二项式定理十大典型问题及例题
- 格式:doc
- 大小:900.50 KB
- 文档页数:9
二项式定理 概 念 篇【例 1】求二项式 ( a - 2b)4 的展开式 . 分析:直接利用二项式定理展开.解:根据二项式定理得(a - 2b)4=C 04 a 4+C 14 a 3( - 2b)+C 24 a 2(- 2b)2+C 34 a( - 2b)3+C 44 ( -2b) 4=a 4 - 8a 3b+24a 2b 2- 32ab 3 +16b 4.说明:运用二项式定理时要注意对号入座,本题易误把- 2b 中的符号“-”忽略 .【例 2】展开 (2x - 32) 5.2x分析一:直接用二项式定理展开式.解法一: (2x -35 05143233 232332x2) =C 5 (2x) +C 5 (2x) (- 2x 2)+C 5 (2x) (-2x 2 ) +C 5 (2x) (- 2x2) +C 54 (2x)( -3) 4+C 55(-3)52x 22x 2=32x 5- 120x 2+180 - 135 + 405-243x4 7 10 .x 8x 32x分析二:对较繁杂的式子,先化简再用二项式定理展开 .解法二: (2x -35(4x 3 3)5 2x 2) =32x10=110 [ C 05 (4x 3)5+C 15 (4x 3 )4(- 3)+C 52 (4x 3)3(- 3)2+C 35 (4x 3)2(- 3)3+C 45 (4x 3)(- 3)4+32xC 55 (-3) 5]1 10 (1024x 15- 3840x 12+5760x 9-4320x 6+1620x 3- 243)=32x=32x 5- 120x 2+180-135+ 405 - 243 .xx 4 8x 732x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例 3】在 (x - 3 )10 的展开式中, x 6的系数是.解法一:根据二项式定理可知x 6 的系数是 C 104 .解法二: (x - 3 )10 的展开式的通项是r-r(- 3 )r .T r+1=C 10 x 10令 10- r =6,即 r=4,由通项公式可知含 x 6 项为第 5 项,即 T 4+1 =C 104 x 6(- 3 )4=9C 104 x 6.∴ x 6 的系数为 9C 104 .上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6 这一项系数,而不是求含x 6 的二项式系数,所以应是解法二正确.如果问题改为求含 x 6 的二项式系数,解法一就正确了,也即是C 104 . 说明:要注意区分二项式系数与指定某一项的系数的差异 .二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关, 与二项式无关,后者与二 式、二 式的指数及 数均有关.【例 4】已知二 式(3 x - 2)10,3x(1)求其展开式第四 的二 式系数; (2)求其展开式第四 的系数; (3)求其第四 .分析:直接用二 式定理展开式.解: (3 x -210的展开式的通 是Trx10-r- 2r, ,⋯,)=C 10 (3) ( ) (r=0 10).3x3x 1(1)展开式的第 4 的二 式系数C 103 =120.(2)展开式的第 43 72 3的系数 C 103 (-) =- 77760.3(3)展开式的第 4 - 77760( x )7 1,即- 77760x .x 3明:注意把 (3x - 2) 10写成[ 3 x +(-2)] 10,从而凑成二 式定理的形式 .3x3x【例 5】求二 式( x 2+ 1)10 的展开式中的常数 .2 x分析:展开式中第r +1C 10r(x 2 )10-r (21)r ,要使得它是常数 ,必 使“x ”的指x数 零,依据是x 0=1, x ≠ 0.解: 第 r +1 常数 ,1 rr 20 51 r 5 r- rr() =C 10 x( ) (r =0 , 1,⋯, 10),令 20- r=0,得 r=8.T r +1=C 10 (x )2 2x2∴ T 9=C 108( 1)8= 45 .2256∴第 9 常数 ,其45 .256明:二 式的展开式的某一 常数 ,就是 不含 “ 元”,一般采用令通 T r+1中的 元的指数 零的方法求得常数 .【例 6】(1) 求 (1+2x)7 展开式中系数最大 ;(2)求 (1- 2x)7 展开式中系数最大 .分析:利用展开式的通 公式, 可得系数的表达式,列出相 两 系数之 关系的不等式, 而求出其最大 .解: (1) 第 r+1 系数最大, 有C r 7 2r C r 7 1 2r 1,C r 7 2r C r 7 12r 1,7 !2r7 !2r 1,即 r !(7 r ) !(r 1) !(7 r 1) !7 !2r (r7 ! r2r 1, r !(7 r ) !1) !(7 1) !2 1 ,r 16 ,化 得r8 r 解得3又∵ 0≤ r ≤ 7,∴ r=5.71 r2 .r13.r 13∴系数最大T 6=C 75 25x 5=672x 5.(2)解:展开式中共有 8 ,系数最大 必 正 ,即在第一、三、五、七 四 中取得.又因 (1- 2x)7 括号内的两 中后两 系数的 大于前 系数的 ,故系数最大必在中 或偏右,故只需比T 57两 系数的大小即可C 74 ( 2)4C 73 > 1,所以系数和 T. 6( 2) =1C 7 4C 7最大 第五 ,即T 5=560x 4.明:本例中(1) 的解法是求系数最大 的一般解法,(2) 的解法是通 展开式多 分析,使解 程得到 化,比.【例 7】 (1+2x)n 的展开式中第6 与第7 的系数相等,求展开式中二 式系数最大的 和系数最大的 .分析:根据已知条件可求出n ,再根据 n 的奇偶性确定二 式系数最大的 .解: T 6=C n 5 (2x)5, T 7=C n 6 (2x)6,依 意有 C 5n 25=C n 6 26,解得 n=8. (1+2 x)8 的展开式中,二 式系数最大的 T 5=C n 4 (2x)4=1120x 4.C 7r 2rC 7r 1 2r 1 ,第 r +1 系数最大, 有C 7r 2rC 7r 1 2r 1.∴ 5≤ r ≤6.∴ r =5 或 r =6.∴系数最大的 T 6=1792x 5 ,T 7=1792x 6.明: (1)求二 式系数最大的 , 根据二 式系数的性 ,n 奇数 中 两 的二式系数最大; n 偶数 ,中 一 的二 式系数最大 .(2) 求展开式中系数最大 与求二 式系数最大 是不同的,需根据各 系数的正、化情况,一般采用列不等式,再解不等式的方法求得.用 篇【例 8】若 n ∈N * , (2 +1)n= nnn 、 n ∈Z) ,b n 的()2 a +b (abA. 