遥感图像的几何校正配准
- 格式:doc
- 大小:601.00 KB
- 文档页数:8
遥感数字图像处理——几何精校正1.实验原理、目的和内容1.1.实验原理遥感图像纠正是通过计算机对图像每个像素逐个地解析纠正处理完成的,所以能够较清晰地改正线性和非线性变形误差。
几何精纠正的基本原理是回避成像的空间几何过程,直接利用地面的控制点数据对遥感图像的几何畸变本身进行数学模拟,并且认为遥感图像的总体畸变可以看做是挤压、扭曲、缩放、偏移以及更高次的基本变形的综合作用的结果。
因此,校正前后的图像相应点的坐标关系可以用一个适当的数学模型来表示。
1.2.实验目的采用图像-地图纠正法,对TM遥感图像进行几何精纠正,即把不同传感器具有几何精度的图像和地图中的相同地物元素精确地彼此匹配、叠加在一起,以满足集成的需要。
1.3.实验内容对南京市TM图像AA进行几何精纠正。
2.实验过程2.1.地图投影信息的获取进行精校正之前,应该获取标准图像的投影信息,利用ArcGIS或MapInfo软件即可查看投影类型为:GK Zone 20(Pulkovo 1942)2.2.显示需要校正的图像利用Envi导入图像,RGB合成,选择4,3,2波段即可2.3.选择控制点本实验中采用图像-地图纠正,在图像窗口中选择地面控制点(GCP),然后在地图窗口中找到同名地物点,记录点位的坐标信息(见图1)。
首先,进行图像-地图纠正,Map——Registration——Select GCPs:Image to Map。
再在Image to Map Registration窗口中,根据参照的矢量地图选择Gk Zone 20(Pulkova 1942),确定后,弹出Ground Control Points Selection窗口。
在添加地面控制点:在图像窗口中移动光标,确定GCP的位置,然后在矢量地图窗口中确定同名地物点,并将其坐标拷贝到本窗口中的地图坐标文本框中。
确认合适后,单击Add Point产生一个同名地物点。
(见图2)依次进行下去,直到数量复合要求,一般需要6个以上,并且分布均衡(图3)选取控制点完毕后进行纠正,由于选取控制点数量较少,因此使用一阶多项式的方法,重采样方法为最临近采样。
遥感影像纠正的方法与技巧随着科技的不断发展,遥感技术在各个领域得到了广泛的应用。
遥感影像是通过卫星、飞机等远距离获取地面信息的一种重要手段。
然而,在获取遥感影像后,由于各种原因导致的图像扭曲、色差等问题是不可避免的。
因此,进行遥感影像纠正是必要的。
本文将介绍遥感影像纠正的常用方法与技巧。
一、几何校正方法几何校正是对遥感影像进行坐标、尺度和旋转方位的校正。
常见的几何校正方法有影像配准、地标匹配、插值等。
1. 影像配准影像配准是将待纠正影像与参考影像进行对比,通过匹配相同地物或地点的像素点,从而进行坐标转换。
常用的影像配准方法有基于特征点匹配和基于相位相关匹配两种。
基于特征点匹配的方法是通过提取影像中的特征点,并将其与参考影像中的特征点进行匹配,从而获得坐标转换模型。
OpenCV是一种常用的用于特征点匹配的开源库。
基于相位相关匹配的方法是通过计算两幅影像之间的相关性,确定它们之间的几何转换关系。
这种方法通常用于具有相位重建能力的传感器。
2. 地标匹配地标匹配是通过识别影像中的已知地标(如道路交叉口、建筑物等)并与参考影像中的地标进行匹配来进行校正的一种方法。
这种方法适用于城市建筑等具有明显特征的区域。
3. 插值插值是指通过对图像中间的像素值进行估算,从而使整个图像变得平滑过渡的过程。
常用的插值方法有双线性插值、双三次插值等。
这些方法可以使得图像在进行几何校正后仍保持较好的视觉效果。
二、辐射校正方法辐射校正是指对遥感影像中的亮度进行校正,以保证影像反映地物的真实辐射亮度。
常用的辐射校正方法有直方图匹配、大气校正、辐射转换等。
1. 直方图匹配直方图匹配是指通过将原始图像的灰度值映射到目标图像的灰度值范围来进行校正的方法。
这可以使得影像在亮度上看起来更加准确,同时保证地物的色彩还原度。
2. 大气校正大气校正是指通过估计大气光照对地面目标反射率的影响,将地表反射率从观测影像中恢复出来的一种方法。
这种方法适用于去除由大气散射引起的云、雾等干扰。
基于多源遥感数据的图像配准与融合技术指南引言遥感技术已经在各个领域得到广泛应用,尤其是在地理信息系统、环境监测、农业和城市规划等方面。
