风力发电机组齿轮箱轴承选型
- 格式:pdf
- 大小:94.17 KB
- 文档页数:3
半直驱永磁风力发电机组齿轮箱设计要求下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!半直驱永磁风力发电机组齿轮箱设计要求1. 引言随着永磁风力发电技术的不断发展,半直驱永磁风力发电机组在风能转换中扮演着日益重要的角色。
风力发电机组轴承常见问题及处理方法发布时间:2021-05-28T09:50:52.703Z 来源:《基层建设》2021年第2期作者:宋强[导读] 摘要:随着我国环保事业的发展,越来越多的人开始关注清洁能源,而风力发电设备就是较为引人注目的成果之一。
新锦风力发电有限公司内蒙古巴彦淖尔 015200摘要:随着我国环保事业的发展,越来越多的人开始关注清洁能源,而风力发电设备就是较为引人注目的成果之一。
对于风力发电最为核心的技术应该是发电机组轴承,轴承的好坏关系着整体发电的效率,本文将简单分析发电机组轴承常见问题,并基于一些原理探究处理的办法。
关键词:风力;发电机组;轴承;问题;方法一、风力发电机组轴承常见问题(一)疲劳剥落。
发电机组轴承的工作原理是滚动轴承进行运作,带动套圈不停的发生运动,进而带动这个风车的转动,在这一过程中,滚动体会随着转动而与套圈之间产生摩擦,接触面会受到这种循环的压力,长久以往会使得其物质特性发生变化,弹性变形会导致表面逐渐硬化,材料之间的相互接触会造成应力出现断层态分布。
这一压力下,容易形成细小的裂纹,随着时间的延续,裂纹会逐渐扩大,直到扩展到物体的表面,轴承内部与接触面会发生剥落效应,最终导致轴承之间不能有效工作,被成为疲劳剥落失效。
这种效应会使得机组在运行过程中,发生震动与冲击,对风电设备造成一定损害。
(二)磨损问题。
轴承之间的相互作用,会使得整体之间相互滑动,引起零件接触面的磨损,对于这种磨损在理想情况下,是轴承之间的相互作用,但现实情况往往是由于密封不当以及轴承润滑系统失效等原因,使得金属粉末不均匀地分布在轴承内部,这些物体由于运动不规律,会对轴承产生不同力的效果,严重加剧磨损。
并且,这种摩擦的原因也可能会是在最初装配的过程中,装配不当,位置发生偏离也会导致这一情况。
还有一种原因,就是润滑油选择错误,在选择润滑油的过程中,需要密切注意轴承的转速、运行环境以及润滑油的润滑效果能否满足轴承的运行要求,不同的轴承所选择的润滑效果不甚相同,严禁随便对轴承润滑油进行替换;在使用过程中,还需严格按照风力发电机组设备厂家的要求,精确润滑油加注量,防止因加注量超标而造成轴承内部摩擦阻力加大,导致运行过程中轴承运行温度异常升高,长此以往产生更大的缝隙,降低轴承运转精度,最终造成轴承损坏而导致风力发电能效的下降。
风力发电机齿轮增速箱毕业设计HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】摘要风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。
但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。
因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。
本文设计的是兆瓦级风力发电机组的齿轮箱,通过方案的选取,齿轮参数计算等对其配套的齿轮箱进行自主设计。
1)根据风电齿轮箱承受载荷的复杂性,对其载荷情况进行了分析研究,确定齿轮箱的机械结构。
选取两级行星派生型传动方案,在此基础上进行传动比分配与各级传动参数如模数,齿数,螺旋角等的确定;通过计算,确定各级传动的齿轮参数;选择适当的齿轮。
2)对行星齿轮传动进行受力分析,得出各级齿轮载荷结果。
依据标准进行静强度校核,结果符合安全要求。