一定是奇数B. 一定是偶数C.与 b n 的奇偶性相反D.与 a 有相同的奇偶性分析一:形如二 式定理可以展开后考 .解法一:由 ( 2 +1)n =n n ,知 n n2 ) n2 a +b 2 a +b =(1+=C n 0 +C 1n 2 +C n 2 ( 2 )2+C n 3 ( 2 )3+ ⋯ +C n n (2 )n .∴ b n =1+C 2n ( 2 )2+C 4n ( 2 )4+ ⋯∴ b n 奇数 . 答案: A分析二: 的答案是唯一的,因此可以用特殊 法 .解法二: n ∈ N * ,取 n=1 , (2 +1) 1=( 2 +1) ,有 b 1=1 奇数 .取 n=2 , ( 2 +1)2=2 2 +5,有 b 2=5 奇数 .答案: A【例 9】若将 (x+y+z)10 展开 多 式, 合并同 后它的 数()A.11B.33C.55D.66分析: (x+y+z)10 看作二 式[( x y)10z ] 展开 .解:我 把 x+y+z 看成 (x+y)+z ,按二 式将其展开,共有11“ ”,即 (x+y+z)10=10[( x10k10-k ky) z ] =C 10 (x+y) z .k 0,由于“和”中各 z 的指数各不相同,因此再将各个二 式(x+y) 10-k 展开,不同的乘 C 10k (x+y)10-k z k (k=0, 1,⋯, 10)展开后,都不会出 同 .下面,再分 考 每一个乘C 10k (x+y)10-k z k (k=0 , 1,⋯, 10).其中每一个乘 展开后的 数由(x+y)10-k 决定,而且各 中 x 和 y 的指数都不相同,也不会出 同 .故原式展开后的 数11+10+9+⋯ +1=66.答案: D明:化三 式 二 式是解决三 式 的常用方法 .【例 10】求 (| x | +1- 2)3 展开式中的常数 .| x |分析:把原式 形 二 式定理 准形状 .解:∵ (| x | + 1- 2)3=(| x | - 1)6,| x || x |∴展开式的通 是T r+1=C 6r ( | x | )6-r (- 1 )r =(- 1)r C 6r ( | x | )6- 2r .| x |若 T r+1 常数 , 6- 2r =0, r =3.∴展开式的第 4 常数 ,即 T 4=-C 36 =- 20.明: 某些不是二 式,但又可化 二 式的 目,可先化 二 式,再求解 .【例 11】求 ( x - 3 x )9 展开式中的有理 .分析:展开式中的有理 ,就是通 公式中x 的指数 整数的.1127 r解:∵ T r+1=C 9r (x 2 )9-r (- x 3 )r =(- 1)r C 9r x6.令 27r∈ Z ,即 4+3r∈ Z ,且 r=0 , 1, 2,⋯, 9.66∴ r=3 或 r =9.当 r=3 , 27 r =4, T 4=(- 1)3C 39 x 4=- 84x 4. 6当 r=9 ,27 r=3, T 10=( - 1)9C 99 x 3=-x 3.6∴ ( x - 3 x )9的展开式中的有理 是第 4 - 84x 4,第 10 - x 3.明:利用二 展开式的通 T r +1 可求展开式中某些特定 .【例 12】若 (3x - 1)77 7 6 61=a x +a x + ⋯ +a x+a ,求(1)a 1 +a 2 ⋯+a 7; (2)a 1 +a 3 +a 5+a 7;0 2 4 6(3)a +a +a +a .分析:所求 果与各 系数有关可以考 用“特殊 ”法,整体解决 .解: (1)令 x=0, a 0=- 1,令 x=1 , a 7+a 6+ ⋯ +a 1+a 0=27=128.①∴ a 1+a 2+⋯ +a 7=129.(2)令 x=- 1, a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=( -4) 7.②由(1) ( 2)得: a 1+a 3+a 5+a 7= 1[ 128- (- 4)7] =8256.22(3)由 (1) (2) 得 a 0 +a 2+a 4+a 6 = 1 [ 128+(-4) 7] =- 8128.2 2明: (1)本解法根据 恒等式特点来用“特殊 ”法, 是一种重要的方法,它用于恒等式 .(2)一般地, 于多 式g(x)=( px+q)n =a 0+a 1x+a 2x 2+a 3x 3+a 4x 4 +a 5x 5+a 6x 6+a 7x 7, g(x)各 的系数和g(1),g(x)的奇数 的系数和1[ g(1)+ g(- 1)],g(x)的偶数 的系数和1[ g(1)22- g (- 1)] .【例 13】 明下列各式(1)1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n =3n ;(2)(C 0n )2+(C 1n ) 2+ ⋯ +(C n n )2=C n 2 n ;(3)C 1n +2C 2n +3C 3n + ⋯ +nC n n =n2n -1.分析: (1)(2) 与二 式定理的形式有相同之 可以用二 式定理,形如数列求和,因此可以研究它的通 求 律 .明: (1)在二 展开式 (a+b)n =C 0n a n +C 1n a n -1b+C 2n a n -2b 2+ ⋯ +C n n 1 ab n -1+C n n b n 中,令 a=1, b=2,得 (1+2) n =1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n ,即1 2+ ⋯ +2n -1n 1 n n =3n.1+2C n +4C nC n +2 C n(2)(1+ x)n (1+x)n =(1+ x) 2n ,12r12r2n.∴ (1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )(1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )=(1+ x)而 Cn 是 (1+ x)2n 的展开式中 x n 的系数,由多 式的恒等定理,得2nC 0n C n n +C 1n C n n 1 + ⋯ +C 1n C n n 1 +C n n C 0n =C n 2n . ∵ C m n =C n n m , 0≤ m ≤ n ,∴ (C n 0 )2+(C 1n )2+ ⋯ +(C n n )2=C 2n n .(3) 法一:令 S=C 1n +2C n 2 +3C n 3 + ⋯ +nC n n . ①令 S=C 1n +2C n 2 + ⋯ +(n - 1)C n n 1 +nC n n =nC n n +(n - 1)C n n 1 + ⋯ +2C n 2 +C 1n=nC n n +(n - 1)C 1n + ⋯ +2C n n 2 +C n n 1 .