然而,不同数据源的遥感图像通常存在不同的误差和变换,这给图像配准和融合带来了一定的挑战。
本文旨在介绍基于多源遥感数据的图像配准与融合技术,并提供一些实用的指南和建议。
一、图像配准图像配准是指将不同数据源的遥感图像进行几何、空间和光谱变换,使其能够在同一坐标系和分辨率下比较或融合。
在进行图像配准之前,首先需要选择合适的参考影像和待配准影像。
然后,通过以下几个步骤进行图像配准:1. 特征提取首先对参考影像和待配准影像进行特征提取,常用的特征包括角点、线特征和纹理特征等。
可以使用SIFT(尺度不变特征变换)或SURF(速度增强的尺度不变特征变换)等算法进行特征提取。
2. 特征匹配将参考影像和待配准影像的特征进行匹配。
通常采用RANSAC(随机抽样一致性)算法去除误差匹配,得到更准确的对应关系。
3. 几何变换根据特征匹配的结果,通过几何变换方法对待配准影像进行几何校正,常用的方法有相似性变换和仿射变换。
相似性变换可以处理平移、旋转和比例变换,仿射变换可以处理更复杂的几何变换。
4. 像素插值在进行几何变换后,需要对待配准影像进行像素插值处理,以保证像素点之间的连续性。
二、图像融合图像融合是指将多源遥感图像的信息融合到同一幅图像中,以增强图像的视觉效果和信息提取能力。
常用的图像融合方法包括以下几种:1. 基于像素的融合将多源图像的像素按照一定的权重进行组合,常用的方法有加权平均法、最大像素法和PCA(主成分分析)等。
2. 基于变换的融合将多源图像进行频域或时域变换,然后将变换域的系数进行线性或非线性组合,还原成多源图像。
常用的方法有小波变换、多分辨率分析和拉普拉斯金字塔等。
3. 基于特征的融合提取多源图像的特征,然后将特征进行组合,构建融合图像。
特征可以是几何特征、光谱特征或纹理特征等。
测绘技术中的遥感影像配准方法引言遥感技术在测绘领域中扮演着重要的角色,它可以通过卫星、飞机等传感器获取地球表面的数据。
然而,由于不同传感器、不同时间获取的数据存在空间和时间上的差异,需要进行影像配准来融合和比较这些数据。
本文将介绍测绘技术中常用的遥感影像配准方法。
一、特征点匹配法特征点匹配法是一种常用的配准方法,也是最直观和简单的方法之一。
该方法基于图像中的特征点,通过将两幅影像中的对应特征点进行匹配,来实现影像的配准。
在这个过程中,可以采用特征描述子来提取特征点的信息,如SIFT(尺度不变特征变换)和SURF(加速稳健特征)等算法。
二、直接法直接法是一种比较常见的配准方法,它通过像素级的匹配来将两幅影像对齐。
这种方法的优点是简单直接,可以在不考虑图像特征的情况下完成配准,但由于像素匹配的计算量较大,所以在处理大尺寸影像时效率较低。
三、控制点法控制点法是一种基于地面控制点的配准方法。
它首先在待配准影像和参考影像中选择具有较好识别度的标志物作为控制点,然后通过测量这些控制点在两幅影像中的坐标,建立空间转换模型,进而实现影像的配准。
这种方法精度较高,适用于对地物变化较大的区域进行配准。
四、基于影像几何校正模型的配准方法利用影像几何校正模型进行配准是一种比较常见的方法,它主要根据空间变换模型进行配准。
常用的几何校正模型有平移、旋转、仿射和投影等。
通过对影像进行几何校正,可以将其与参考影像进行对比和融合,以获得更加准确和具有空间一致性的结果。
五、基于图像配准质量评估的方法在影像配准过程中,如何评估配准结果的质量是一个重要的问题。
一种常用的方法是计算影像配准后的残差误差,该误差越小,表示配准效果越好。
另外,可以利用图像质量评价指标,如峰值信噪比(PSNR)和结构相似性(SSIM)等指标来评估配准结果的质量。
六、配准精度与应用影像配准的精度对于后续的测绘应用具有重要影响。
在地图制图、城市规划、资源调查和环境监测等领域,高精度的影像配准可以提供准确的地理信息,为决策和规划提供支持。
测绘技术中的遥感影像匹配与配准方法遥感影像匹配与配准方法是测绘技术中的重要研究内容。
遥感影像匹配是指将不同时间或不同传感器获取的遥感影像进行比对,找出它们之间的相似性和差异性。
而遥感影像配准则是将不同时间或不同传感器获取的遥感影像进行几何校正,使它们在空间上具有一致的坐标和尺度。
在测绘应用中,遥感影像匹配与配准是非常关键的。
