水性聚氨酯与丙烯酸酯共聚乳液的研究
- 格式:pdf
- 大小:50.13 KB
- 文档页数:2
交联型超支化水性聚氨酯丙烯酸酯的合成与表征刘棚滔;杨建军;张建安;吴庆云;吴明元【摘要】以异佛尔酮二异氰酸酯(IPDI)、二乙醇胺(DEOA)和二羟甲基丙酸(DMPA)合成超支化聚氨酯核(HBPU-0);然后以 IPDI、聚醚二元醇(N220)、DMPA、1,4-丁二醇(BDO)和丙烯酸羟乙酯(HEMA)合成线性聚氨酯(LPU),将其接枝到 HBPU-0上,合成具有交联结构的超支化聚氨酯( HBPU);最后加入丙烯酸酯(PA)合成了超支化聚氨酯丙烯酸酯共聚乳液(HBPUA)。
热失重分析和拉伸数据表明,当 m(HBPU): m(PA)=10:6时,HBPUA 的性能最佳,其热分解温度达到268℃,拉伸强度为8.32 MPa。
通过红外光谱(FTIR)分析了其结构,透射电镜(TEM)观察其形貌为核壳结构。
%The core of hyperbranched polyurethane(HBPU-0)was prepared from isophorone diisocyanate (IPDI),dimethylol propionic acid(DMPA)and diethanol amine(DEOA);the linear polyurethane(LPU) was prepared from IPDI,polyether diol(N220),DMPA,1,4-butanediol(BDO)and hydroxyethyl acrylate (HEMA),then the LPU was grafted on HBPU-0,the crosslinking structure hyperbranched polyurethane (HBPU)was obtained;finally a series of hyperbranched polyurethane acrylate copolymer emulsion(HB-PUA)were synthesized by added acrylate(PA). TG analysis and tensile data showed that,when m(HB-PU): m(PA)= 10: 6,HBPUA have the best performan ce,the thermal decomposition temperature reaches 268 ℃ ,the tensile strength is 8. 32 MPa. The structure was analyzed by FTIR,TEM to observe the mor-phology of core-shell structure.【期刊名称】《应用化工》【年(卷),期】2015(000)005【总页数】5页(P789-793)【关键词】超支化;聚氨酯;丙烯酸酯;交联结构【作者】刘棚滔;杨建军;张建安;吴庆云;吴明元【作者单位】安徽大学化学化工学院安徽省绿色高分子材料重点实验室,安徽合肥 230601;安徽大学化学化工学院安徽省绿色高分子材料重点实验室,安徽合肥230601;安徽大学化学化工学院安徽省绿色高分子材料重点实验室,安徽合肥230601;安徽大学化学化工学院安徽省绿色高分子材料重点实验室,安徽合肥230601;安徽大学化学化工学院安徽省绿色高分子材料重点实验室,安徽合肥230601【正文语种】中文【中图分类】TQ323.8超支化聚合物是一类具有高度支化结构的大分子,其分子具有类球形的结构,而且分子链之间缠结较少,所以具有良好的流动性、溶解性和低黏度等优点,同时含有大量的活性端基,容易进行接枝改性。
丙烯酸酯/聚氨酯三层核壳复合乳液的合成与表征周慧;王贺;朱雪冰;张瑜;钱永丽;张普玉;柴云【摘要】以自制的聚酯多元醇(PPMBA )、甲苯二异氰酸酯(TDI)、1,6‐六亚甲基二异氰酸酯(HDI)、二羟甲基丙酸(DM PA )合成聚氨酯预聚体,再用丙烯酸酯类单体代替有机溶剂对预聚体降黏,封端预聚体后中和分散乳化得包含丙烯酸酯类单体的聚氨酯乳液.向乳液中加入引发剂引发自由基聚合得到复合乳液,最后再加入乙烯基类单体及引发剂合成三层核壳结构的聚丙烯酸酯/聚氨酯复合乳液.研究表明,二异氰酸酯的-NCO与聚酯多元醇中的-O H的物质的量之比(R值)为16.~4之间时,随 R值增加,乳液稳定性增强;DM PA含量在4%~7%的范围内,随DM PA含量的降低,乳胶膜的耐水性提高.通过红外光谱对所合成聚酯多元醇及复合乳液结构进行表征.