减少也不是简单的数量减少[23].据统计ꎬ2003年三峡工程蓄水以来ꎬ60%~70%的上游来沙被拦截在库内ꎬ尽管坝下游河床冲刷补偿了一部分泥沙ꎬ但入河口输沙量较之前仍约下降了1∕3[19].蓄水后ꎬ长江口水文泥沙特性发生了明显变化ꎬ洪季泥沙中值粒径大于枯季ꎬ汛初流量增大阶段泥沙粗于汛末流量减小阶段ꎬ多年平均中值粒径基本不变ꎬ但泥沙有逐年变粗的趋势[19].1 1 2㊀长江口海域水质状况和沉积物质量长江口海域一直是我国近岸海域水质状况污染较严重的区域.近15年来ꎬ长江口严重污染海域主要集中在近岸ꎬ长江口北支到杭州湾南岸区域均为GB3097 1997«海水水质标准»劣Ⅳ类水质ꎬ而优良(Ⅰ类和Ⅱ类)水质面积占比不足50%(见图1).1999 2018年长江口海域主要环境要素的年际变化如图2所示.近20年来ꎬ长江口海域海水盐度整体呈下降趋势ꎬ1999 2003年波动较大ꎬ变化范围为6 88~33 16ꎬ2003年后整体趋于稳定ꎬ并呈逐年递减的趋势ꎬ2004 2018年盐度变化范围为17 00~26 79ꎬ由2004年的26 02降至2018年的18 41ꎻ海水DO年均浓度呈波动变化ꎬ整体呈上升趋势ꎬ由1999年的6 45mg∕L升至2018年的8 13mg∕Lꎬ变化范围为5 67~8 13mg∕Lꎬ其中2002年最低ꎬ2018年最高ꎻpH较稳定ꎬ变化范围为7 89~8 60ꎻ无机氮和活性磷酸盐年均浓度呈波动变化ꎬ但其年均浓度总体较高ꎬ且整体均呈上升趋势.无机氮年均浓度除20008911第5期王孝程等:长江口海域生态环境状况及保护对策㊀㊀㊀注:数据来源于2005 2018年«中国海洋环境状况公报»ꎻⅠ㊁Ⅱ㊁Ⅲ㊁Ⅳ㊁劣Ⅳ类均为GB3097 1997«海水水质标准»水质等级.图1㊀2005—2018年长江口海域水质状况趋势分布Fig.1TrendmapofwaterqualityintheYangtzeestuaryfrom2005to2018年㊁2002年和2018年外均高于0 5mg∕Lꎬ显示长江口海域长期属于GB3097 1997劣Ⅳ类水质ꎬ活性磷酸盐年均浓度2003年后长期高于0 03mg∕Lꎬ显示其多数时期属于GB3097 1997Ⅳ类水质.盐度㊁DO㊁pH㊁活性磷酸盐和无机氮等主要指标浓度在2003年前年际波动均较大ꎬ而2003年后相对较小(见图2)ꎬ这可能与人为活动的干扰有关.2003年ꎬ三峡水库开始进行一期蓄水ꎬ自蓄水后ꎬ整个长江口海域的主要指标较之前明显稳定ꎬ这可能是由于水利工程人为干预了长江径流量ꎬ从而使得长江口海域的长江径流输入㊁盐度和其他指标更加趋于稳定ꎬ长江水利工程的建设在一定程度上也对保持长江口海域水环境的稳定起到了重要作用.多年连续监测结果表明ꎬ长江口海域表层海水环境状况较差ꎬ营养盐污染严重ꎬ尤其是无机氮超标严重.长江及钱塘江径流携带东海沿岸发达的工农业生产所产生的大量污染物入海ꎬ同时每年径流也携带了大量的营养盐类ꎬ海水氮㊁磷及化学需氧量浓度超标ꎬ是造成长江口海域大面积污染的主要原因.根据«中国海洋环境状况公报»的监测结果ꎬ长江口沉积物类型为粘土质粉砂和粉砂ꎬ2005 2018年ꎬ长江口海洋沉积环境总体质量状况良好ꎬ综合质量等级年际变化基本稳定ꎬ绝大部分站位的沉积物质量最多只有一项超标要素ꎬ超标率低ꎬ而2015 20189911㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第33卷注:数据来源于1999 2004年长江口海域业务化监测结果和2005 2018年«中国海洋环境状况公报».图2㊀1999—2018年长江口海域主要环境要素的年际变化Fig.2Inter ̄annualchangeofmajorenvironmentalfactorsintheYangtzeestuaryfrom1999to2018年ꎬ长江口沉积物质量良好点位的比例已连续4年达到100%.1 2㊀长江口海域海洋生物群落和生态健康状况2011 2018年长江口海洋生物状况主要指标的年际变化如图3所示.