首先,它们能够帮助提取地表特征和地物信息。
通过匹配不同时间的遥感影像,我们可以观测到地表的变化情况,例如城市的扩张、农田的变化等。
通过配准不同传感器获取的遥感影像,我们可以获得一致的地物几何信息,从而进行更精确的测量和分析。
其次,遥感影像匹配与配准还可以用于制作地图和更新地理信息数据库。
通过将不同时间或不同传感器获取的遥感影像进行匹配和配准,可以实现地图的更新和变化监测,为城市规划、土地管理等提供决策支持。
遥感影像匹配与配准的方法有很多种。
其中,基于特征点的方法是最常用的一种。
该方法通过提取影像中的特征点,比如角点、边缘等,然后利用特征点之间的相互关系进行匹配和配准。
这种方法具有计算速度快、适用范围广的特点,但对于存在大量相似的地物和复杂的地形条件,其匹配结果可能存在误差。
为了解决这个问题,研究人员还提出了基于区域的匹配与配准方法。
该方法首先将影像划分为若干个区域,然后对每个区域进行特征提取和匹配,最后将各个区域的匹配结果进行整合。
这种方法能够更好地处理影像中存在的局部匹配问题,但对于区域划分和整合过程的准确性要求较高。
除了基于特征点和区域的方法外,还有一些其他的遥感影像匹配与配准方法。
例如,基于模型的方法利用地物的几何特征和变换模型进行匹配和配准。
这种方法适用于具有明显几何特征的地物,如建筑物、道路等。
另一种方法是基于图像配准校正点的方法,该方法通过选取几个具有已知准确坐标的地物作为控制点,利用它们在遥感影像中的位置信息进行匹配和配准。
这种方法能够提高配准的精度,但需要事先获取控制点的准确坐标。
北京揽宇方圆信息技术有限公司遥感卫星影像辐射校正、几何校正、正射校正的方法a)辐射校正:进入传感器的辐射强度反映在图像上就是亮度值(灰度值)。
辐射强度越大,亮度值(灰度值)越大。
该值主要受两个物理量影像:一是太阳辐射照射到地面的辐射强度,二是地物的光谱反射率。
当太阳辐射相同时,图像上像元亮度值差异直接反映了地物目标光谱反射率的差异。
但实际测量时,辐射强度值还受到其他因素的影响而发生改变。
这一改变就是需要校正的部分,故称为辐射畸变。
引起辐射畸变有两个原因:一是传感器本身的误差;二是大气对辐射的影响。
仪器引起的误差是由于多个检测器之间存在的差异,以及仪器系统工作产生的误差,这导致了接收的图像不均匀,产生条纹和“噪声”。
一般来说,这种畸变在数据生产过程中已经由生产单位根据传感器参数进行了校正,不需要用户自行校正。
b)几何校正:当遥感图像在几何位置上发生了变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变时,即说明遥感影像发生了几何畸变。
遥感影像的总体变形(相对与地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。
产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进行处理。
而用户拿到这种产品后,由于使用目的的不同或者投影及比例尺的不同,仍然需要作进一步的几何校正。
几何校正一般包括精校正和正射校正。
精校正:利用地面控制点对由于各种因素引起的遥感图像的几何畸变进行校正。
简单理解:和地形图的校正,校正后有准确的经纬度信息。
精校正适合于在地面平坦,不需要考虑高程信息,或地面起伏较大而无高程信息的情况。
有时根据遥感平台的各种参数已做过一次校正,但仍不能满足要求,就可以用该方法作遥感影像相对于地面坐标的配准校正,遥感影像相对于地图投影坐标系统的配准校正,以及不同类型或不同时相的遥感数据之间的几何配准和复合分析,以得到比较精确的结果。
何精校正。
几何粗校正是针对造成畸变的原因进行的校正,我们得到的卫星遥感数据一般都是经过几何粗校正处理的。
几何精校正是利用地面控制点进行的几何校正,它是用一种数学模型来接近描述遥感图像的几何畸变过程,并利用标准图像和畸变的遥感图像之间的一些对应点(地面控制点数据)确定几个几何畸变模型,然后利用此模型进行几何畸变的校正,这种校正不考虑畸变的具体形成原因,而只考虑如何让利用畸变模型来校正遥感图像由于几何校正后的影像可以用于提取精却的距离、多边形面积以及方向等信息,同时可以建立遥感提取的信息与地理信息系统(GIS)或空间决策支持系统(SDSS)中其他专题信息之间的联系,所以对遥感数据进行预处理,消除几何畸变是十分重要的。