%Polyurethane prepolymer was synthesized with polyester polyol made by myself , toluene‐2 ,4‐diisocyanate ,hexmethylene‐1 ,6‐diisocyanate ,2 ,2‐bis (hydroxymethyl) propionic acid ,and then acrylate monomer replaced organic solvent to reduce viscosity of polyurethane prepolymer .Afterblocking ,neutralizing ,dispersing and emulsifying ,polyurethane emulsion including acrylate monomer was obtained .Next ,after adding initiator and initiating radical polymerization ,composite emulsion was obtained .Finally , three‐layers shell‐core structure polyacrylate/polyurethane composite emulsion was obtained after adding vinyl monomers ,ini‐tiator and initiating .Experiments indicated that ,w hile the initial molar ratio of the -NCO and-OH (R value) range from 4 to 1 6. ,the steady of emulsion was improved with the increasing of R value .In addition ,the less contents ofDM PA (DM PA with mass fraction in the range of 4% ~7% ) let to the greater water resistance of latex film .The structures of polyester polyol and composite emulsion were characterized by infrared spectroscopy (IR) .【期刊名称】《化学研究》【年(卷),期】2016(027)003【总页数】5页(P369-373)【关键词】水性聚氨酯;复合乳液;核壳结构【作者】周慧;王贺;朱雪冰;张瑜;钱永丽;张普玉;柴云【作者单位】河南大学化学化工学院,精细化学与工程研究所,河南省阻燃与功能材料工程实验室,河南开封 475004;河南大学化学化工学院,精细化学与工程研究所,河南省阻燃与功能材料工程实验室,河南开封 475004;河南大学民生学院,河南开封 475004;河南大学民生学院,河南开封 475004;河南大学民生学院,河南开封 475004;河南大学化学化工学院,精细化学与工程研究所,河南省阻燃与功能材料工程实验室,河南开封 475004;河南大学化学化工学院,精细化学与工程研究所,河南省阻燃与功能材料工程实验室,河南开封 475004【正文语种】中文【中图分类】TQ3166.2聚氨酯材料因其强度高、柔韧性好、耐磨、耐化学腐蚀性优良等优点,广泛应用于木器漆、胶黏剂、皮革涂饰剂、印染等领域[1-6]. 近年来,随着环保法规的日益完善,人们环境意识的不断增强,开发具有低毒、环保、节能的水性聚氨酯(WPU)材料成为研究的热点[7]. 但是,单一组分的WPU乳液往往在耐水性、力学性能等方面不及溶剂型聚氨酯.丙烯酸酯,因其组成为短链烯类单体,合成聚合物后结构稳定,所以具有良好的耐候性,涂膜硬度,力学性能,优异耐水耐溶剂性质,并且价格较低. 丙烯酸酯和聚氨酯之间在性能上有很强的互补性. 因此,由PA改性PU的复合材料被称为“第三代水性聚氨酯涂料PUA”[8-12]. 至今,国内外学者对此进行了大量研究,但PU/PA复合乳液虽然研究较多,大都是二层的核壳结构,鲜有报道核壳三层结构复合乳液.目前大多数的水性聚氨酯工业采用溶剂法,溶剂的使用增加了后处理的成本,而且有些溶剂难以去除,可能影响产品性质[13]. 我们采用原位聚合的方法,合成具有三层结构水性聚氨酯-丙烯酸酯乳液,并对复合乳液的工艺条件进行了优化,考察了各因素对复合乳液及其胶膜性能的影响. 此合成方法以两亲性聚氨酯大分子为乳化剂,解决了传统乳液聚合中小分子乳化剂向涂膜表面迁移而影响涂层性能的问题;采用丙烯酸类单体代替有机溶剂对聚氨酯预聚物降黏,不仅有利于合成PUA复合乳液,而且减少了有机溶剂的使用及后处理的过程,使工艺更加节能环保,符合当前的发展趋势. 利用聚酯多元醇引入双键,采用PA/PU/PA三层核壳结构,旨在改良PU与PA的相容性并从结构上构建包覆层,包覆双离子层以改良胶膜耐水性.1.1 试剂与仪器1,6-己二酸(简称ADA,AR,阿拉丁),邻苯二甲酸酐(简称PA,AR,天津市科密欧化学试剂开发中心),马来酸酐(简称MA,AR,天津市大茂化学试剂厂),1,4-丁二醇(简称BOD,AR,天津市福晨化学试剂),钛酸四丁酯(简称TBT,AR,天津市化学试剂一厂),2,4-甲苯二异氰酸酯(简称2,4-TDI,AR,天津市光复精细化工研究所),1,6-六亚甲基二异氰酸酯(简称HDI,AR,阿拉丁),二羟甲基丙酸(简称DMPA,AR,阿拉丁),正丁醇(简称BOA,AR,天津市科密欧化学试剂开发中心),丙烯酸羟乙酯(简称HEMA,AR,ABCR GmbH & CO. KG),三乙胺(简称TEA,AR,天津市科密欧化学试剂开发中心),甲基丙烯酸甲酯(简称MMA,AR,天津市大茂化学试剂厂),丙烯酸丁酯(简称BA,AR,天津市科密欧化学试剂有限公司),丙烯酸(简称AA,AR,天津市德恩化学试剂有限公司),苯乙烯(简称St,AR,西陇化工股份有限公司),甲基丙烯酸甘油酯(简称GMA,AR,ABCR GmbH & CO. KG),对苯二酚(简称HQ,AR,开封市化学试剂总厂),过硫酸钾(简称KPS,AR,国药集团).