3)绘制CAD装配图,并确定恰当合理参数。
关键词:风电齿轮箱;风力发电;结构设计。
ABSTRACTThe rapid development of wind power industry lead to the prosperity of wind power equipment manufacturing industry.As the core component of wind turbine,the gearbox is received much concern from related industries and research institution both at home and abroad.However, due to the domestic research of gearbox for wind turbine starts late,technology is weak,especially in the gearboxfor MW wind turbine,which mainly relied on the introduction of foreign technology.Therefore,it is urgent need to carry out independent development and research on MW wind power gearbox,and truly master the design and manufacturing technology in order to achieve the goal of localization.1)The load Cases of gearbox for wind turbines ale analyzed,and the interrelation of loading cycle numbers under different torque levels is deduced according to the curve of materials’fatigue.the mechanical structure of gearbox is determined.The two-stage derivation planetary transmission scheme is selected.The gear parameters of every stage transmission is calculated.,and the force analysis results is obtained.2)the static strength check of tooth surface contact is implemented according to related standard.The result shows that it is accord with safety requirements.3)Draw CAD drawings, and determine appropriate reasonable parameters.KEYWORDS:Gearbox for Wind Turbine;the wind power;Structure Design.目录第一章前言 ---------------------------------- 错误!未定义书签。
风电机组用滑动轴承关键技术及应用
风电机组用滑动轴承关键技术和应用包括以下几个方面:
1. 润滑技术:滑动轴承需要充分的润滑来降低摩擦和磨损。
常见的润滑方式包括润滑脂和润滑油。
关键技术包括润滑剂的选择、润滑剂的添加量和周期、润滑系统的设计和维护等。