二、研究方法遥感影像一般存在内部误差和外部误差,识别内外部误差源以及他们是系统误差还是随机误差非常重要。
一般来说,内部误差引起的畸变通常是系统性的、可预测的,外部误差引起的畸变通常是随机的。
系统误差通常比较容易改正,方法简单,而随机误差相对复杂,所以本文主要是讨论随机误差的几何校正。
1,内部误差的产生原因及消除方法内部误差引起的几何畸变主要包括:地球自转引起的偏差、扫描系统引起的标称地面分辨率变化、扫描系统一维高程投影差、扫描系统切向比例畸变。
对于地球自转引起的偏差,通常进行偏差校正,偏差校正就是将影像像幅中的像元向西做系统的位移调整,改正卫星传感器系统的角速度和地表线速度的相互作用。
扫描系统引起的标称地面分辨率变化主要是指亚轨道多光谱扫描系统,由于距星下点越远,地面分辨率就越低,所以大多数科学家主要使用横向扫描数据·幅中央70%的区域(星下点左右各35%)。
在星下点曝光瞬间,垂直航摄相片仅有一个位于飞行器正下方的像主点,这种透视几何关系使得所有高于周围地面的目标地物会出现从像主点向外放射状分布的不同程度的平面维系。
这就产生了扫描系统一维高程投影差。
由于扫描镜匀速旋转,传感器扫描星下点的地理距离要比影像边缘区域的短,这就使垂直于轨道方向的一个轴发生了压缩。
ENVI对图像进行配准校正拼接裁剪ENVI在图像处理领域被广泛应用,其中配准、校正、拼接和裁剪是常见且重要的操作。
本文将介绍ENVI在图像配准校正拼接裁剪方面的基本原理和操作步骤。
一、图像配准图像配准是将多幅图像对准到一个统一的坐标系统中,使它们具有相同的尺度、旋转和平移。
ENVI提供了多种图像配准方法,包括基于特征点匹配的自动配准和基于控制点辅助的手动配准。
1. 自动配准ENVI的自动配准功能利用图像中的特征点进行匹配,通过计算特征点的几何变换关系来实现配准。
使用该功能时,首先选择一个参考图像,然后选择其他需要配准的图像。
ENVI将自动检测并匹配这些图像中的特征点,并计算图像之间的几何变换关系,最终实现图像的配准。
2. 手动配准对于某些情况下自动配准效果不佳或需要更精确的配准结果的场景,ENVI提供了手动配准功能。
该功能需要用户手动在图像中添加控制点,根据已知的地理坐标信息进行匹配。
通过选择足够数量的控制点,并进行几何变换,可以实现更准确的图像配准结果。
二、图像校正图像校正是指通过去除图像中的变形、噪声、光照等因素,使得图像更加准确和清晰。
ENVI提供了多种图像校正方法,如大气校正、几何校正等。
1. 大气校正在遥感图像处理中,大气校正是一个重要的步骤。
ENVI提供了不同的大气校正模型,如基于大气遥感参数的MODTRAN模型、Atmospheric and Topographic Correction (ATCOR)模型等。
用户可以根据实际需求选择合适的大气校正方法对图像进行校正,以消除大气干扰,还原地物的真实信息。
2. 几何校正几何校正是指将图像中的地物从图像坐标转换为地理坐标,使得图像与实际地理位置相符。
ENVI提供了自动几何校正功能,可以使用地面控制点或地面矢量数据进行几何校正。
通过选择合适的校正方法和参考数据,可以将图像校正为具有地理坐标的图像。
三、图像拼接图像拼接是将多幅图像按照空间位置进行组合,生成一幅更大尺寸的图像。
如何处理测绘技术中的遥感影像配准和融合问题遥感影像配准和融合是测绘技术中一个重要且复杂的问题。
在测绘领域,遥感影像的获取和处理是不可或缺的一环。
遥感影像的配准和融合能够为地理信息系统的建设和应用提供精确和全面的数据,因此在测绘工作中具有重要的意义。
一、遥感影像配准问题1. 影像配准的概念和意义在遥感影像处理中,配准是指将不同时间、不同分辨率或不同类型的遥感影像进行准确对齐的过程。
影像配准的目的是实现不同影像之间的空间对应关系,以便进行比较分析和地理信息提取。
配准精度的高低直接影响到地理信息的准确性和可靠性。
2. 遥感影像配准方法当前,常用的遥感影像配准方法主要包括基于特征点的配准方法和基于控制点的配准方法。
基于特征点的配准方法利用影像中的显著特征点,如建筑物角点、河流交叉口等,通过提取并匹配这些特征点来实现影像的配准。
而基于控制点的配准方法则通过事先选取一些具有明确地理位置的控制点,并在待配准影像中搜索对应点来实现影像配准。