②由① +②得 2S=nC 1n +nC n2 +nC n3 + ⋯ +nC n n =n(C n n +C 1n +C n2 +C n3+ ⋯ +C n n ) 0123n=n(C n+C n +C n +C n + ⋯ +C n )=n2n.∴ S=n2n-1,即 C 1n +2C n2 +3C 3n + ⋯ +nC n n =n2n-1.法二:察通:kC n k =k n n( n1) !nC n k11 .k ! (n k) !(k1)! (n k) !∴原式 =nC +C n n11 )= n2n-1,12即C n +2C n0121 +nC3+⋯n 101231 +⋯n 1 +nC n 1+nC n n 1+nC n 1=n(C n 1+C n 1+C n 1 +C n 3⋯n n-1+3C n ++nC n =n2 .明:解法二中 kC n k =nC n k11可作性住 .【例 14】求 1.9975精确到 0.001的近似 .分析:准确使用二式定理把 1.997 拆成二之和形式如 1.997=2- 0.003.解: 1.9975=(2- 0.003)5=25- C 15 240.003+C 52 230.0032- C 35 220.0033+⋯≈32-0.24+0.00072 ≈ 31.761.明:利用二式定理行近似算,关是确定展开式中的保留,使其足近似算的精确度 .【例 15】求: 5151-1 能被 7 整除 .分析:了在展开式中出7 的倍数,把51 拆成 7 的倍数与其他数的和(或差 )的形式.明: 5151-1=(49+2) 51-1=C 051 4951+C 151 49502+ ⋯ +C 5051 49· 250+C 5151 251- 1,易知除 C 5151 251- 1 以外各都能被7 整除 .又 251- 1=(2 3)17- 1=(7+1) 17- 1=C0717+C1716+⋯+C167+C17-171717171=7(C 170 716+C 171 715+⋯ +C 1716 ).然能被 7 整除,所以5151- 1 能被 7 整除 .明:利用二式定量明有关多式(数 )的整除,关是将所多式通恒等形二式形式,使其展开后的各均含有除式.新篇【例 16】已知 (x lgx+1) n的展开式的最后三系数之和22,中一20000. 求 x.分析:本看似繁,但只要按二式定理准确表达出来,不求解!解:由已知 C n n +C n n 1 +C n n 2 =22,即 n2+n- 42=0. 又 n∈ N*,∴ n=6.T4中一, T4=C 3lg x 3,即 (xlgx 3lg x=10. 6(x ) =20000)=1000. x两取常用数,有1 lg2x=1, lgx=± 1,∴ x=10 或 x= .10明:当目中已知二展开式的某些或某几之的关系,常利用二式通公式,根据已知条件列出等式或不等式行求解.【例 17】 f(x)=(1+ x)m+(1+ x)n(m, n∈ N* ),若其展开式中关于x 的一次的系数和11, m,n 何,含 x2的系数取最小?并求个最小.分析:根据已知条件得到x2的系数是关于 x 的二次表达式,然后利用二次函数性探最小 .解: C 1m +C 1n =n+m=11. C m2+C n 2 =1(m2-m+n2- n)=m2n211 ,22∵ n∈N *,∴ n=6 或 5, m=5 或 6 , x 2 系数最小,最小 25.明:本 是一道关于二次函数与 合的 合 .【例 18】若 (x+ 1- 2)n 的展开式的常数 -20,求 n.x分析: 中 x ≠ 0,当 x > 0 ,把三 式 (x+1- 2)n化 ( x -1)2n ;当 x < 0 ,xx同理 (x+1-2) n nx - 1 2 n x 的 指数 零, 而解出 n.x=(- 1) () .然后写出通 ,令含x解:当 x > 0 , ( x+ 1- 2)n =(x -1 )2n ,xx其通 T r+1=C 2n r( x )2n -r (-1)r =(- 1)r C 2r n ( x )2n -2r .x令 2n - 2r=0 ,得 n=r ,∴展开式的常数 (- 1)r C 2n n ;当 x < 0 , (x+ 1-2) n =(- 1)n(x -1)2n .同理可得,展开式的常数 (- 1)r C 2n n .xx无 哪一种情况,常数 均 (- 1)r C 2n n .令 (- 1)r C 2n n =20.以 n=1,2, 3,⋯,逐个代入,得n=3.明:本 易忽略x < 0 的情况 .【例 19】利用二 式定理 明(2 n -1 2.) <n31分析:2 不易从二 展开式中得到,可以考 其倒数n 1 .n 12明:欲 (2)n -1 < 21成立,只需 (3)n -1<n1成立 .3n22而 ( 3)n - 1=(1+ 1)n - 1=C n1 +C1n 11+C n 21 ( 1)2+ ⋯ +C n n 11 (1)n -122222=1+ n 1 21 2⋯n 1 1) n -12+C n1 () ++C n 1 (22>n 1.2明:本 目的 明 程中将( 3)n -1化 (1+ 1)n -1,然后利用二 式定理展开式是解2 2决本 的关 .【例 20】求 : 2≤ (1+1) n < 3(n ∈N * ).n1 n 与二 式定理 构相似,用二 式定理展开后分析.分析: (1+)n明:当 n=1 , (1+ 1)n =2.n当 n ≥2 , (1+ 1)n=1+C 1n n又C n k ( 1 )k = n(n 1) (nnk ! n k1 +C n2 1 + ⋯ +C n n ( 1 )n =1+1+C n 2 1 + ⋯ +C n n ( 1 )n> 2.n n 2 n n 2n k 1) ≤ 1 ,k !所以 (1+ 1)n≤ 2+1+ 1 + ⋯ + 1< 2+1 + 1 + ⋯ + 1n2 !3 !n!1 2 2 3 ( n 1) n=2+(1 -1)+(1 - 1 )+ ⋯ +( 1 - 1)22 3 n 1 n=3- 1< 3.n上有 2≤ (1+1)n < 3.n明:在此不等式的 明中,利用二 式定理将二 式展开,再采用放 法和其他有关知 ,将不等式 明到底 .【例 21】求 : 于n ∈N *, (1+ 1) n< (1+ 1)n+1 .nn 1分析: 构都是二 式的形式,因此研究二 展开式的通 是常用方法 .明: (1+1) n展开式的通 Tr1A n rnr+1 =C n n r=r ! n r= 1 n(n 1)(n 2) (n r 1)r ! n r=1 (1-12 r 1 ).r !)(1 -)⋯ (1-nnn(1+1 )n+1展开式的通 T ′ r+1=C n r11 1) r =A n r 1 rn 1( n r !