由图3可见ꎬ浮游植物群落密度自2011年起有明显降低ꎬ2015年后有所波动ꎬ并呈逐年上升的趋势.浮游植物多样性指数呈波动状态ꎬ2011 2018年浮游植物多样性指数变化范围为0 91~2 18ꎬ整体多样性水平较低ꎬ这与逐渐增高的赤潮发生率表现出一定的相关性.综合以往的研究结果ꎬ近35年来长江口区浮游植物群落结构不断演变ꎬ种类组成趋向简单ꎬ种类个体数量分布不均匀[24]ꎬ少数优势种类(如中肋骨条藻)在环境条件合适时易大量增殖形成赤潮[25].群落结构中硅藻为浮游植物中主要类群ꎬ数量上占绝对优势ꎬ但多年来其占比呈缓慢下降趋势ꎬ甲藻种类占比缓慢增加[24].2011 2018年浮游动物密度年际波动较大ꎬ整体呈上升趋势ꎬ变化范围为288~2942ind.∕m3.浮游动物多样性指数波动较小ꎬ变化范围为1 81~2 41ꎬ多样性水平相对较高ꎬ但整体呈下降趋势.综合以往的研究结果ꎬ近35年来浮游动物群落结构趋向简单化ꎬ优势种以桡足类为主ꎬ且桡足类的组成比例有下降趋势[24]ꎬ其百分比的降低ꎬ显示浮游动物的群落结构正逐渐发生变化ꎬ这与长江口海域生境条件的日益恶化有很大关系.2011 2018年大型底栖生物密度和多样性指数年际波动较大ꎬ变化范围分别为53~175ind.∕m3㊁1 30~2 48ꎬ整体呈上升趋势.长江口及其邻近海域是我国最大的河口渔场ꎬ在我国渔业生产中居重要地位.淡水渔业资源ꎬ如凤鲚㊁刀鲚(Coiliaectenes)㊁前额间银鱼(Hemisalanxprognathus)㊁鳗鲡㊁白虾(Exopalaemon)和中华绒螯蟹ꎬ素有长江口六大渔业之称[25]ꎻ海水渔业资源ꎬ如带鱼(Trichiurusjaponicus)㊁小黄鱼(Larimichthyspolyactis)㊁大黄鱼(Larimichthyscrocea)和银鲳(Pampusargenteus)等均属该区域海洋渔业的主要捕捞对象[26].近10年来ꎬ长江口及邻近海域渔业资源因过度捕捞㊁水域生态环境和水质恶化而受到严重损害ꎬ刀鲚㊁凤鲚㊁带鱼㊁大黄鱼和小黄鱼等资源量急剧下降ꎬ低龄化和小型化明显[27]ꎬ鱼类资源量的衰退可能使甲壳类资源量相对增加[28 ̄29].由于长江口及其邻近海域受到重金属和有机物的污染ꎬ2000 2002年该海域生态环境总体质量处于重污染水平[30]ꎬ污染导致该海域渔业资源衰退[31].2005年后杭州湾可能已经成为长江口海域重金属元素重要的沉积 汇 ꎬ而长江口及其邻近海域表层沉积物中重金属0021第5期王孝程等:长江口海域生态环境状况及保护对策㊀㊀㊀注:数据来源于2011 2018年«中国海洋环境状况公报».图3㊀2011 2018年长江口海域海洋生物状况主要指标的年际变化Fig.3Inter ̄annualchangeofmajorindicatorsofmarineorganismintheYangtzeestuaryfrom2011to2018元素含量整体上均呈逐步降低的趋势ꎬ生态环境总体质量有所恢复[32].注:数据来源于2006 2018年«中国海洋环境状况公报».图4㊀2006 2018年长江口海域生态系统的健康状况Fig.4MarineecosystemhealthintheYangtzeestuaryfrom2006to20182006 2018年ꎬ长江口海域生态系统处于亚健康状态(见图4)ꎬ生态健康评价指数一直呈波动变化ꎬ范围为52 8~71 3ꎬ均低于90ꎬ其中2016年最低ꎬ2014年最高.生态健康的评价主要包含5种指标ꎬ即水环境㊁沉积环境㊁生物质量㊁栖息地和生物群落.