美国PerkinElmer Spectrum Two红外光谱仪;集热式恒温加热磁力搅拌器;玻璃仪器气流烘干器;分析电子天平;超声波发生器;电鼓风干燥箱;TGL-16C离心机.1.2 实验方法1.2.1 改性聚酯(PPMBA)的合成以高温熔融法[14-15]制备改性聚酯多元醇. 原料采用常用的长链醇BOD及长链酸ADA,为了与丙烯酸酯有良好相容性和增加交联结构添加功能单体MA,同时,为了调节聚酯多元醇中双键密度及增加链刚性和规整度,在其中引入了PA链段.所得聚酯多元醇酸值(Av)小于2 mg·g-1KOH,羟值(Hv)在80~100 mg·g-1KOH 之间.1.2.2 水性聚氨酯与聚丙烯酸酯复合乳液的合成在四口烧瓶中装配搅拌棒及温度计,加入自制的聚酯多元醇,搅拌升温至115 ℃,并抽真空(真空度<-0.01 MPa)除水1 h. 待降温至65 ℃以下,加入计量好的TDI,约10 min后加入计量的HDI,并设定保温65~70 ℃,反应2~3 h. 然后加入计量好的亲水扩链剂DMPA,保温70~75 ℃,反应1.5~2 h. 在上述预聚体中加入少量阻聚剂及计量的封端剂和丙烯酸酯类单体对预聚物进行降黏封端,保温65~70 ℃,反应1~1.5 h. 而后,空气冷却降温至40~45 ℃,在高速搅拌下,加入计量的三乙胺及去离子水乳化分散约10 min,得呈蓝光乳液.将上步已包含丙烯酸酯类单体的乳液,加热至60 ℃,向其中滴加部分引发剂和计量的单体,升温70 ℃引发后,同时滴加引发剂与单体1 h左右,滴毕,升温80 ℃,保温2~3 h,降温出料,得PU包裹PA的双层核壳结构乳液PUA. 向PUA内加入少量蒸馏水,在70 ℃滴入计量的丙烯酸酯单体及引发剂引发聚合反应,约1 h后滴毕,升温80 ℃,保温2~3 h,降温出料,得聚丙烯酸酯-聚氨酯-聚丙烯酸酯三层核壳结构乳液APUA.1.3 性能测试1.3.1 聚酯多元醇的酸值测定取一定质量m (g) 聚酯,以甲苯与乙醇体积比2∶1 混合液溶解,得到澄清溶液.以酚酞-乙醇溶液为指示剂,用浓度为c (mol·L-1) 的氢氧化钾乙醇溶液滴定至终点,记录氢氧化钾溶液滴定前后体积量V1 (mL)、V2 (mL),以下式计算酸值(mg KOH·g-1 ):1.3.2 聚酯多元醇的羟值测定取一定质量m (g)聚酯,以10 mL静置过夜的苯酐-吡啶溶液溶解,加入磁子后,油浴115 ℃保持1 h后,冷却降温至室温加去离子水10 mL搅拌反应10 min后以酚酞溶液为指示剂,用浓度为c (mol·L-1)的氢氧化钠标准溶液滴定至终点,记录氢氧化钠溶液消耗量V1. 在不加入聚酯条件下,用等量苯酐-吡啶溶液在其他相同条件下做一空白对照,并以酚酞溶液为指示剂,用氢氧化钠标准溶液滴定至终点,记录氢氧化钠溶液消耗量V2,以下式计算羟值(mg NaOH·g-1 ):1.3.3 乳液稳定性检测目测观察样品的颜色、状态、均一性等物理性状. 将一定乳液密封于7 mL的离心管中,静置观察,是否有分层现象发生.通过离心沉降实验模拟乳液的储存稳定性.1.3.4 乳胶膜耐水性检测将所得乳胶剪成30×30 mm的试样,称取其质量m1,室温下浸泡在去离子水中,24 h后取出胶膜,迅速擦干表面水分,称重得质量m2,由以下公式计算吸水率:1.3.5 红外光谱(IR)结构表征将所得聚酯多元醇或乳液滴少量在溴化钾压片上,在红外干燥灯下烘烤乳液水分迅速挥发成膜,放入红外光谱仪中检测得其红外谱图.2.1 产物的结构表征2.1.1 PPMBA聚酯多元醇红外光谱分析PPMBA合成树脂的红外光谱如图1所示.从图1可以看出,3 538 cm-1处较宽吸收峰是—OH的伸缩振动峰,表明该聚酯多元醇中有游离的羟基;3 062 cm-1处尖峰是顺式双键中受羰基影响致蓝移的C—H伸缩振动峰;2 958 cm-1、2 876 cm-1处强峰是—CH2—的碳氢伸缩振动峰;1 730 cm-1处强尖峰是酯基中羰基的伸缩振动;1 645 cm-1处尖峰是碳碳双键伸缩振动,说明聚酯多元醇中包含双键链段;1 600 cm-1、1 580 cm-1、1 465 cm-1、1 450 cm-1四尖峰合为苯环的骨架振动峰,表明该样品中含有苯环链段,而745 cm-1处是邻位二取代苯环面外弯曲振动峰,综合表明其中含有邻苯二取代链段.2.1.2 APUA三层核壳PA/PU/PA复合乳液涂膜红外光谱分析APUA复合乳液的红外谱图见图2. 