(n 1)=1 n(n 1)(n 2) (n r1)r !n r= 1 (1- 1 )(1- 2)⋯ (1-r1 ).r !n 1n 1n1由二 式展开式的通 可明 地看出 T r+1< T ′ r+1所以 (1+ 1 )n< (1+1)n+1nn 1明:本 的两个二 式中的两 均 正 ,且有一 相同. 明 ,根据 特点,采用比 通 大小的方法完成本 明.【例 22】 a 、 b 、c 是互不相等的正数,且a 、b 、c 成等差数列, n ∈ N * ,求 : a n +c n>2b n .分析: 中 未出 二 式定理的形式,但可以根据a 、b 、c 成等差数列 造条件使用二 式定理 .明: 公差d , a=b - d , c=b+d.a n +c n - 2b n =(b - d)n +( b+d)n - 2b nn1n - 12n - 2 2nn n1n - 12n - 22n=[ b - C n b d+C n bd + ⋯ +(- 1) d ]+[ b +C n bd+C n bd + ⋯ +d ]明:由 a 、 b 、 c 成等差,公差 d ,可得 a=b - d , c=b+d , 就 利用二 式定理 明此 造了可能性 . 即(b - d)n +(b+d) n > 2b n ,然后用作差法改(b - d)n +( b+d)n- 2b n > 0.【例 23】求 (1+2x - 3x 2)6 的展开式中x 5 的系数 .分析:先将 1+2x - 3x 2 分解因式, 把三 式化 两个二 式的 , 即(1+2 x - 3x 2)6 =(1+3x)6 (1- x)6.然后分 写出两个二 式展开式的通 ,研究乘x 5 的系数, 可得到解决.解:原式 =(1+3 x)6(1 -x)6,其中 (1+3x)6 展开式之通T k+1=C k 6 3k x k , (1- x)6 展开式之通 T r+1=C r 6 (- x)r .原式 =(1+3x) 6(1- x)6 展开式的通C 6k C 6r (- 1)r 3k x k+r .要使 k+r =5,又∵ k ∈ {0 , 1, 2, 3, 4, 5, 6} , r ∈{0 , 1,2, 3, 4, 5, 6} ,必k 0, 或 k 1, 或 k 2, 或 k 3, 或 k 4, 或 k 5,r 5r4r 3r2r 1r 0 .故 x 5 系数 C 60 30C 65 (- 1)5+C 16 31 C 64 (- 1)4+C 62 32C 63 ( - 1)3+C 63 33C 62 (- 1)4+C 64 34C 16(- 1)+C 65 35 C 60 (- 1)0=- 168.明:根据不同的 构特征灵活运用二 式定理是本 的关.【例 24】 (2004年全国必修 + 修 1)(x -1)6 展开式中的常数 ()xA.15B.- 15C.20D.- 203r3解析: Trr6-r - rrr 32x) =(- 1) C2,当 r=2 ,3-2=15.r +1=(- 1)C 6 (xxr=0 ,T 3=( -1) C62答案: A【例 25】 (2004 年江 )(2x+ x )4 的展开式中 x 3 的系数是 ()A.6B.12C.24D.48解析:T r +12 rr rx ) 4-r (2x) r =( -1) r r r 2,当 r =2 ,2+ r3- 22=24.=(- 1) C 4 (2 C 4 x2 =3 ,T =( 2) C 4答案: C【例 26】 (2004年福建理 )若 (1- 2x )9展开式的第3288, lim 1 1+ ⋯ +1( +2n)nxxx的 是 ()A.2B.11D.2C.52解析: T r+1=( -1) r C r 9 (2 x )r =(-1) r C r 9 2xr ,当 r =2 , T 3=(- 1)2C 92 22x =288.∴ x= 3.21 112 ∴ lim3 =2.( + 2 + ⋯+n)= nxxx123答案: A【例 27】 (2004 年福建文 )已知 (x - a)8 展开式中常数1120,其中 数 a 是常数,x展开式中各 系数的和是( )A.28B.38C.1 或 38D.1 或 28解析: Tr+1=( -1) rr8 -ra r rr8-2r,当 r=4 , T4 4 =1120,∴ a=± 2.C x() =(- a)C x=(- a) Cx∴有函数 f(x)=(x - a)8.令 x=1, f(1)=1 或 38.x答案: C【 例 28 】(2004 年 天 津 ) 若 (1 - 2x)20040 12 22004 2004=a +a x+a x + ⋯ +ax(x ∈ R) , (a +a )+( a +a)+0 10 2(a 0+a 3)+ ⋯ +(a 0+a 2004)= .(用数字作答 )解析:在函数 f(x)=(1 - 2x)2004中, f(0)= a 0 0 1 2+ ⋯ +a 2004,=1, f(1)=a +a +a=1 (a 0+a 1 )+(a 0+a 2)+( a 0 +a 3 )+⋯+( a 0 +a 2004) =2004a 0 +a 1+a 2+ ⋯ +a 2004=2003a 0 +a 0+a 1+a 2+ ⋯ +a 2004 =2003f(0)+ f(1) =2004.答案: 2004。
精锐学员编号:年级:高二课时数: 3 学员姓名:辅导科目:数学学科教师:教学内容1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈ ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
用1r n rr r n T C ab -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nnn n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n nn n n n x C C x C x C x C x n N *-=-+-+++-∈ 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r nn nn n n n C C C C C ++++++= , 变形式1221r nn nn n n C C C C +++++=- 。
精锐教育学科教师辅导讲义学员编号:年级:高二课时数:3学员姓名:辅导科目:数学学科教师:教学内容1 •二项式定理:n On 1 n 1 r n r r n n z(a b) C n a C n a b L C n a b L C n b (n N ),2 .基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式。
②二项式系数:展开式中各项的系数C;(r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项C:a n r b r叫做二项式展开式的通项。