长江口海域水环境和沉积环境基本稳定ꎬ其中沉积环境较好ꎬ而水环境一直处于较差状态ꎬ这使得栖息地环境受到威胁ꎬ由于水生生物对环境非常敏感ꎬ对水环境和栖息地的变化反应较强烈ꎬ长期处于恶劣的水质和栖息地环境下ꎬ导致生物质量整体较低ꎬ生物多样性水平较差ꎬ群落结构不稳定ꎬ生态系统健康状况处于亚健康状态.2㊀长江口海域主要的生态问题2 1㊀海水污染严重ꎬ水环境质量较差长江㊁钱塘江等江河的径流每年携带了大量的营养盐类进入长江口海域ꎬ该海域水体污染物浓度较高ꎬ氮㊁磷及化学需氧量浓度均超过GB3097 1997Ⅳ类水质标准限值[33 ̄35].无机氮年均浓度显示长江口海域长期属于劣Ⅳ类水质ꎬ而活性磷酸盐年均浓度显示其多数时期属于Ⅳ类水质.目前ꎬ长江口海域是我国海水水质极差的海域之一.除多年水质极差外ꎬ«中国海洋环境状况公报»显示ꎬ长江口海域生物体内的油类㊁总汞㊁砷㊁铅和滴滴涕等指标浓度也普遍超标.环境质量差是致使长江口海域多年来处于亚健康的主要原因之一.2 2㊀海洋工程和人类活动干扰强烈ꎬ生境破坏严重上海长江隧桥工程㊁杭州湾大桥工程㊁长兴岛造船基地工程㊁长兴 崇明 启东桥隧工程项目㊁长江口深水航道三期疏浚工程和洋山深水港工程等工程1021㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第33卷的施工和完成ꎬ导致长江口海区海洋生物栖息地严重破碎化.另外ꎬ滩涂养殖的过度发展ꎬ也使余姚和慈溪沿岸的滩涂生物简单化ꎬ基本形成了由单一养殖物种组成的滩涂湿地生物结构ꎬ大大降低了滩涂湿地的物种多样性.同时海洋工程占用了海洋生物的生存空间及洄游路线ꎬ使多个自然洄游通道遭到不同程度的破坏.生境的破碎化和洄游通道的阻断ꎬ加之大型船只频繁穿梭等干扰(包括噪声污染等)ꎬ不仅影响一般过河口性和定居性生物的产卵㊁育幼㊁生长和生存ꎬ而且经常造成许多珍稀动物的非正常死亡.2 3㊀低氧区长期存在ꎬ成为生态安全的重要潜在威胁长江口海域水体中DO浓度虽然近20年有所升高ꎬ但是仍监测到低氧区的存在[36 ̄38].2002年ꎬ科学家们在长江口及其邻近海域底层发现存在面积约为13700km2㊁DO浓度小于2mg∕L的低DO区域ꎬ最低处仅为1mg∕L[39]ꎬ而2007年在长江口外海区发现了一个更大的近20000km2的低氧区域[40].研究[41]发现ꎬ20世纪90年代后ꎬ低氧现象的发生概率已逐渐升至90%.低氧区的存在ꎬ可导致大量海洋生物窒息死亡ꎬ而低氧区消除和恢复则需要漫长的时间ꎬ但迄今未见有消除和恢复迹象.随着长江口海域水体中DO浓度的变化ꎬ低氧区的范围和程度可能进一步扩大和加剧ꎬ成为长江口海域生态系统的重要潜在威胁ꎬ最终成为长江口生态系统中的生物死亡区或无生物区.2 4㊀生物群落状况较差ꎬ生态系统健康总体欠佳由于长江口海域生境条件的日益恶化ꎬ浮游植物群落种类组成发生明显变化ꎬ浮游植物中硅藻的占比有所下降ꎬ甲藻有所上升[24]ꎬ赤潮种类数量异常增殖引发赤潮ꎻ浮游动物种类明显减少ꎬ密度普遍偏低ꎬ原来的优势种类桡足类的种类和数量均呈下降趋势ꎬ结构趋于简单化[42 ̄44]ꎬ2004年桡足类占浮游动物种类数的50%ꎬ2005年㊁2006年分别降至46%和42%ꎬ2007年降至30%以下ꎬ2008年因种类数㊁生物量和密度均呈较大幅度升高ꎬ桡足类的占比也有所反弹ꎬ2009年之后一直在较低水平波动[24].渔业资源衰退明显ꎬ长江口及杭州湾传统渔场接近消失边缘[45].长江口海域生态系统健康状况欠佳ꎬ其主要原因是:①捕捞压力过大ꎬ近10年来优质渔业资源严重衰退ꎻ长三角海域近岸鳗鱼苗网密布ꎬ对近岸鱼类产卵场㊁索饵场及洄游通道影响极大.②近年来ꎬ三峡水利工程建设和上游工农业用水量增大ꎬ虽对年均径流量无明显影响ꎬ但人为的干预对径流年内变化趋势㊁突变特性和分配特征产生了一定的影响ꎬ使得水流对于岸滩的冲击作用发生改变ꎬ严重地改变了河口生境ꎬ导致产卵场和育幼场功能逐渐丧失㊁鱼类等生物生殖及生长洄游通道受阻ꎬ河口生态系统的生态服务功能丧失严重.