2. 轴承材料技术:滑动轴承的寿命和可靠性与轴承材料的选择和制造工艺密切相关。
常见的轴承材料包括铜合金、铸铁、钢等。
关键技术包括材料的硬度、疲劳性能和耐蚀性等。
3. 密封技术:滑动轴承需要有效的密封以防止灰尘、水分和其他污染物进入轴承内部,影响轴承的正常工作。
常见的密封方式包括橡胶密封圈和油封等。
关键技术包括密封材料的选择、密封结构的设计和密封性能的测试等。
4. 冷却技术:风电机组工作时会产生大量的热量,需要有效的冷却系统来降低轴承温度,提高轴承的工作效率和寿命。
常见的冷却方式包括风冷和液冷等。
关键技术包括冷却系统的设计和优化、冷却介质的选择和流动控制等。
5. 振动与噪声控制技术:风电机组在运行过程中会产生振动和噪声,会对轴承和整个系统的运行稳定性和可靠性造成影响。
关键技术包括振动和噪声的检测和分析、结构优化和减振措施的设计等。
风电机组用滑动轴承的应用广泛,主要用于风力发电机组的主轴承、齿轮箱轴承、发电机轴承等部位。
它们可以承受高速、高温、高负荷和长寿命等要求,确保机组的正常运行和安全性能。
滑动轴承与其他类型的轴承相比具有较低的摩擦、较高的自润滑性能和较好的耐磨损性能,适用于较恶劣的工作环境。
风电机组齿轮箱介绍一、什么是风电机组齿轮箱?风电机组齿轮箱是风力发电设备中的关键部件之一,用于将风轮旋转的动能传递给发电机,从而产生电能。
它通常由多个齿轮组成,通过精确的传动比例来提高风轮转速,并将其转化为适合发电机工作的转速。
二、风电机组齿轮箱的结构风电机组齿轮箱由外壳、轴、齿轮、轴承和润滑系统等组成。
2.1 外壳外壳是齿轮箱的保护壳体,具有良好的密封性能和机械强度。
其结构通常由上、下两部分组成,方便维护和齿轮更换。
2.2 轴齿轮箱中的轴承负责承受齿轮和旋转部件的载荷,并确保它们平稳运行。
轴通常由高强度合金钢制成,具有较高的刚度和耐磨性。
2.3 齿轮齿轮是风电机组齿轮箱的核心部件,它们通过齿轮传动实现能量转换和传递。
常见的齿轮有斜齿轮、圆柱齿轮和行星齿轮等。
齿轮的优质材料和精确加工能够提高传动效率和耐久性。
2.4 轴承轴承是支撑齿轮箱内齿轮和转动部件的重要组成部分。
它们能够减少摩擦和磨损,并确保齿轮箱平稳运转。
常见的轴承类型包括滚动轴承和滑动轴承。
2.5 润滑系统润滑系统负责为齿轮箱提供足够的润滑油,并对齿轮和轴承进行冷却和保护。
良好的润滑系统能够降低齿轮箱的摩擦和磨损,延长使用寿命。
三、风电机组齿轮箱的工作原理风电机组齿轮箱采用齿轮传动的方式将风轮的旋转动能传递给发电机。
1.风轮旋转驱动主轴旋转;2.主轴通过第一级齿轮传动将低速大扭矩的运动转化为高速小扭矩的运动;3.高速轴通过第二级齿轮传动将高速小扭矩的运动转化为低速大扭矩的运动;4.最后,低速轴将此运动传递给发电机,发电机产生电能。
四、风电机组齿轮箱的维护与故障排除为保证风电机组齿轮箱的正常运行,需要进行定期的维护与故障排除。
4.1 维护•定期更换润滑油,并清洗润滑系统;•检查齿轮和轴承的磨损情况,及时更换或修复;•检查外壳密封性能,确保齿轮箱内部的油液不泄漏;•定期检查齿轮箱的整体结构,排查潜在故障。
4.2 故障排除•齿轮断裂:检查齿轮材料和制造工艺,确认是否需要更换更坚固的齿轮;•轴承失效:检查轴承润滑情况,并及时更换损坏的轴承;•润滑系统故障:检查润滑系统的油泵、油管和过滤器等,确保润滑油畅通无阻;•外壳磨损:定期检查外壳磨损情况,如有需要及时更换。
滑动轴承在风电齿轮箱中的应用现状与发展趋势随着全球对清洁能源的需求不断增长,风能作为一种可再生能源逐渐成为主流。
风力发电机组的核心部件之一是齿轮箱,而其中的滑动轴承在齿轮箱中扮演着至关重要的角色。
滑动轴承的应用现状及发展趋势对于提高风电齿轮箱的可靠性、效率和寿命具有重要意义。
本文将重点探讨滑动轴承在风电齿轮箱中的应用现状以及未来的发展方向。