用T r 1 C:a n r b r表示。
3 .注意关键点:①项数:展开式中总共有(n 1)项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
(a b)n与(b a)n是不同的。
③指数:a的指数从n逐项减到0,是降幕排列。
b的指数从0逐项减到n,是升幕排列。
各项的次数和等于n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是C0 C1 C2,C n r,,C;.项的系数是a与b的系数(包括二项式系数)。
4 .常用的结论:令a 1,b x, (1 x)n C;C:x C;x2 L C;x r L C;x n(n N )n 0 1 2 2 r r 令a 1,b x, (1 x) C n C n X C n X L C n X Ln n n(1) C n X (n N )5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等, 即Cn c;,…Cn k C n k 1②二项式系数和:令a b 1,则二项式系数的和为C0 C1 C,n2L C n r L C n n2n,变形式C n C;L C n L C:2n 1。
(a (x 令X 令X nx)a) 1, C 0a n x oC 0a 0 则a o C 1a n 1x C :ax n 1 C ;a nC 2a 2x n 0 nC n a xn n 0 C n a xa oa 1xa i a 2 a s L 1,则 a o a 2 a s ②得,a a 2 a 4L a n②得,a 1a s a 5La n2a 2x 2 a 2x na n X1a n X n L ①a 1x a o1)n(a 1)n(a* (a 1)A (奇数项的系数和a n (a L a n2(a* (a {(偶数项的系数和⑤二项式系数的最大项:如果二项式的幕指数 n 是偶数时,则中间一项的二项式系数nC n 2取得最大值。
精锐教育学科教师辅导讲义学员编号: 年 级:高二 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:教学内容1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。
(1)知识点的梳理1.二项式定理:(a b)n C n0a n C n1a n 1b L C n r a n r b r L C n n b n(n N ) ,2.基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式。
②二项式系数 :展开式中各项的系数 C n r (r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项C n r a n r b r叫做二项式展开式的通项。
用T r 1 C n a b 表示。
3.注意关键点:①项数:展开式中总共有(n 1)项。
②顺序:注意正确选择a,b,其顺序不能更改。
(a b)n与(b a)n是不同的。
③指数:a的指数从n逐项减到0 ,是降幕排列。
b的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是时时金,,C:, ,C:.项的系数是a与b的系数(包括二项式系数)。
5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C0C n k Cn 1②二项式系数和:令a bC0 C:C: L C;C:2n变形式 1 2 rC n C n L C n C:2n4•常用的结论:令a 1,b x, (1 x)n C0C:x C;x2L C;x「L C;x n(n N )令a 1,b x, (1 x)n C0 C:x C:x2L C;x r L ( 1)n C:x n(n N )③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令 a 1,b 1,则C0 C:C:C;L ( 1)n Cn (1 1)n 0,从而得到:Cn Cn c;c2r C1 C n3L C;'1- 2“2厂2④奇数项的系数和与偶数项的系数和:(a n 0 nx) C n a 0 x C^a n 1xC;a n 2x2L C n C n 0 na x a°1 2 [ na〔x a?x L a n X(x a)n C0a0nx C:ax n 1C:a2x n 2 L C n C n n 0 na x a n x2 1L a?x a〔x a°令x 1,则 a o a1 a2 a;L a n (a 1)n①令x 1,则 a o a1 a2 a;L a n (a 1) n ②①②得,a o a2 a4L a n (a 1)n(a21)r1-(奇数项的系数和)①②得,a1 a3 a5L a n■^卫旦工(偶数项的系数和)2⑤二项式系数的最大项:如果二项式的幕指数n是偶数时,则中间一项的二项式n 系数C n2取得最大值。
( 1 )知识点的梳理1.二项式定理:(a b)n C n0a n C n1a n 1b L C n r a n r b r L C n n b n(n N ) ,2.基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式②二项式系数:展开式中各项的系数C n r (r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式1 项 C n r a n r b r叫做二项式展开式的通项。
用④通项:展开式中的第 rT r 1 C n r a n r b r表示。
3 .注意关键点:①项数:展开式中总共有(n 1)项。
②顺序:注意正确选择a,b,其顺序不能更改。
(a b)n与(b a)n是不同的。
③指数:a的指数从n逐项减到0,是降幕排列。
b的指数从0逐项减到n,是升幂排列。
各项的次数和等于 n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是c0,c;,c2, C, ,C;.项的系数是a与b的系数(包括二项式系数)。