③海洋生物饵料来源不稳定ꎬ磷酸盐和无机氮污染严重ꎬ饵料生物的种类组成和优势种类年际变化较大.2 5㊀外来生物入侵ꎬ赤潮频发随着上海国际航运中心的确立和运营ꎬ洋山港和北仑港大型港口经由远洋船只压舱水携带等途径带来的外来海洋生物日益增多ꎬ特别是外来浮游植物入侵种类的数量越来越多ꎬ土著硅藻种类占比日趋减少ꎬ甲藻类中的有毒赤潮生物的种类和数量不断增多ꎬ时常引发赤潮[46 ̄47]ꎬ其主要原因是:①由于长江口生态系统日趋恶化和脆弱化ꎬ为外来种提供了生存㊁增殖和引发赤潮的条件ꎻ②环境条件的变化致使土著种类不再具有适宜的生境条件ꎬ多数土著种类的种群数量减少甚至消失ꎬ但对于少数土著种类ꎬ如广生性和耐污性较强的中肋骨条藻ꎬ在环境条件合适时也会大量增殖ꎬ并形成赤潮.总体而言ꎬ浮游植物种类多样性明显下降ꎬ群落结构趋向简单化且不稳定.3㊀长江口海域保护修复及管理对策3 1㊀加强顶层设计ꎬ推进落实陆海统筹通过对长江口海域生态环境质量现状的分析和科学评价ꎬ认为在长江口海域生态环境管理中ꎬ应高度重视陆海统筹与区域协调机制的建设. 湾区经济 已经成为带动全球经济发展的增长极ꎬ推动湾区发展已然成为世界各国发展开发型经济㊁确立战略优势的重要经验.长江口海域作为我国极其重要的流域㊁海域交汇区ꎬ其良好的生态环境质量不仅关乎海洋生态环境ꎬ更关乎整个区域的经济社会发展.对长江口海域的生态环境治理必然要加强落实陆海统筹的顶层设计.a)规划引领.规划是进行区域调控和管理的重要工具ꎬ具有前瞻性㊁战略性㊁地域性和约束力.落实«中共中央国务院关于加快推进生态文明建设的意见»和«水污染防治行动计划»部署ꎬ按照«长江经济带生态环境保护规划»的要求ꎬ依据有关海洋环境保护法律法规㊁生态市建设规划和海洋经济发展规划等ꎬ编制海洋生态环境保护与建设相关专项规划ꎬ通过规划引领区域环境合作行动.b)建立区域协调机制.2018年的机构改革ꎬ在生态环境保护领域打通了陆地和海洋ꎬ破除了陆域㊁海域环境保护与管理之间的体制壁垒ꎬ为生态环境保2021第5期王孝程等:长江口海域生态环境状况及保护对策㊀㊀㊀护管理的陆海统筹奠定了良好基础.应充分发挥我国生态环境领域改革的制度优势ꎬ整合和发挥生态系统整体性的经济规模效应和污染治理的规模效应ꎬ建立区域协调机制ꎬ全流域 一盘棋 考虑ꎬ加快促进河(湖)长制㊁湾长制等流域㊁海域环境治理协调机制在治理对象㊁治理范围㊁技术标准等方面的有效衔接ꎬ倒逼和统筹河流㊁海域的污染控制目标和考核指标ꎬ突破现有陆海污染物管控不衔接问题ꎬ进一步制定落实流域㊁海域生态环境管理的政策措施体系ꎬ实施河口海湾区域生态环境治理的合理规划㊁共治共管ꎬ强化不同环境政策之间的协同和协调ꎬ为海洋环境保护奠定区域环境合作的政策基础.c)强化科技创新有效供给.充分发挥国家长江生态环境保护修复联合研究中心的平台枢纽作用ꎬ切实强化长江流域科技创新的有效性供给ꎬ推动国家水体污染控制与治理科技重大专项等重大专项成果转化ꎬ重点强化污染物来源解析与综合诊断技术ꎬ地表 地下㊁河 海多过程协同的流域水环境调控技术研究ꎻ加强农业农村污染防治㊁生态保护修复适用技术推荐ꎻ以污染物及其生态效应管控为目标ꎬ开展陆域㊁水体统筹兼顾的治理优先区识别ꎬ引领投资与保护方向.3 2㊀科学规划临港产业空间布局ꎬ完善陆海统筹的治污体系临港产业布局事关海洋经济的长远发展ꎬ事关人民群众福祉.合理的临港产业布局有利于充分利用各种要素资源ꎬ发挥比较优势ꎬ有利于防止生态环境污染ꎬ维持生态平衡ꎬ提高土地集约利用ꎬ是区域经济持续㊁健康发展的必要条件之一ꎬ对区域经济发展具有非常显著的影响.应科学规划临港产业空间布局ꎬ完善陆海统筹的治污体系.a)优化临港产业空间布局规划.按照生态环保优先㊁人与自然和谐㊁陆地与海洋统筹㊁海洋生态环境保护与临海产业发展统筹安排的原则ꎬ做好临港产业布局顶层设计ꎬ统筹产业发展规划ꎬ从源头控制临港产业海洋环境污染.