3 406 cm-1处尖峰为仲胺基上的—NH—的伸缩振动峰,1 635 cm-1处尖峰为仲胺基的面内变形振动,属于胺基甲酸酯的特征吸收,可表明胺基甲酸酯键的存在;2 954 cm-1、2 871 cm-1处属于—CH2—的碳氢伸缩振动峰;1 724 cm-1处强尖峰是酯基中羰基的伸缩振动;1 600 cm-1、1 456 cm-1是苯环骨架振动峰,而743 cm-1处是邻位二取代苯环面外弯曲振动峰,综合表明其中含有邻苯二取代链段.2.1.3 红外比较分析图3是PPMBA与APUA的IR特征峰比较图. 1 645 cm-1处为碳碳双键伸缩振动峰位置,聚酯多元醇中因含有马来酸酐段而存在此峰,在所合成的水性聚氨酯中此位置无峰,说明马来酸酐双键及后加入的丙烯酸酯类单体也已参与反应,有聚丙烯酸酯生成. 1 535 cm-1处为胺基甲酸酯键特征峰位置,聚酯多元醇中并无胺基甲酸酯键因而此位置无峰,所合成产品中有此尖峰,可见确实有聚氨酯生成.2.2 R值对乳液稳定性的影响R值是指体系内,二异氰酸酯的-NCO与聚酯多元醇中的-OH的物质的量之比,其对合成聚氨酯中软硬段比例及相对分子质量大小均有影响. 在w(DMPA)=7%,中和度:100%,w(PU)/w(PA) = 2时,R值对乳液稳定型的影响的实验数据见表1.由表1可以看出:本实验R值在1.6 ~ 4的范围内,随R值增大,乳液稳定性增加,外观变好,R值较小时,所得预聚体相对分子质量较大,会产生包轴现象,进而使传热不均,甚至发生部分交联,同时也不利于后期乳化分散. 而随着R值增大,所得预聚体的相对分子质量减小,黏度变小,分散较易,所得乳液外观变好,稳定性也随之提高.2.3 DMPA值对乳液稳定性的影响表2为DMPA在R = 4,中和度为100%,w(PU)/w(PA) = 2时,DMPA含量对乳液耐水性的影响. 如表2所示,制得的PUA基本不耐水,但将该核壳乳液经第三层PA包裹后,耐水性明显提高,说明以下两点:其一,PUA室温成膜后,其表面应是中和后的双离子层具有较好的亲水性,加之聚氨酯合成相对分子质量较小,交联密度较低,使水较易进入胶膜内部,溶胀乃至溶解PUA复合乳胶膜. 在第三层PA壳层包裹住双层乳胶粒后,APUA中最外层PA层起到了保护水性聚氨酯表层离子层,使之与水接触减少,再者最外层PA的复合增大了交联密度,拓展网格结构,使水分子的进入更为困难,因而耐水性提高. 其二,在本实验中,APUA的耐水性随DMPA含量减小而提高,说明最外层PA层虽起到使聚氨酯表层离子层与水接触减少的作用,但并不能做到隔绝水分子的进入,使耐水性大幅提高,故而耐水性还十分受制于体系内亲水基团的含量.(1) 采用高温熔融法,以MA、PA、ADA与BOD为原料,合成链中含有不饱和键的聚酯多元醇. 红外光谱证明了聚酯多元醇中不饱和键的存在.(2)采用原位聚合法,制备出了水性聚氨酯-丙烯酸酯三层复合结构的乳液,红外光谱表明丙烯酸酯成分参与了反应,复合乳液中,即含有丙烯酸成分,又含有聚氨酯成分,形成了PA/PU/PA三层复合结构.(3)水性聚氨酯-丙烯酸酯三层复合结构提高了水性聚氨酯的耐水性能,且实验结果表明,R值在1.6~4之间时,随R值增加,乳液稳定性增强;DMPA含量在4%~7%的范围内,随DMPA含量的降低,乳胶膜的耐水性提高.【相关文献】[1] 许戈文. 水性聚氨酯材料[M]. 北京: 化学工业出版社, 2007: 1-4.[2] 时国珍. 丙烯酸酯改性聚氨酯胶黏剂 [J]. 化学推进剂与高分子材料, 2010, 8(1): 20-22.[3] GUO Y H, LI S C, WANG G S. Waterborne polyurethane/poly(n-butyl-acrylate-styrene) hybrid emulsions: particle formation, film properties, and application [J]. Prog Org Coat, 2012, 74(1): 248-256.[4] SARDON H, IRUSTA L, LANSALOT M, et al. Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES) [J]. Polymer, 2010, 51(22): 5051-5057.[5] KREIDER A, RICHTER K, SELL S, et al. Functiona-lization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes [J]. Appl Surf Sci, 2013, 273: 562-569.[6] 卢敏, 张海龙, 黄毅萍, 等. 合成革用水性聚氨酯胶黏剂的制备及性能研究 [J]. 聚氨酯, 2011, 3: 78-81.[7] 任娜娜. 环境友好型水性涂料的制备与研究 [D]. 长沙: 湖南大学, 2011: 1-2.[8] 王学川, 宗奕珊, 强涛涛. 丙烯酸酯改性水性聚氨酯乳液的合成及胶膜性能 [J]. 精细化工, 2014,31(1): 79-84.[9] ZHANG J F, LI X F, SHI X H, et al. Synthesis of core-shell acrylic-polyurethane hybrid latex as binder of aqueous pigment inks for digital inkjet printing [J]. Progr Nat Sci: Mater Intern, 2012, 22(1): 71-78.