4.常用的结论:令 a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L C n n x n (n N )令 a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L ( 1)n C n n x n(n N )5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C n k③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令 a 1,b 1,则 C c n Cn C 3 L ( 1)n c :(1 1)n 0, 从而得到:C 0 C ; Cn Cn rC n C 3L c ;r 1- 2n 2n 1 2④ 奇数项的系数和与偶数项的系数和:(a x)n c ;a n 0 x C ;a n 1 x C ;a n ;; x L n 0 n C n a x a ° 1 a 〔x ;1 n a x L a x (x a)n 昨 0 n x C ;ax n 1 C ;a ; n ; x L C :n 0 n a x a n xL ; 1 a ;x a 〔x 令x 1,则 a o a 1 a ; a s L a n (a 1)n①令x 1,则 a o a 1 a ; a s L a n (a 1)n②① ②得,a o a ; a 4L a n (a 1)n (a ;1)r1-(奇数项的系数和) ① ②得,a 1 a s a 5 L a n (a 1)n (a ;1)n (偶数项的系数和 ) ⑤ 二项式系数的最大项:如果二项式的幕指数 n 是偶数时,则中间一项的二项式②二项式系数和 b 1 ,则二项式 系数的和为变形式C : C ; Lc n2n,c nC n : 2n1n 系数C2取得最大值。
二项式定理一、 求展开式中特定项1、在30+的展开式中,x 的幂指数是整数的共有( ) A .4项 B .5项 C .6项 D .7项 【答案】C 【解析】()r r rrr r xC x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C .3、若2531()x x+展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x+展开式的通项为10515r rr T C x -+=,当2r =时,常数项为2510C =,4、二项式82)x的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(2)(13)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r rx -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设2sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛⋅+ ⎝的展开式中常数项是 . 【答案】332=- 332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r r r r rr r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、 求特定项系数或系数和7、8()x 的展开式中62x y 项的系数是( )A .56B .56-C .28D .28- 【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 . 【答案】-55【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C . 10、已知dx xn 16e1⎰=,那么nx x )(3-展开式中含2x 项的系数为 . 【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r r r n T C a b -+=,可设含2x 项的项是616(3)r rr r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx 的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,r n C 取最大值,∴8n =,第4项为119(163)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++,那么017a a a +++的值等于( )(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++,得70127(12)1a a a a -=++++=-,令0x =,代入二项式7270127(12)x a a x a x a x -=++++,得70(10)1a -==,所以12711a a a ++++=-,即1272a a a +++=-,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在*3)()n n N x-∈的展开式中,所有项的系数和为32-,则1x 的系数等于 .【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270. 17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++,即01281a a a a ++++=再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n=﹣15(舍去),∴n=4. (5x ﹣)n的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r?=(﹣1)r??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r ??54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255 【解析】178a a a +++=87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-, 所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、 求参数问题20、若32nx x 的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B. 21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5B 、 6C 、8D 、10 【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n,解得6=n ;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x-,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=. 23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( ) A .10或1 B .53-或1 C .2或53- D .10± 【答案】B .【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)nx x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8 【答案】C . 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。