针对临港产业布局现状ꎬ客观分析存在的问题ꎬ进一步调整优化临港产业布局ꎬ以实现海洋经济建设与海洋生态环境保护更为协调发展.b)加强涉海产业的污染管理.将长江口流域的污染治理与海洋环境保护结合起来ꎬ建立陆海统筹的生态修复与污染防治联动机制ꎬ分清轻重缓急ꎬ分级分区实现精准施策.依据长江口流域㊁海域生态环境污染防治的特征ꎬ系统全面推进水污染综合治理ꎬ加大在治水体制和生态补偿机制等方面的技术与政策支持ꎬ加快流域㊁海域水环境质量的全面改善.禁止在沿岸及岛屿新建㊁扩建污染海洋生态环境的项目ꎬ对现有的企业事业单位超过标准排放污染物的ꎬ要依法限期治理ꎬ对污染严重㊁难于治理或治理后仍达不到要求的涉海产业ꎬ要按照管理权限坚决依法予以关停.3 3㊀加强污染物入海排放管控ꎬ提升海洋环境保护意识通过实施环评㊁总量控制等制度ꎬ优化排污口布局ꎬ严格管理围填海活动ꎬ加强污染物入海排放管控ꎬ逐步减少入海污染物总量.具体措施包括:①严格海洋环评制度.发展海洋经济必须以环境容量为前提ꎬ要加强涉海工程的建设监督管理ꎬ严格执行海洋经济发展规划与项目的环境影响评价和环保设施 三同时 制度ꎬ排放非达标项目坚决一票否决ꎬ确保海洋经济可持续发展.②严格管理围填海活动.严格围填海项目审查ꎬ严格执行围填海禁填限填要求ꎬ从严限制单纯获取土地性质的围填海项目ꎬ制定并严格执行围填海规划ꎬ除政府组织的海域海岸带整治少量填海外ꎬ在港口航道附近和港湾区域要禁止围填海.③严格涉海产业准入.制订严格的涉海产业准入标准ꎬ项目选址要进行科学论证ꎬ特别是要强化对布局密集㊁规模庞大的化工㊁钢铁㊁火电㊁炼油项目环评论证ꎬ严格落实涉海产业准入和环保要求ꎬ择优发展临港工业ꎬ禁止高污染㊁高排放企业在临港落户.④对主要工业污水实行深度处理和废水回用ꎬ提高污水处理脱氮㊁脱磷效率ꎬ实现工业污水达标排放和有毒有害污染物 零排海 .加强城市污水处理设施㊁沿岸污水管网系统和中水回用系统建设ꎬ提升生活污水处理能力ꎬ实现城市污水100%处理ꎬ再生水100%回用.重视农业面源污染的治理ꎬ发展高效农业和先进的施肥方式ꎬ降低化肥㊁农药使用量.⑤以 三磷 综合整治㊁城镇污水收集与治理能力提升为抓手ꎬ继续强化磷污染工业和生活点源污染全过程防控.与此同时ꎬ大力推进重点区域面源污染综合管控.结合面源普查㊁污染通量测算等结果ꎬ宜将湖北省㊁湖南省㊁江苏省㊁安徽省㊁江西省5个省份作为重点区域ꎬ将汛期水质恶化河流∕湖泊作为重点对象ꎬ切实强化污染治理.⑥合理调整养殖布局和结构ꎬ控制养殖自身污染.推进生态渔业建设ꎬ建立和优化鱼㊁贝㊁藻间养和轮养复合生态养殖模式ꎬ重点鼓励发展浅海藻类养殖ꎬ根据养殖环境容量ꎬ调整和优化海水网箱养殖布局ꎬ开展养殖网箱标准化改造建设ꎬ推广应用配合饲料.3 4㊀保障海洋生态建设资金ꎬ强化海洋生态保护与建设3021。
长江口及毗邻海域浮游植物的分布与变化李云;李道季;唐静亮;王益鸣;刘志刚;丁平兴;何松琴【期刊名称】《环境科学》【年(卷),期】2007(28)4【摘要】2005年7月(夏季)和11月(秋季)在长江口及毗邻海域(29°30′~32°00′N,123°E以西)进行了2个航次的综合调查.2个航次共鉴定浮游植物345种,包括赤潮种类43种,其中,赤潮种中肋骨条藻(Skeletortema costatum)是该海域绝对的优势种.浮游植物细胞平均丰度7月(5.48×10^4cells·L^-1)低于11月(2.70×10^5cells·L^-1),而叶绿素a 平均浓度7月(2.34mg·m^-3)高于11月(1.32mg·m^-3).多样性指数(日)均值7月(1.51)高于11月(0.86),均匀度(J)均值7月(0.59)也高于11月(0.34).浮游植物的空间分布具有明显的块状区域特征,其季节变化主要受海区的流系特征、季风、营养盐、悬浮物等因素的制约,周日变化主要与潮汐、温盐跃层等密切相关.同时,结合历史监测数据(1996~2005年)分析表明,调查海域浮游植物群落结构已经发生改变.