[10] SHAZIA T, MOHAMMAD Z, TAHIR J, et al. Antimicrobial and pilling evaluation of the modified cellulosic fabrics using polyurethane acrylate copolymers [J]. Int J Biol Macromol, 2013, 56: 99-105.[11] 张明月, 陈广美, 张晓亮, 等. 含氟丙烯酸酯改性聚氨酯核壳乳液的制备及表征[J]. 精细化工, 2011, 28(11): 1041-1045.[12] 曾小君, 袁荣鑫, 宁春花, 等. 聚丙烯酸酯共混改性水性聚氨酯乳液性能研究 [J]. 新型建筑材料, 2006, 8: 65-68.[13] 江吉旺, 朱海峰, 兰云军, 等. 无溶剂法阴离子水性聚氨酯复鞣填充剂的合成 [J]. 化学工程师, 2010, 7: 13-16.[14] 左晓兵, 朱亚辉, 俞丽珍, 等. 顺酐聚酯多元醇的合成及应用研究 [J]. 现代化工, 2010, 11: 64-66.[15] VILAS D A, MONA A K. Polyester polyols for waterborne polyurethanes and hybrid dispersions [J]. Prog Org Coat, 2010, 67: 44-54.。
水性聚氨酯引言为了减少涂料对环境的污染和对消费者健康的损害, 许多国家对溶剂型涂料的限制越来越严格, 从而使涂料由溶剂型向水基型的转变成为必然。
早在2005 年我国就已开始控制新的溶剂型涂料生产企业的审批, 到2008 年将对溶剂型涂料的生产和销售实行控制。
低污染涂料的发展方向有水性化、高固体分化和粉末化三种。
与其他两种涂料相比, 水性涂料因为具有来源方便、易于净化、成本低、黏度低、良好的涂布适应性、无毒性、无刺激及不燃性等特点, 已成为环境友好型涂料的主要发展方向。
一、水性聚氨酯涂料的性能聚氨酯( PU) 涂料是涂料业中增长速度最快的品种之一。
水性聚氨酯( WPU) 涂料是以水性聚氨酯树脂为基础, 以水为分散介质配制的涂料, 除具有水性涂料的特点以外, 它还有以下突出的优点:1)涂膜对塑料、木材、金属及混凝土等表面的附着力好, 抗磨性、耐冲击性好。
脂肪族聚氨酯水性涂料的户外耐久性好, 综合性能接近溶剂型聚氨酯涂料2) 和其他乳胶涂料相比, 其低温成膜性好, 不需要成膜助剂, 也不需要外加增塑剂、乳化剂或分散剂。
3) 容易通过交联反应进行改性, 可提高耐溶剂性和抗化学性, 改进耐水性, 对颜料( 包括金属颜料) 有良好的适应性, 也可提供高光泽涂膜。
所含羟基可以适用一些交联剂和固化剂, 可进一步改进涂膜性能。
4) PU 分子具有可裁剪性, 结合新的合成和交联技术可有效控制涂料的组成和结构, 为改进其性能提供了更多的途径。
WPU 诸多的优点, 使其成为目前发展最快的涂料品种之一。
2 水性聚氨酯涂料的研究进展WPU 分为单组分和双组分。
单组分WPU 涂料聚合物的对分子质量较大, 成膜过程中一般不发生交联反应, 具有施工方便的优点; 双组分WPU涂料由含羟基的水性树脂和含异氰酸酯基的固化剂组成, 施工前将两者混合, 成膜过程中发生交联反应, 涂膜性能好。
由于在水性聚氨酯分子中引入了亲水基团, 所以耐水性、耐溶剂性和耐候性等较差是WPU 涂料存在的主要问题, 为此, 近几年来国内外学者对WPU 的改性进行了大量研究, 并取得了很大进展。
水性聚氨酯胶粘剂的开发与应用研究进展杜郢,代飞,沈千红(江苏工业学院化工系,江苏常州213016) 收稿日期:2007-05-10作者简介:杜郢(1957-),女,高级工程师,从事胶粘剂、特种蜡、切削液及油田化学等研究工作,发表论文30余篇。
摘要:简述了水性聚氨酯胶粘剂的定义,及其在植绒、多种层压制品、复合包装、木材粘接、鞋用以及压敏胶等方面的应用。
介绍了水性聚氨酯胶粘剂的研究现状及多种改性方法的技术特点,如:丙烯酸酯改性、环氧改性、聚硅氧烷改性、纳米材料复合改性等。
指出了水性聚氨酯胶粘剂的发展方向。
关键词:水性聚氨酯;胶粘剂;改性;应用中图分类号:T Q433.4+32;T Q436+.5 文献标识码:A 文章编号:1001-5922(2007)05-0032-04 水性聚氨酯胶粘剂(简称P U 胶)是水性胶粘剂中的重要一类,以其优良的粘接性、突出的耐油、耐冲击、耐磨、耐低温等特性,近年来得到了迅速发展。
1 水性PU 胶的定义及分类水性P U 胶是指聚氨酯溶于水或分散于水中而形成的胶粘剂。
其分类方法很多,按外观和粒径可分为3类,即聚氨酯乳液、聚氨酯分散液和聚氨酯水溶液。
实际应用最多的是聚氨酯乳液和分散液[1]。
1.1 聚氨酯乳液聚氨酯乳液是指水分散体中含有乳化剂的聚氨酯分散体系。
可通过外乳化法制得。
其粒径>0.1μm,外观白浊。
由于这种聚氨酯不易溶于水,因此需通过强力搅拌,依靠剪切力和大量乳化剂作用将聚氨酯强制乳化分散于水中。