3. 遥感影像配准的挑战遥感影像配准过程中会遇到一些挑战,如不同影像之间光谱、几何和分辨率的差异,地表变化引起的配准不一致等。
这些问题会影响配准的精度和效果。
而且,由于影像中存在噪声和遮挡,配准算法在实际应用中也会受到局限。
二、遥感影像融合问题1. 影像融合的概念和作用遥感影像融合是指将多幅不同波段或不同传感器获取的遥感影像进行融合,以得到一幅包含更丰富信息的复合影像。
影像融合可以提高影像的空间分辨率、光谱信息和时间特性,有助于提高对地观测和信息提取的精确性和综合能力。
2. 遥感影像融合方法目前常用的遥感影像融合方法主要包括基于变换的方法和基于降维的方法。
基于变换的方法包括主成分分析、小波变换、整体变换等,通过对影像进行变换和重构来实现融合。
而基于降维的方法则利用数学模型对遥感数据进行分析和处理,通过降低数据维度以实现融合。
3. 遥感影像融合的挑战影像融合过程中也会面临一些挑战。
遥感图像的处理一般包括的步骤1)图像精校正由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。
在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。
几何校正的精度直接取决于地面控制点选取的精度、分布和数量。
因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。
地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。
最后将校正好的图像与地形图进行对比,考察校正效果。
2)波段组合及融合对卫星数据的全色及多光谱波段进行融合。
包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。
3)图像镶嵌如果工作区跨多景图像,还必须在计算机上进行图像镶嵌,才能获取整体图像。
镶嵌时,除了对各景图像各自进行几何校正外,还需要在接边上进行局部的高精度几何配准处理,并且使用直方图匹配的方法对重叠区内的色调进行调整。
当接边线选择好并完成了拼接后,还对接边线两侧作进一步的局部平滑处理。
4)匀色相邻图像,由于成像日期、系统处理条件可能有差异,不仅存在几何畸变问题,而且还存在辐射水平差异导致同名地物在相邻图像上的亮度值不一致。
遥感技术中遥感影像的处理方法详解遥感技术是利用遥感设备获取地球上的图像和数据,以了解地球表面的各种特征和现象。
遥感影像是遥感技术的核心输出,它通过对地球表面进行高分辨率的拍摄和记录,提供了丰富的地理信息。
在遥感技术中,遥感影像的处理方法至关重要。
正确的处理方法可以提取出影像中有价值的信息,帮助我们深入了解地球表面的特征和变化。
下面将详细介绍几种常用的遥感影像处理方法。
1. 遥感影像的预处理遥感影像在传输和记录过程中可能会受到一些噪声和干扰的影响,因此需要进行预处理。
预处理的目标是去除噪声、调整图像的对比度和亮度,使得影像更适合进行后续的处理和分析。
常见的预处理方法包括数字滤波、辐射定标和大气校正等。
2. 遥感影像的几何校正遥感影像获取时可能会受到地球表面形变、传感器姿态等因素的影响,导致影像出现几何失真。
几何校正的目标是将影像的几何特征恢复到真实地面情况下的状态,使得影像能够准确地反映地面特征。
常见的几何校正方法包括地面控制点的定位和影像配准等。
3. 遥感影像的分类遥感影像的分类是将影像中的像素按照一定的特征进行划分和归类的过程。
根据不同的应用需求,遥感影像的分类可以包括地物类别的划分、植被覆盖度的估计、土地利用类型的分析等。
常见的分类方法包括基于像素的分类、基于对象的分类和基于深度学习的分类等。
4. 遥感影像的变化检测遥感影像的变化检测是指比较不同时段的遥感影像,分析地表特征在时间上的变化情况。
变化检测可以用于监测自然灾害、城市扩张、森林砍伐等方面的变化。
常见的变化检测方法包括像素级变化检测和基于对象的变化检测等。
5. 遥感影像的数据融合遥感影像的数据融合是将多源、多光谱或多分辨率的遥感影像进行融合,以提高遥感影像的空间和光谱分辨率。
数据融合可以增强遥感影像的细节信息,改善遥感影像的可视化效果,提高遥感影像在各种应用中的精度和效果。
常见的数据融合方法包括主成分分析、小波变换和多尺度分析等。