长期氮磷比失衡导致甲藻类在浮游植物群落中所占比例大幅攀升,甲藻类赤潮频繁发生.要改善海域环境现状,相对于控制西部陆源污染物的输入量,控制输入的营养盐比例尤为重要.【总页数】11页(P719-729)【关键词】浮游植物;叶绿素a;长江口【作者】李云;李道季;唐静亮;王益鸣;刘志刚;丁平兴;何松琴【作者单位】华东师范大学河口海岸学国家重点实验室;舟山海洋生态环境监测站【正文语种】中文【中图分类】X17;Q178.53【相关文献】1.春季长江口及毗邻海域浮游动物空间分布及与环境因子的关系 [J], 朱延忠;刘录三;郑丙辉;王瑜2.夏、秋季长江口及毗邻海域浮游动物的分布与变化 [J], 章飞燕;唐静亮;李道季;方涛;王彪3.长江口及其毗邻海域浮游植物种群特征的初步研究 [J], 方涛;李道季;李云;孔定江4.长江口及邻近海域夏季浮游植物分布现状与变化趋势 [J], 王云龙;袁骐;沈新强5.夏秋季长江口及毗邻海域N、P营养盐分布及其潮汐变化 [J], 方涛;李道季;孔定江;余立华;李云;高磊;王延明;李玫因版权原因,仅展示原文概要,查看原文内容请购买。
我国长江口水动力学及其泥沙输运规律长江口概况长江口是我国第一大河口,河口地形十分的复杂。
自徐六泾以下,长江河口段由崇明岛将长江分为南支和北支,南支又由长兴、横沙岛分为南、北两港,南港再由九段沙分为南槽和北槽,形成长江口三级分流、四口入海的河势格局,如图所示。
长江入河口长江口水动力过程主要包括径流、潮流、波浪、科氏力、沿岸流及其相互作用。
长江口为中等强度的潮汐河口,长江口门中,浚站多年平均潮差为2.66m,最大潮差为4.62m[1]。
长江口口门外潮汐为正规半日潮,口内潮汐为非正规半日潮。
南支潮差由口门往上游逐渐减小,而北支,由于其河槽呈喇叭型,潮差由口门往上游逐渐增大,且潮差大于南支。
受径流、潮流、波浪等的影响,长江河口动力过程十分复杂,导致长江口沙洲冲淤不定,河势动荡变化,南支主流摆动,北支淤积萎缩。
长江口的波浪以风浪为主,浪向频率与风向频率基本一致,季节性变化十分明显。
春季盛行SE-SSE浪,夏季盛行SSE-S浪,秋季盛行NE-NNE浪,冬季盛行NW-NNW浪,涌浪以偏东浪向为主。
引水船站平均波高为1.0m,最大波高为6.2m[1]。
长江口泥沙来源,有上游流域来沙、口外海滨来沙、河口浅滩和部分河床底沙再悬浮等多种。
根据多年统计资料,长江口多年平均流量为29500m/s,多年平均输沙量为4.66亿t,最大年输沙量为6.78亿t,最小年输沙量为3.41亿t。
这些悬移质经过大通至江阴之间的近口段进入河口段,因水面放宽,水势放缓,悬移质中较粗的颗粒在潮流界附近发生落淤,估算每年约0.6亿t,从而使河口段的悬移质组成发生细化。
长江口床沙自江阴至口门逐渐细化,床沙平均粒径分别为:江阴至中央沙0.137mm,南港主槽0.121mm,北港主槽0.043mm,南槽江亚0.022mm,南槽铜沙0.006mm,南槽口门0.007mm,北槽主槽0.019mm。
北港口门0.0706mm,北港口外0.0090mm,北支0.063mm。
长江口及邻近海域浮游植物生长的多环境效应因子影响解析研究的开题报告一、研究背景及意义长江口及邻近海域是我国最重要的港口之一,也是我国重要的河口水域之一。
长江口及邻近海域的浮游植物生长是这一区域生态环境稳定和养殖渔业发展的关键因素之一。
然而,浮游植物生长受到多种因素的影响,包括环境因素和人类活动等。
了解这些因素的影响,对于维护长江口及邻近海域生态平衡和发展渔业养殖具有重要的意义。
二、研究目的和内容本研究旨在分析长江口及邻近海域浮游植物生长的多环境效应因子,并深入探究这些因子对浮游植物生长的影响机制。