大多数外乳化聚氨酯乳液的产品粒径粗大,且亲水性小分子乳化剂的残留,会影响固化后聚氨酯胶膜的性能,现在已经逐步向自乳化聚氨酯分散液方向发展。
1.2 聚氨酯分散液通常将不含有乳化剂的聚氨酯分散体叫水性聚氨酯分散体,或聚氨酯分散液,其粒径在0.001~0.1μm,外观半透明,可通过内乳化或自乳化法制得。
采用带有成盐亲水基团的物质与预聚体的—NC O 基团反应生成亲水的聚氨酯盐,这种聚氨酯盐不用加入乳化剂,经搅拌可直接分散于水中得到半透明分散体。
水性聚氨酯合成、改性及应用前景摘要:随着水性聚氨酯合成与改性工艺的不断进步,水性聚氨酯的应用也得到了极大地提升,反过来由于水性聚氨酯涂料的优异性能以及其极好的应用前景近些年来有关于水性聚氨酯的合成与改性研究也是如火如荼。
本文主要介绍了水性聚氨酯涂料的合成方法,综述了水性聚氨酯的改性方法,包括丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性,并对水性聚氨酯涂料的发展进行了展望。
关键字:水性聚氨酯;合成;改性;丙烯酸酯;有机硅。
水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,也称水分散聚氨酯、水系聚氨酯或水基聚氨酯。
水性聚氨酯以水为溶剂,无污染、安全可靠、机械性能优良、相容性好、易于改性等优点。
水性聚氨酯可广泛应用于涂料、胶粘剂、织物涂层与整理剂、皮革涂饰剂、纸张表面处理剂和纤维表面处理剂。
水性聚氨酯虽然具有很多优良的性能,但是仍然有许多不足之处。
如耐水性差、耐溶剂性不良、硬度低、表面光泽差等缺点,由于水性聚氨酯的这些缺点,我们需要对其进行改性,目前常见的改性方法有丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性等,本文将对水性聚氨酯的合成与改性进行阐述。
一、水性聚氨酯的合成水性聚氨酯的制备可采用外乳化法和自乳化法。
目前水性聚氨酯的制备和研究主要以自乳化法为主。
自乳化型水性聚氨酯的常规合成工艺包括溶剂法(丙酮法)、预聚体法、熔融分散法、酮亚胺等。
丙酮法是先制得含端基的高粘度预聚体,加入丙酮、丁酮或四氢呋喃等低沸点、与水互溶、易于回收的溶剂,以降低粘度,增加分散性,同时充当油性基和水性基的媒介。
反应过程可根据情况来确定加入溶剂的量,然后用亲水单体进行扩链,在高速搅拌下加入水中,通过强力剪切作用使之分散于水中,乳化后减压蒸馏回收溶剂,即可制得PU 水分散体系。
反应的整个过程中,关键的是加入丙酮等溶剂以达到降低体系粘度的目的。
由于丙酮对PU 的合成反应表现为惰性,与水可混溶且沸点低,因此在此法中多用丙酮作溶剂,故名“丙酮法”。
随着各国环保法规的确立和环保意识的增强,传统的溶剂型涂料中的挥发性有机化合物(VOC)的排放越来越受到限制。
因此,开发低污染环保型的水性涂料、粉末涂料、高固含量涂料和光固化涂料已成为开发的主要方向。
水性聚氨酯(PU)涂料具有良好的物理机械性能和优良的耐寒性。
但是,由于单一PU乳液存在自增稠性差,固含量低,乳胶膜的耐水性差,光泽性较差,机械强度不及丙烯酸树脂,且成本较高等缺陷,其应用受到一定的限制。
而聚丙烯酸酯(PA)乳液具有较好的耐水性、物理机械性能和耐候性能,故PU和PA在性能上具有互补性。
所以将聚氨酯乳液与聚丙烯酸酯乳液复合制备水性聚氨酯一聚丙烯酸酯(PUA)复合乳液,兼有聚氨酯乳液和聚丙烯酸酯乳液的优良特性,成本较低,具有较好的应用前景。
利用有机硅和有机氟对水性聚氨酯进行改性,将各自优点融合起来,突出了环保和高效的特点,获得了更优的特性,因而得到人们的广泛关注与快速发展。
有机硅材料具有耐高低温、耐老化、耐臭氧、电绝缘耐燃、无毒、无腐蚀和生理惰性等优异性能,因而是聚氨酯改性产品的理想材料。
另外,由于氟原子半径小,电负性强、碳氟键键能高,因此赋予了氟涂料极好的利紫外线和核辐射性、柔韧性,优良耐磨性,低表面能,高抗张强度,高电阻率和高耐候性,含氟的聚氨酯树脂涂料就是一种可常温固化的具优异性能的涂料品种。
1.2 水性聚氨酯概述聚氨酯是聚氨基甲酸酯的简称。
凡是在高分子主链上含有许多重复的-NHCOO-基团的高分子化合物通称为聚氨基甲酸酯(Ployurethnae,简称PU)。
通常所说的聚氨酯系由二元或多元有机异氰酸酯与二元或多元醇化合物(聚醚多元醇或聚酯多元醇)相互反应而得的,其大分子主链是由玻璃化温度低于室温的柔性链段和玻璃化温度高于室温的刚性链段嵌段而成的依据聚氨酯材料的本身结构,可以分为体形与线形,一般由于所用原料官能团数目的不同,可以合成体形或线形结构的高分子,如当有机异氰酸酯和多元醇化合物均为二官能团时,即可得到线形结构得高聚物,若其中之一种或两种,部分或全部具有三个及三个以上官能团时则得到体形结构的聚合物,由于聚合物的结构不同,性能也不一样,利用这些性质,聚氨酯类聚合物可以用在橡胶、塑料、纤维、涂料、猫合剂、皮革、染整纺织等方面[1]。
聚丙烯酸酯乳液聚合与改性优化研究摘要:聚丙烯酸乳液聚合的整个流程主要为分散、乳胶粒生成、乳胶粒长大以及聚合等环节。
本文对聚丙烯酸酯乳液聚合过程进行了分析,对聚丙烯酸酯乳液聚合功能性单体改性于复合改性展开了研究,以供参考。