一、滑动轴承在风电齿轮箱中的应用现状1.1 滑动轴承在风电齿轮箱中的作用滑动轴承是一种以润滑膜或滑动表面来支撑和减少机械运动摩擦的机械元件。
在风电齿轮箱中,滑动轴承的主要作用是支撑齿轮和轴,减小运动摩擦,确保齿轮系统的正常运转。
滑动轴承还承担着承载、传递动力和减震等功能。
1.2 目前滑动轴承在风电齿轮箱中的应用现状目前,风电齿轮箱中主要采用滑动轴承的类型包括滑动轴承、滚动滑块轴承和滚动轴承。
滑动轴承在风电齿轮箱中具有耐高温、承载能力强、启动转矩小、维护成本低等优点,因此得到了广泛的应用。
1.3 滑动轴承在风电齿轮箱中的挑战滑动轴承在风电齿轮箱中也存在一些挑战,主要包括润滑膜寿命短、摩擦力较大、温升高等问题。
这些问题严重影响了滑动轴承在齿轮箱中的稳定性和寿命,需要通过技术创新和改进来解决。
二、滑动轴承在风电齿轮箱中的发展趋势2.1 材料技术的发展随着材料技术的不断发展,新型高温、高载荷、耐磨损的材料逐渐应用于滑动轴承中,以提高其性能和寿命。
采用碳纤维复合材料、聚四氟乙烯等新材料制造滑动轴承,可以有效降低摩擦力、提高润滑膜寿命。
2.2 润滑技术的创新润滑技术是影响滑动轴承性能的关键因素之一。
未来,随着润滑技术的不断创新,如纳米润滑技术、智能润滑系统等的应用,可以改善滑动轴承的润滑状态,降低摩擦损耗,提高运行效率。
2.3 仿生设计技术的应用仿生设计技术将生物学原理应用于滑动轴承的结构设计中,使其具有更好的自润滑性能,提高耐磨损能力。
通过仿生设计技术改进滑动轴承的表面形貌和微观结构,可以有效提高其性能和寿命。
采用齿轮传动的风力发电机组中,齿轮箱是主动力轴系重要的机械部件,其功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。
风轮的转速很低,远达不到发电机发电的要求,必须通过齿轮箱齿轮副的增速作用来实现。
由于机组受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难,故对其可靠性和使用寿命都提出了比一般机械高得多的要求。
例如对构件材料的要求,除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性,保证齿轮箱平稳工作,防止振动和冲击,保证充分润滑条件,等等。
对冬夏温差巨大的地区,还要设置监控点,配置合适的加热和冷却装置。
对齿轮箱的性能、制造精度、装配和试验提出了一系列近乎苛刻的要求。
1.齿轮箱在风电机组中的布置形式风力发电机组轴系最为常见的布置形式如图1所示,与风轮连接的大轴支撑在两个单独设置的轴承上,其末端通过涨紧套与齿轮箱相连。
齿轮箱的支架安装在机舱底盘上,而齿轮箱的高速轴则用柔性联轴节与发电机相连。
这就是所谓的“一字型”布置。
风轮的异常载荷通常由两个大轴轴承承受,齿轮箱受到影响较少,各个主要部件间隔较大,便于安装和维修,只是机舱轴向尺寸较长。
但也有的观点认为大轴的图1. 常见的风力发电机组布置形式:大轴独立支撑,末端与齿轮箱连接如果省去一个大轴的支撑轴承,使大轴末端直接与齿轮箱输入轴相连,则变为图20-2所示的结构,在这种情况下,虽然能缩短轴向尺寸,但对齿轮箱不利,必须采取措施加强其支撑刚性,同时要尽可能消除风轮通过大轴对齿轮箱施加异常负荷的影响。
图20-2 大轴一端支撑在轴承上另一端直接与齿轮箱连接的结构有时为了缩短机舱长度尺寸而将发电机反向布置,发电机骑在大轴箱上,这时齿轮箱的输入和输出轴处于同一侧,齿轮箱设计成“ U ”型,大轴箱与主支架做成一体,具有足够的支撑刚性,机舱内各部分重量的集中度较好(见图20-3)。
风电机组齿轮箱介绍一、背景介绍风力发电是一种清洁能源,近年来得到了广泛的关注和应用。
而风电机组作为风力发电的核心设备之一,其齿轮箱作为传动装置,承担着将风轮旋转产生的动能转化为电能的重要任务。