本研究将针对下列问题展开研究:1. 长江口及邻近海域的水质状况如何?多环境效应因子如何影响水质?2. 长江口及邻近海域的浮游植物群落数量和组成特点是什么?多环境效应因子如何影响浮游植物群落?3. 多环境效应因子对长江口及邻近海域浮游植物生长的影响机制是什么?三、研究方法本研究将采用以下研究方法:1. 采集长江口及邻近海域水样,分析水质状况并确定多环境效应因子,如光照、温度、营养盐、pH值等。
2. 采集长江口及邻近海域的浮游植物样品,分析浮游植物群落数量和组成特点。
3. 通过对采集样品的化学分析和生物学分析,研究浮游植物生长的多环境效应因子如何影响浮游植物生长。
四、预期成果本研究的预期成果如下:1. 深入了解长江口及邻近海域的水质状况和浮游植物群落数量和组成特点。
2. 研究和分析了多种环境因素对浮游植物生长的影响机制。
3. 提出相关措施,以帮助维护长江口及邻近海域生态环境的稳定性和发展渔业养殖。
以上为本研究的开题报告。
长江口及其毗邻海域浮游植物种群特征的初步研究
方涛;李道季;李云;孔定江
【期刊名称】《海洋湖沼通报》
【年(卷),期】2008()2
【摘要】2003年9月,通过对现场海水过滤,将滤膜置入f/2培养基培养2周后,由于浮游植物种间的竞争,发现最终培养后的浮游藻类呈现比较单一的优势种,皆为对低光照有广泛耐受力的硅藻和绿藻,反映出长江口及其毗邻海域浮游植物种类组成简单,优势种非常突出,水域环境遭到一定破坏。
【总页数】5页(P147-151)
【关键词】长江口;浮游植物;优势种
【作者】方涛;李道季;李云;孔定江
【作者单位】华东师范大学河口海岸学国家重点实验室
【正文语种】中文
【中图分类】Q178.53
【相关文献】
1.秦皇岛港邻近海域浮游植物种群结构及相关水质因子的初步研究 [J], 王志勇
2.利用特征色素研究长江口海域浮游植物对营养盐加富的响应 [J], 赖俊翔;俞志明;宋秀贤;韩笑天;曹西华;袁涌铨
3.渤海中部和渤海海峡及其邻近海域浮游植物粒级生物量的初步研究Ⅰ.浮游植物粒级生物量的分布特征 [J], 孙军;刘东艳;张晨;钟华
4.长江口及毗邻海域三疣梭子蟹种群生物学特征及与环境的关系 [J], 袁伟;金显仕;单秀娟
5.长江口及毗邻海域浮游植物的分布与变化 [J], 李云;李道季;唐静亮;王益鸣;刘志刚;丁平兴;何松琴
因版权原因,仅展示原文概要,查看原文内容请购买。
长江口邻近海域水体及底栖微微型浮游生物研究的开题报告一、研究背景长江口位于中国上海附近,为世界著名的河口之一。
水体的水动力特征、物理化学特征以及生物群落结构受到长江、黄浦江等多条河流的影响,同时也受到邻近海域的影响。
近年来,随着长三角地区经济发展的迅速推进和城市化进程的不断加速,水体和生态环境的污染问题逐渐显现出来。
比较严重的污染问题主要包括废水排放、固体废弃物排放、垃圾滞留等。
底栖微微型浮游生物是一类生长在底栖环境中的微小浮游生物,它们不仅是海洋生态系统的重要组成部分,也是海洋污染的敏感指标。
对长江口邻近海域水体及底栖微微型浮游生物的研究,不仅可以了解该地区水体的环境状况及其变化趋势,也可以为水生态环境保护提供科学依据。
二、研究目的本研究旨在通过对长江口邻近海域水体及底栖微微型浮游生物的研究,探讨该地区水生态环境及其变化趋势,为水生态环境保护提供科学依据,并为相关领域的研究提供参考。
具体来说,研究目的包括:1. 探讨长江口邻近海域水体的物理化学特征,包括温度、盐度、氧化还原电位等指标的测定和分析;2. 分析长江口邻近海域水体中主要污染物的来源和污染程度,包括废水、固体废弃物等;3. 研究长江口邻近海域底栖微微型浮游生物的物种组成、分布规律等特征,分析其与环境因素的关系;4. 探讨底栖微微型浮游生物作为环境污染物敏感指标的应用前景,为水生态环境保护提供科学依据。