关键词:聚丙烯酸酯乳液聚合;功能性单体改性;复合改性1.聚丙烯酸酯乳液聚合1.1 乳液聚合的过程聚丙烯酸酯乳液聚合的组成主要分为丙烯酸酯类单体、引发剂、乳化剂以及水(分散介质)。
乳化剂中含有亲油的非极性基团和亲水的极性基团,使得丙烯酸酯类单体在水中较均匀地分散,形成小胶束,从而在引发剂的作用下进行自由基聚合,完成乳液聚合。
根据时间-转化率的关系,将乳液聚合过程分为四个阶段:分散阶段、乳胶粒生成阶段、乳胶粒长大阶段以及聚合反应完成阶段。
分散阶段也就是预备阶段。
在搅拌过程中,乳化剂使聚合单体分布在乳化剂分子稳定的单体液滴内、胶束内以及有着极少量的部分在水相中。
在聚合单体、乳化剂和水混合均匀时,便达到了单体在单体珠滴、胶束以及水相之间的动态平衡。
在分散阶段后期,加入引发剂并升高温度,引发剂在水相中生成自由基,自由基先和体系中少量氧或单体中的阻聚剂反应,这个过程称为诱导期。
诱导期结束后,自由基引发聚合反应,生成乳胶粒,该过程称为乳胶粒生成阶段,乳胶粒生成的机理包括低聚物成核机理和胶束成核机理。
在乳胶粒长大阶段中,自由基由水相进入乳胶粒,并引发聚合,乳胶粒便不断长大。
理论上,聚合体系中的数目以及乳胶粒内的单体浓度不变,单体珠滴中的单体输送到乳胶粒,直到单体珠滴消失,这时反应只能消耗乳胶粒内的单体,随着单体浓度降低,反应速率不断下降。
但是现实中,由于存在体积效应,在乳胶粒长大阶段后期出现加速现象。
1.2 新型乳液聚合工艺1.2.1 无皂乳液聚合无皂乳液聚合过程中完全不加或只加入微量乳化剂,其无残留乳化剂,产物的耐水性、电学性能、光泽度等较好。
无皂乳液聚合主要是将丙烯酸酯类单体自身的亲水性链段或基团发挥出乳化剂的作用,从而反应稳定进行。
交联型-聚合型水性聚氨酯的制备及性能研究交联型/聚合型水性聚氨酯的制备及性能研究1.引言水性聚氨酯 (Waterborne Polyurethane,简称:WPU) 是一种在环境友好的水相体系中进行合成的聚合物,受到了广泛的关注和研究。
其优异的性能使其在涂料、胶粘剂、纤维等领域具有良好的应用前景。
通过交联和聚合两种不同的方法制备交联型/聚合型水性聚氨酯,可以进一步改善其性能,提高其在各个领域的应用能力。
2.制备方法2.1 交联型水性聚氨酯的制备方法交联型水性聚氨酯的制备主要通过聚合反应中引入交联剂来实现。
常用的交联剂有异氰酸酯类、聚醚二醇等。
例如,将异氰酸酯与聚醚二醇等在适当条件下进行反应,经过调整反应条件(如配比、分子量等),可制备出具有不同交联程度的交联型水性聚氨酯。
2.2 聚合型水性聚氨酯的制备方法聚合型水性聚氨酯的制备主要通过聚合反应中引入交联剂来实现。
常用的交联剂有丙烯酸、甲基丙烯酸等。
例如,将丙烯酸与甲基丙烯酸等在适当条件下进行反应,经过调整反应条件(如配比、反应时间等),可制备出具有不同聚合度的聚合型水性聚氨酯。
3.性能研究3.1 交联型水性聚氨酯的性能研究交联型水性聚氨酯具有良好的耐温性、耐化学品性、耐磨性等优点。
通过改变交联剂的种类和用量,可以进一步调控交联度,从而改变其力学性能。
例如,引入聚醚二醇作为交联剂,可以使交联型水性聚氨酯具有较好的柔韧性和弹性;而引入异氰酸酯类作为交联剂,则可以增加其硬度和耐磨性。
3.2 聚合型水性聚氨酯的性能研究聚合型水性聚氨酯具有较好的附着力、耐候性、溶剂稳定性等性能。
通过改变不同交联剂的种类和比例,可以调控其固化速度和交联度,从而影响其性能。
例如,引入丙烯酸作为交联剂,可以使聚合型水性聚氨酯具有较好的耐候性和耐臭氧性;而引入甲基丙烯酸作为交联剂,则可以提高其耐溶剂性。
4.应用前景交联型/聚合型水性聚氨酯具有良好的环境友好性、可持续性和应用性能,广泛应用于涂料、胶粘剂、纤维等领域。
水性聚氨酯防水涂料配方
配方一:
1.水性聚氨酯树脂:40%
2.有机硅改性聚氨酯树脂:15%
有机硅改性聚氨酯树脂能够提高涂料的耐候性和耐化学品性能。
3.丙烯酸酯乳液:25%
丙烯酸酯乳液是增稠剂,能够提高涂料的粘度和流变性能,增加涂料的厚度和耐候性。
4.聚合物乳液:10%
聚合物乳液有助于提高涂料的耐磨性和抗冲击性。
5.助剂:10%
助剂主要包括稳定剂、分散剂、消泡剂等,能够提高涂料的稳定性和流变性能,防止涂料产生气泡和分层现象。
6.颜料:适量
颜料可以根据需要选择不同的颜色,并且具有防腐和美观的作用。
7.水:适量
水用来稀释涂料,调整涂料的粘度和固含量。
配方二:
1.水性聚氨酯树脂:50%
2.有机硅改性聚氨酯树脂:10%
3.丙烯酸酯乳液:20%
4.聚合物乳液:10%
5.助剂:10%
6.颜料:适量
7.水:适量
以上是水性聚氨酯防水涂料的两种常见配方,实际配方可以根据具体
需要进行调整。
配方中的成分可以根据防水涂料的使用环境和要求来选择,比如是否需要耐寒、耐高温、耐酸碱等性能。
同时,添加适量的颜料可以
使涂料具有不同的颜色,提高装饰效果。
在制备涂料时,将水性聚氨酯树脂、有机硅改性聚氨酯树脂、丙烯酸酯乳液等成分按比例混合,搅拌均匀
后加入助剂和颜料,最后稀释调剂至适当粘度即可。
新型水性涂料的制备与应用研究引言水性涂料作为一种环保型涂料,由于其低挥发性有机物含量、低排放、易于使用和处理、无毒、无味、非易燃等特点,而受到越来越多的关注。