(完整版)⼆项式定理(习题含答案)⼆项式定理⼀、求展开式中特定项 1、在的展开式中,的幂指数是整数的共有() A .项 B .项 C .项 D .项【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为.(⽤数字作答)【答案】10【解】由题意得,令,可得展⽰式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、⼆项式的展开式中的常数项为.【答案】112【解析】由⼆项式通项可得,(r=0,1,,8),显然当时,,故⼆项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第⼀项取时,,此时的展开式中常数为;当第⼀项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是.【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+?==30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π=-+()622x ??+ ?332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ??=-+=+=-+= ??的展开式的通项为,所以所求常数项为.⼆、求特定项系数或系数和7、的展开式中项的系数是()A .B .C .D .【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是.【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是.【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为.【答案】135【解析】根据题意,,则中,由⼆项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于()A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在⼆项式的展开式中,只有第5项的⼆项式系数最⼤,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-??3633565566(1)22(1)2T C C --=-??+-?332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -?-3x 6(1)(2)x x -?-3x 336)(2x C -226)(x -x C -?)(3x 552-2636-=-C C dx xn 16e 1=nx x )(3-2x 66e111ln |6e n dx x x=?==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ?=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=?=1)2nx =n【答案】,.【解析】由⼆项式定理展开通项公式,由题意得,当且仅当时,取最⼤值,∴,第4项为. 13、如果,那么的值等于()(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代⼊⼆项式,得,令,代⼊⼆项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代⼊⼆项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于.【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-?=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1 a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-(sin cos )k x x dx π=-?8822108)1(x a x a x a a kx ++++=-K 1238a a a a ++++=0(sin cos )(cos sin )k x x dx x x ππ=-=--?,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,⼆项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x ⽆关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由⼆项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=(5x )4﹣r ?(﹣1)r ?=(﹣1)r ?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为(﹣1)r54﹣r=1×6×25=150,19、设,则.【答案】【解析】,所以令,得到,所以三、求参数问题20、若的展开式中第四项为常数项,则()A .B .C .D .【答案】B【解析】根据⼆项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、⼆项式的展开式中的系数为15,则()(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -?=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -?=+?+? ++?K 01a =12380a a a a ++++=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =456725333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】⼆项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数() A1 B .或1 C .2或 D .