6. 遥感影像的特征提取遥感影像的特征提取是从遥感影像中提取出目标物体的特征信息的过程。
几何校正;正射校正;几何配准;影像配准,空间配准;辐射定标;大气校正;辐射校正的概念本科四年地理信息系统,上了两年的遥感硕士,说句惭愧的话,自己之前对几何校正,几何配准,辐射定标,大气校正,辐射校正等等的概念依然是一知半解,甚至某些概念混淆在了一起,别人问起的时候支支吾吾....,因此迫切的需要总结一下这些概念,基本上都是网上搜到的解释,欢迎指正批评。
1.几何校正对于几何校正,有不同的定义,可分为按其产生原因和校正目的两种定义:按其产生原因的定义:是指消除或改正遥感影像几何误差的过程。
(来自百度,其中百度还有个遥感的几何校正,不知何意!)由此可引申出做几何校正的原因:遥感图像的几何畸变,其又可以分为两类:①内部畸变:由传感器性能差异引起,主要有:(a)比例尺畸变,可通过比例尺系数计算校正;(b)歪斜畸变,可经一次方程式变换加以改正;(c)中心移动畸变,可经平行移动改正;(d)扫描非线性畸变,必须获得每条扫描线校正数据才能改正;(e)辐射状畸变,经2次方程式变换即可校正;(f)正交扭曲畸变,经3次以上方程式变换才可加以改正;②外部畸变:由运载工具姿态变化(偏航、俯仰、滚动)引起的畸变,(g)如因倾斜引起的投影畸变,可用投影变换加以校正;(h)因高度变化引起的比例尺不一致 ,可用比例尺系数加以改正;(i)由目标物引起的畸变,如地形起伏引起的畸变,需要逐点校正;(j)若因地球曲率引起的畸变,则需经2次以上高次方 程式变换才能加以改正。
多光谱、多时相影像配准和遥感影像制图,必须经过上述几何校正。
因人们已习惯于用正射投影地图,故多数遥感影像的几何校正以正射投影为基准进行。
按其校正后的目的定义:几何校正是借助一组地面控制点,对一幅图像进行地理坐标的校正,把影像纳入一个投影坐标系中,有坐标信息地理参考。
一般的,从网站上下载的各个传感器的遥感影像,都经过了几何校正,毕竟几何校正是仪器或者搭载平台引起的。
2.正射校正正射校正其实是几何校正的一种,它相对普通的地形起伏的校正更加严格。
几何校正,正射校正,影像配准,辐射定标,辐射校正,大气校正,地形校正概念详解以下是这些校正和定标的概念详解:1. 几何校正:是指遥感成像过程中,受多种因素的综合影响,原始图像上地物的几何位置、形状、大小、尺寸、方位等特征与其对应的地面地物的特征往往是不一致的,这种不一致就是几何变形,也称几何畸变。
几何校正是通过一系列的数学模型来改正和消除遥感影像成像时因摄影材料变形、物镜畸变、大气折光、地球曲率、地球自转、地形起伏等因素导致的原始图像上各地物的几何位置、形状、尺寸、方位等特征与在参照系统中的表达要求不一致时产生的变形。
2. 正射校正:是对影像进行几何畸变纠正的一个过程,它将对由地形、相机几何特性以及与传感器相关的误差所造成的明显的几何畸变进行处理。
正射校正一般是通过在像片上选取一些地面控制点,并利用原来已经获取的该像片范围内的数字高程模型(DEM)数据,对影像同时进行倾斜改正和投影差改正,将影像重采样成正射影像。
3. 影像配准:是指对同一区域内以不同成像手段所获得的不同影像图形在同一地理坐标的匹配。
包括几何纠正、投影变换与统一比例尺三方面的处理。
在多时相、多信息的复合综合分析时常需进行各种配准处理,例如在多光谱影像进行彩色合成时,必须进行不同波段影像的配准,以保证相同景物的有关像元能一一对应,使结果准备可靠。
4. 辐射定标:是遥感数据处理中的一个关键步骤,旨在将原始遥感数据的数字值转换为具有物理意义的辐射度或反射率值。
这个过程是为了确保不同时间和传感器采集的遥感数据具有一致的标度,使其可以用于定量分析和比较。
5. 辐射校正:是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。
辐射误差产生的原因可以分为传感器响应特性、太阳辐射情况以及大气传输情况等。
6. 大气校正:是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。