本文将分为两部分,分别为新型水性涂料的制备和应用研究。
第一部分:新型水性涂料的制备1. 水性丙烯酸酯乳液的制备方法目前,水性丙烯酸酯乳液是制备新型水性涂料中较为常用的方法之一。
其主要生产工艺包括以下步骤:1)单omers的混合:向反应釜中加入甲基丙烯酸甲酯、丙烯酸盐单体等单omers,并在混合期间对原料进行搅拌、加热等处理。
2)溶剂的加入:向混合单omers中加入适量的溶剂。
常用溶剂包括丙酮、环己酮、甲基异丁基酮等。
3)引发剂的加入:在所得到的混合物中,加入过氧化苯甲酰、過氧化硫醇、过硬化氧化酚等引发剂,以使单omers发生聚合反应。
4)pH调整:经过聚合反应后,将其PH调整至6~8之间。
5)稳定处理:为了保证该种乳液的质量和稳定性,还可以在其里面加入稳定剂。
2. 水性聚氨酯乳液的制备方法水性聚氨酯乳液是新型水性涂料中具有良好应用潜力的一种材料,其生产工艺包括以下步骤:1)引发剂的加入:将聚氨酯单体、环氧丙烷、二元醇等原料混合后,加入过氧化苯甲酰等引发剂。
2)反应加热:在混合的原料中,加热至70℃左右,使得单体发生聚合反应。
3)乳化处理:将聚合后的反应物溶于水中,并在过程中对其进行分散和乳化处理。
4)pH调整:调整溶液的pH值至6~7之间。
5)稳定处理:添加维生素C等稳定剂,以使乳液达到最佳的质量和稳定性。
第二部分:新型水性涂料的应用研究1. 新型水性涂料在木材表面涂装的应用研究传统的溶剂型涂料由于含有大量的有机挥发物,对环境污染严重。
而新型水性涂料在应用于木材表面涂装时,不含有害物质,非常环保。
目前,已有一些研究对新型水性涂料在木材表面涂装方面展开了深入的研究。
例如,有研究表明,在室温下使用水性涂料来为木材进行涂装,可以使其产生优良的附着力。
Vol.40No.8·132·化 工 新 型 材 料NEW CHEMICAL MATERIALS第40卷第8期2012年8月基金项目:山东省优秀中青年科学家科研奖励基金(BS2009CL011)作者简介:李冰(1979-)男,副研究员,主要从事高分子材料的研究与应用。
水性聚氨酯的改性及性能研究李 冰 彭 丹 律微波 牟秋红 赵 宁 李 静(山东省科学院新材料研究所,济南250014)摘 要 水性聚氨酯是目前天然材料和合成材料中性能较为突出的环保型新材料。
为提供水性聚氨酯合成可行的研究思路,简要概括了水性聚氨酯近年来在改性方面的研究进展,并对水性聚氨酯性能研究作了描述。
关键词 水性聚氨酯,改性,环保,综述Study on modifying and property ofwaterborne polyurethaneLi Bing Peng Dan Lu Weibo Mu Qiuhong Zhao Ning Li Jing(New Material Institute of Shandong Academy of Sciences,Jinan 250014)Abstract Waterborne polyurethane is a new environmental friendly material,which has excellent properties amongvariety of natural and synthetic materials.For purpose of providing research ideas for synthesis of waterborne polyure-thane,the study on modifying of it were summarized and testing methods were depicted.Key words waterborne polyurethane,modification,environmental protection,review 水性聚氨酯是指将聚氨酯溶解在水里或分散于水中而形成的一种聚氨酯分散体系[1],具有广泛的粘接性,突出的耐油、耐冲击、耐磨、耐低温性,弹性好、无毒、无污染、无溶剂残留[2-11]。
中山大学
硕士学位论文
高性能水性聚氨酯胶粘剂的制备和性能研究
姓名:李永炕
申请学位级别:硕士
专业:高分子化学与物理
指导教师:王小妹
20070530
第5章水性聚氨酯乳液的性能比较
图5—1DMPA型WPU乳液图5-2l,4一二氨基苯磺酸钠型WPU乳液5.I.2乳液的稳定性比较
为了比较DMPA型和磺酸型的稳定性,分别对自制备的两种类型的水性聚
氨酯胶粘剂研究了机械稳定性、高温稳定性、低温稳定性、稀释稳定性进行了研
究,其结果如表5.1。
表5.1羧酸型和磺酸型水性聚氨酯胶粘剂稳定性比较
注:WPU--a:DMPA作亲水单体制各的乳液
WPU-b:l^二氨基苯磺酸钠和DMPA(占1%)作亲水单体.
由表5-l看到,两种聚氨酯乳液的机械稳定性都很好,而在60"(2的高温下和.1812的低温下,磺酸型的聚氨酯乳液表现出比羧酸型更优秀的稳定性,而
在稀释的条件下,也是磺酸型表现出很好的稳定性,可见磺酸型的综合稳定性比
DMPA型要好,用磺酸基作为亲水基团将是制备高固含量稳定水性聚氨酯乳液的。