【答案】B.【解析】由题意得的⼀次性与⼆次项系数之和为14,其⼆项展开通项公式,∴或,故选B . 24、设,当时,等于()A .5B .6C .7D .8 【答案】C .【解析】令,则可得,故选C .四、其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利⽤⼆项式表⽰,使其底数⽤8的倍数表⽰,利⽤⼆项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+20162013﹣20162012+…+2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+?=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=?=53-23(1)(1)(1)(1)n x x x x ++++++++2012n n a a x a x a x =++++012254n a a a a ++++=n 1x =2 312(21)22222225418721n nn n n +-++++==-=?+=?=-。
二项式定理 概念篇【例1】求二项式(a — 2b)4的展开式. 分析:直接利用二项式定理展开•解:根据二项式定理得 (a — 2b)4=c 0 a 4+c 4 a 3( — 2b)+C 4 a 2( — 2b)2+C 3 a( — 2b)3+C 4 (— 2b)4=a 4 — 8a 3b+24a 2b 2— 32ab 3+i6b 4.说明:运用二项式定理时要注意对号入座,本题易误把— 2b 中的符号“―”忽略【例2】展开(2x -2代2x分析一:直接用二项式定理展开式•解法一:(2x - 32)5=C °(2x)5+c l (2x)4(— q )+C ;(2x)3( — q )2+c 5(2x)2(—与)3+2x2x 2x 2xC 5 (2x)( — 2)4+C ;( — 2)52x 2 2x 2分析二:对较繁杂的式子,先化简再用二项式定理展开解法二:35--和件[C 5 (4x 3)5+C 1 (4x 3)4(— 3)+C 5 (4x 3)3(— 3)2+C 3 (4x 3)2( — 3)3+C 4 (4x 3)( — 3)4 + C 5( — 3)5]荷(1024x 15— 3840x 12+5760x 9— 4320x 6+l620x 3— 243) 32x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件对较复杂的二项式,有时先化简再展开会更简便【例3】在(x — ■ 3)10的展开式中,x 6的系数是 ________ . 解法一:根据二项式定理可知x 6的系数是c 4°.解法二:(x —,3)10 的展开式的通项是 T r+1=C ;0X 10—r ( — 3 )r .令10— r=6,即r=4,由通项公式可知含 x 6项为第5项,即T 4+1=C :0x 6( — . 3 )4=9C 40x 6. ••• x 6的系数为9C :0.上面的解法一与解法二显然不同,那么哪一个是正确的呢?问题要求的是求含 x 6这一项系数,而不是求含 x 6的二项式系数,所以应是解法二正确 如果问题改为求含 x 6的二项式系数,解法一就正确了,也即是C :0.说明:要注意区分二项式系数与指定某一项的系数的差异 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项=32x 5— 12Ox 2+180 x135 405+87243 10 .32x=327°=32x 5— 120x 2+180 x 135 405x 4 +8x 7243 32x 10 .式无关,后者与二项式、二项式的指数及项数均有关【例4】已知二项式(3 . x — —)10,3x(1) 求其展开式第四项的二项式系数; (2) 求其展开式第四项的系数; (3) 求其第四项.分析:直接用二项式定理展开式•解:(3..X — -2)10 的展开式的通项是 T r+i =C ;o (3.、x )10—r ( — 2)r (r=o , 1,…,10).3x3x•••第9项为常数项,其值为256说明:二项式的展开式的某一项为常数项, 就是这项不含“变元”,一般采用令通项T r+1中的变元的指数为零的方法求得常数项.【例6】(1)求(1+2x)7展开式中系数最大项; (2)求(1 — 2x)7展开式中系数最大项.分析:利用展开式的通项公式, 可得系数的表达式, 列出相邻两项系数之间关系的不等 式,进而求出其最大值.7!2r7! 2r 1即 r!(7r)!(r 1)!(7 r 1)!7! 2r7! 2r 1r !(7 r)!(r 1)!(7 r 1)!(1)展开式的第 4项的二项式系数为 C ?0=120.(2)展开式的第 (3)展开式的第 2 4 项的系数为 C ;037(— — )3= — 77760.34 项为—77760( x )7十,即一77760 • x .z\.(3 .. x — —)10写成]3 x +(— A): 10,从而凑成二项式定理的形式3x 3x【例5】求二项式(x 2+ 1 )10的展开式中的常数项.2丘说明:注意把 分析:展开式中第r+1项为C ;0(x 2)10—r ( 1)r ,要使得它是常数项,必须使2Jxx ”的指数为零,依据是X 0=1 , x M 0.解:设第r+1项为常数项,则 Eg 2)102053r 1 r人 52(一)r (r=0, 1,…,10),令 20 —r=0,2 2••• T9=C 80(1)8=45 256解:(1)设第r+1项系数最大,则有C 72r (C r 1?r 1 C 72r ( C r 1?r 1系数最大项为 T 6=C 7 25X 5=672X 5.(2)解:展开式中共有 8项,系数最大项必为正项,即在第一、三、五、七这四项中取得•又因(1 - 2x)7括号内的两项中后两项系数的绝对值大于前项系数的绝对值, 故系数最大值 必在中间或偏右,故只需比较C 4( 2)4C 3T 5和T 7两项系数的大小即可-C6( 2)6 =4C >1, 所以系数最大项为第五项,即 T 5=560X 4.说明:本例中(1)的解法是求系数最大项的一般解法, (2)的解法是通过对展开式多项分析,使解题过程得到简化,比较简洁 .【例7】(1+2x)n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大 的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性确定二项式系数最大的项.解:T 6=C ;j (2x)5, T 7=C 6 (2X )6,依题意有。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。