目录第一部分利用ENVI对图像进行配准-校正-拼接-裁剪 (2)一、图像配准与校正 (2)(一)基础知识 (2)(二)ENVI操作 (4)二、图像镶嵌(图像拼接) (16)(一)基础知识 (16)(二)ENVI操作 (16)三、图像裁剪 (20)(一)基础知识 (20)(二)ENVI操作 (21)第二部分:下载影像及介绍 (26)(一)基本信息 (26)(二)日期信息 (26)(三)云量信息 (26)(四)空间信息 (26)第一部分利用ENVI对图像进行配准-校正-拼接-裁剪一、图像配准与校正(一)基础知识1、图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。
2、几何校正是指利用地面控制点和几何校正数学模型,来矫正非系统因素产生的误差,非系统因素如传感器本身的高度、地球曲率、空气折射或地形等的影响。
由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。
简单来说,图像校正是借助一组控制点,对一幅图像进行地理坐标的校正。
本文将采用地面控制点+校正模型的几何校正方式中的Image to Image,利用Image格式的基准影像对2006年兰州TM影像进行配准与校正。
3、图像选点原则[1]选取图像上易分辨且较精细的特征点,如道路交叉点、河流弯曲或分叉处、海岸线弯曲处、飞机场、城廓边缘等。
[2]特征变化大的地区需要多选。
[3]图像边缘部分一定要选取控制点。
[4]尽可能满幅均匀选取。
[5]保证一定数量的控制点,不是控制点越多越好。
4、数理知识:[1]多项式模型x=a0+a1X+a2Y+a3X²+a4XY+ a5Y²+....y=b0+ b1X+b2Y+b3X²+ b4XY +b5Y²+ ....X,Y:校正前该点的位置;x,y:校正后该点的位置[2]最少控制点个数: ( n+1 )²[3]误差计算:RMSEerror= sqrt( (x' -x)²+ (y' -y)²)5、重采样方法(插值算法)[1]最近邻法概念:取与所计算点( x,y )周围相邻的4个点,比较它们与被计算点的距离,哪个点距离最近就取哪个亮度值作为 ( x,y )点的亮度值优点:简单易用,计算显小缺点:图像的亮度具有不连续性,精度差[2]双线性内插法概念:取(x,y)点周围的4个邻点,在y方向内插2次,再在x方向内插1次,得到( x,y)点的亮度值 f ( x,y)优点:双线性内插法比最近邻法虽然计算虽有所增加,但精度明显提高,特别是对亮度不连续现象或线状特征的块状化现象有明显的改善。
遥感图像的几何校正(配准)
1.实验目的与任务:
(1)了解几何校正的原理;
(2)学习使用ENVI软件进行几何校正;
2.实验设备与数据:
设备:遥感图像处理系统ENVI
数据:TM数据
3 几何校正的过程:
注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配
准或几何校正。
1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;
2.在主菜单上选择map->Registration->select GCPs:image to image
3 .出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和
DISPLAY 2(右)。 BASE图像指参考图像而warp则指待校正影像。 选择OK!
4. 现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方,
就可以选择ADD POINT添加点了。(PS:看不清出别忘记放大) 如果要放弃该点选择
右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择
你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。选好4个点后就可以
预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参
考影像相对应的位置,而后再进行适当的调整并选点。
5.选点结束后,首先把点保存了 :ground control points->file->save gcp as ASCII..
当然你没有选完点也可以保存,下次就直接启用就可以:ground control
points->file->restore gcps from ASCII...