因此,齿轮箱的性能和可靠性对于整个风电机组的运行稳定性和经济效益具有至关重要的影响。
二、齿轮箱基本结构齿轮箱是由输入轴、输出轴、油泵系统、润滑系统、冷却系统等组成,其中最主要的部分是由齿轮副组成。
通常情况下,齿轮箱采用多级斜齿轮传动结构或行星式减速器结构。
在多级斜齿轮传动结构中,输入端与输出端均采用斜齿轮副实现传动,在行星式减速器结构中,则采用行星架与内外啮合行星齿轮实现传动。
三、齿轮材料选择由于风力发电场所处环境恶劣,风电机组长期工作在高温、低温、高湿度和强风等恶劣环境下,因此齿轮箱的材料选择至关重要。
目前,常用的齿轮材料包括合金钢、低碳合金钢、铸铁等。
其中,合金钢具有高强度、高硬度、高耐磨性和耐腐蚀性能好等优点,但是其成本较高;低碳合金钢则具有良好的可焊性和耐磨性,但是其强度和硬度相对较低;铸铁则具有成本低、加工性好等优点,但是其强度和硬度较差。
因此,在实际应用中需要根据不同情况选择不同的齿轮材料。
四、齿轮箱润滑系统齿轮箱润滑系统主要由油泵系统和润滑油路组成。
油泵系统主要负责将润滑油从储油罐中抽取并送到齿轮箱内部进行润滑;而润滑油路则负责将润滑油分配到各个部位进行润滑。
在实际应用中,通常采用循环式润滑系统或者静压式润滑系统。
循环式润滑系统的优点是结构简单、成本低,但是其润滑效果相对较差;而静压式润滑系统则具有润滑效果好、噪音小等优点,但是其结构复杂、成本较高。
五、齿轮箱故障原因及处理方法在实际使用中,齿轮箱可能会出现以下故障:齿轮损伤、轴承损坏、油泵故障等。
其中,齿轮损伤是最常见的故障之一,其原因主要有:过载、疲劳、腐蚀等。
处理方法包括更换齿轮副或者进行修复加固;而轴承损坏的原因主要有:过载、磨损等。
处理方法包括更换轴承或者进行修复加固;油泵故障的原因主要有:堵塞、漏油等。
风电齿轮箱对齿轮和伞齿轮的要求概述齿轮和伞齿轮和轴的结构风力发电机组运转环境非常恶劣,受力情况复杂,要求所用的材料除了要满足机械强度条件外,还应满足极端温差条件下所具有的材料特性,如抗低温冷脆性、冷热温差影响下的尺寸稳定性等等。
对齿轮和伞齿轮和轴类零件而言,由于其传递动力的作用而要求极为严格的选材和结构设计,一般情况下不推荐采用装配式拼装结构或焊接结构,齿轮和伞齿轮毛坯只要在锻造条件允许的范围内,都采用轮辐轮缘整体锻件的形式。
当齿轮和伞齿轮顶圆直径在2倍轴径以下时,由于齿轮和伞齿轮与轴之间的连接所限,常制成轴齿轮和伞齿轮的形式。
为了提高承载能力,齿轮和伞齿轮、轴一般都采用合金钢制造。
外齿轮和伞齿轮推荐采用20CrMnMo、15CrNi6、17Cr2Ni2A、20CrNi2MoA、17CrNiMo6、17Cr2Ni2MoA 等材料。
内齿圈和轴类零件推荐采用42CrMoA、34Cr2Ni2MoA等材料。
采用锻造方法制取毛坯,可获得良好的锻造组织纤维和相应的力学特征。
合理的预热处理以及中间和最终热处理工艺,保证了材料的综合机械性能达到设计要求。
齿轮和伞齿轮箱内用作主传动的齿轮和伞齿轮精度,外齿轮和伞齿轮不低于5级GB/T10095,内齿轮和伞齿轮不低于6级GB/T10095。
通常采用最终热处理的方法是渗碳淬火,齿表面硬度达到HRC60+/-2,具有良好的抗磨损接触强度,轮齿心部则具有相对较低的硬度和较好的韧性,能提高抗弯曲强度,而通常对齿部的最终加工是采用磨齿工艺。
加工人字齿的时候,如是整体结构,半人字齿轮和伞齿轮之间应有退刀槽;如是拼装人字齿轮和伞齿轮,则分别将两半齿轮和伞齿轮按普通圆柱齿轮和伞齿轮加工,最后用工装将两者准确对齿,再通过过盈配合套装在轴上。
齿轮和伞齿轮加工中,规定好加工的工艺基准非常重要。
轴齿轮和伞齿轮加工时,常用顶尖顶紧两轴端中心孔安装在机床上。
圆柱齿轮和伞齿轮则利用其内孔和一个端面作为工艺基准,用夹具或通过校准在机床上定位。