三、研究内容1. 长江口邻近海域水体的物理化学特征测定和分析2. 长江口邻近海域主要污染物的来源和污染程度分析3. 底栖微微型浮游生物样品采集和物种鉴定4. 底栖微微型浮游生物的数量、分布规律和群落结构的分析5. 底栖微微型浮游生物与水体环境因素的关系分析6. 底栖微微型浮游生物作为环境污染物敏感指标的应用前景探讨四、研究方法1. 长江口邻近海域水体的物理化学特征测定和分析采用现场测量和实验室分析相结合的方法。
2. 长江口邻近海域主要污染物的来源和污染程度分析采用问卷调查、现场调查和分析实验室分析所得数据的方法。
夏季长江口海域盐度等值线特点
长江口海域是中国重要的海洋生态环境保护区,由于水质的稳定性和极佳的海底生物多样性,也被人们称为“海洋绿洲”。
特别是在夏季,长江口海域的盐度等值线形成了一个特殊的景观,实现了一种独特的海洋生态体验。
长江口夏季的盐度等值线有三类,分别是高盐度流动线,中等盐度活动线和低盐度静止线。
其中,高盐度流动线主要体现在汶川到汕头之间的海域,在此范围内,潮汐和湿度变化特别显著,且盐度达到最高,比较容易看到彩色涛涛的潮汐水。
另外,有中等盐度活动线,它延长到了苏州市境,盐度主要介于南海和长江之间,沿着海岸线向南移动,随着潮流不断地变化,这段海区人类活动最活跃,也是渔民最熟悉的地方。
最后,有低盐度静止线,它在江苏、安徽太湖,这段海域的盐度低于南海,这里的水质透明度较高,生物多样性最丰富。
夏季长江口海域盐度等值线的出现,为人们带来了视觉的美,也给海洋生态环境带来了一定的保护。
海岸线处的彩色潮汐水尤其吸引了众多游客,人们可以划船出海,欣赏沿岸景观美景,也可以登船游览,领略美丽的海洋风光,体会不一样的潮汐小乐趣。
夏季安徽太湖处的低盐度静止线,也是长江口最美的一种景色,人们可以在这里放松身心,享受清"}新的海气,体会心灵的洗礼。
总之,夏季长江口海域盐度等值线丰富了海洋的美丽,也使人们对海洋的生态环境有了更深的理解和认识,它是海洋生态保护区的一个重要组成部分,是人们放松、自然、放松心情的不二之选。
长江口不同盐沼生境中大型底栖动物的分布特征第一篇范文长江口不同盐沼生境中大型底栖动物的分布特征长江口,这一亚洲最长河流的出口,不仅是重要的生态系统,也是多种生物物种的栖息地。
在这一复杂的生态系统中,大型底栖动物的分布特征尤为引人注目。
本文将探讨长江口不同盐沼生境中大型底栖动物的分布模式及其影响因素。
盐沼生境的多样性长江口的盐沼生境是由河流带来的淡水与海水混合形成的。
由于河流径流量、潮汐作用以及季节性变化,形成了多样化的盐沼类型,如淡化盐沼、潮间带盐沼和潮下带盐沼等。
这些不同的盐沼生境为大型底栖动物提供了各具特色的生存环境。
大型底栖动物的分布在长江口的不同盐沼生境中,大型底栖动物的种类和数量都有所不同。
软体动物、甲壳动物和多毛类等是这一区域的主要底栖生物。
其中,软体动物如螺类和蚌类在淡化盐沼中较为常见,而甲壳动物如蟹类和虾类则更多出现在潮间带盐沼中。
多毛类则在潮下带盐沼中占有重要地位。
影响分布的因素大型底栖动物在长江口不同盐沼生境中的分布受到多种因素的影响。
其中,盐度、氧气含量、食物供应和栖息地结构是最关键的因素。
淡化盐沼较低的盐度和潮间带盐沼较高的盐度分别吸引了不同的生物种群。
氧气含量的变化直接影响底栖动物的生存能力,而食物供应的丰富程度则决定了大型底栖动物的种群规模。
此外,不同盐沼生境的结构差异,如水动力条件、植被覆盖和底质类型,也对大型底栖动物的分布产生了显著影响。
生态意义长江口不同盐沼生境中大型底栖动物的分布特征不仅体现了生物对环境的适应性,也揭示了这一生态系统的历史演变。
这些底栖动物在食物链中扮演着重要角色,是浮游动物和鱼类等的食物来源,对于维持生态系统的能量流动和物质循环具有不可替代的作用。
结语长江口不同盐沼生境中大型底栖动物的分布特征是复杂且多变的,其研究对于理解生态系统的演变和保护具有重要意义。
随着人类活动的不断干扰和生态环境的变化,长江口的大型底栖动物群落可能会发生进一步的变化。