6.接下来就是进行校正了:在ground control points.对话框中选择:
options->warp file(as image to map)
在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters
对话框:
首先点change proj按钮,选择坐标系
然后更改象素的大小,如果本身就是你所需要大小则不用改了
最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保
存路径就OK了
遥感图像的监督分类
1 实验的目的和任务
1)理解遥感图像计算机分类的原理和方法;
2) 掌握监督分类的步骤和方法。
2.实验设备与数据:
设备:遥感图像处理系统ENVI
数据:ENVI自带的数据
3 实验内容:遥感图像监督分类。
监督分类(Supervised Classification)用于在数据集中根据用户定义的训练样本
类别(Training Classes)聚类像元。训练样本类别是像元的集合或者单一波谱,
通常的训练区采用ROI来选择,而且应该尽可能的选择纯净的感兴趣区域。
具体的操作参考以下图和步骤:
1)、类别定义/特征判别
根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特
征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查
看的过程,为后面样本的选择打下基础。
本例是以ENVI自带Landsat tm5数据Can_tmr.img为数据源,类别分为:林地、草地/灌木、
耕地、裸地、沙地、其他六类。
2)、样本选择
为了建立分类函数,需要对每一类别选取一定数目的样本,在ENVI中是通过感兴趣区
(ROIs)来确定,也可以将矢量文件转化为ROIs文件来获得,或者利用终端像元收集器
(Endmember Collection)获得。
本例中使用ROIs方法,打开分类图像,在Display->Overlay->Region of Interest,默认ROIs为
多边形,按照默认设置在影像上定义训练样本。如图18所示,设置好颜色和类别名称(支
持中文名称)。
在ROIs面板中,选择Option->Compute ROI Separability,计算样本的可分离性。如图19所示,
表示各个样本类型之间的可分离性,用Jeffries-Matusita, Transformed Divergence参数表示,
这两个参数的值在0~2.0之间,大于1.9说明样本之间可分离性好,属于合格样本;小于1.8,
需要重新选择样本;小于1,考虑将两类样本合成一类样本。
训
练样本的选择
样本可分离性计算报表
3)、分类器选择
根据分类的复杂度、精度需求等确定哪一种分类器。目前监督分类可分为基于传统统计
分析学的,包括平行六面体、最小距离、马氏距离、最大似然,基于神经网络的,基于模式
识别,包括支持向量机、模糊分类等,针对高光谱有波谱角(SAM),光谱信息散度,二进
制编码。
4)、影像分类
基于传统统计分析的分类方法参数设置比较简单,这里选择支持向量机分类方法。主
菜单下选择Classification > Supervised > Support Vector Machine。按照默认设置参数输出分类
结果,如图21所示。
支持向量机分类器参数设置
支持向量机分类结果
5)、分类后处理
分类后处理包括的很多的过程,都是些可选项,包括更改类别颜色、分类统计分析、小
斑点处理(类后处理)、栅矢转换等操作。
(1)更改类别颜色
可以在Interactive Class Tool面板中,选择Option->Edit class colors/names更改,也可以在
Display->Color Mapping->Class Color Mapping。如下图所示,直接可以在对应的类别中修改颜
色。
也可以根据一个显示的RGB影像来自动分配类别颜色,打开主菜单->Classification->Post
Classification->Assign Class Colors。
类别颜色的更改
类别颜色更改后的效果
自动颜色更改的效果图
(2)分类统计分析
主菜单->Classification->Post Classification->Class Statistics。如图11所示,包括基本统计:
类别的像元数、最大最小值、平均值等,直方图,协方差等信息。
分类结果统计
(3)小斑点处理(类后处理)
运用遥感影像分类结果中,不可避免地会产生一些面积很小的图斑。无论从专题制图的
角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除和重新分类,目前常用的方
法有Majority/Minority分析、聚类(clump)和过滤(Sieve)。这些工具都可以在主菜单
->Classification->Post Classification中找到。Majority/Minority分析和聚类(clump)是将周围
的“小斑点”合并到大类当中,过滤(Sieve)是将不符合的“小斑点”直接剔除。
如下图为Majority分析的结果。
类后处理结果图
4)栅矢转换
打开主菜单->Classification->Post Classification->Classification to Vector,可以将分类后得到
的结果转化为矢量格式,或者主菜单->Vector->Raster to Vector,在选择输出参数时候,可以
选择特定的类别,也可以把类别单独输出为矢量文件或者一个矢量文件.
栅矢转换面板