大穿透深度地质雷达、探地雷达
- 格式:pdf
- 大小:1.03 MB
- 文档页数:6
探地雷达在城市地质调查中的应用发布时间:2021-05-07T10:08:25.070Z 来源:《基层建设》2020年第34期作者:王程秀潘旭东[导读] 摘要:本文主要分析了城市地质调查中探地雷达的应用情况,目的是为城市发展战略的制定提供全面的调查资料,推进我国城市经济的可持续发展。
浙江省工程物探勘察设计院有限公司浙江杭州 310005摘要:本文主要分析了城市地质调查中探地雷达的应用情况,目的是为城市发展战略的制定提供全面的调查资料,推进我国城市经济的可持续发展。
关键词:探地雷达;城市;地质调查;应用情况城市发展战略的制定离不开城市地质调查,城市地质调查可为发展战略的制定提供有效的依据。
探底雷达作为一种新型的勘探技术,将其应用到城市地质调查中可明确城市地质问题。
该领域研究被更多的人员所关注。
1、探地雷达的工作原理探地雷达可以对地下介质分布情况进行明确,探底雷达又称为透地、地质雷达。
无线电波是探底雷达明确地下介质非常重要的原理。
探地雷达作业时,在主机的作用下可以对雷达进行控制,产生脉冲源信号,此种信号较为微妙,并以周期性的方式传播。
发射天线可以接收到此种微妙的信息,并在发射天线的作用下与地下信息耦合在一起,两者一起向地下传播。
耦合后的信息在传播过程中一旦遇到非均匀面体或者非均匀面会产生反射信号。
地下波被地面上的接收天线接收后可以向接收机直接传输。
接收机可以对信号进行相应的整形和放大处理,经过处理后的信号可以传输到微机上,在微机的辅助下可以按照幅度大小的不同对信息进行编码处理,编码后的信号可以通过波形堆积图或伪彩色电平灰色电平图的形式呈现出来。
探测人员经过一系列的处理后可以对探测的目标大小、深度以及方位等进行判断,明确探测参数。
探地雷达用途较多,可以检测不同的材料泥土、岩石、沙砾等。
此外,探地雷达也可以检测沥青、混凝土等建筑材料。
地质调查中工作人员借助探地雷达可以判断出不同类型岩层的厚度和深度,地面作业中探地雷达起到的作用非常明显。
地质雷达在隧道超前地质预报中的应用摘要:本文简要介绍了地质雷达基本原理及其探测深度、精度,并结合实例阐述了地质雷达的工程应用。
关键词:地质雷达;隧道超前地质预报;掌子面引言目前,我国修建大量穿越山岭的特长隧道。
由于这些隧道大都处于地下各种复杂的水文地质、工程地质岩体中。
为了摸清和预知周围的水文地质和工程地质条件,隧道地质超前预报显示出越来越重要的作用。
在隧道开挖掘进过程中,提前发现隧道前方的地质变化,为施工提供较为准确的地质资料,及时调整施工工艺,减少和预防工程事故的发生非常重要。
一、地质雷达基本原理及探测深度、精度地质雷达( Ground Penetrating Radar, 简称GPR, 也称探地雷达) 是利用超高频(106Hz~109Hz)电磁脉冲波的反射探测地下目的体分布形态及特征的一种地球物理勘探方法。
发射天线( T) 将信号送入地下,遇到地层界面或目的体反射后回到地面再由接收天线( R) 接收电磁波的反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征(见图1)图1 地质雷达反射探测原理图根据波动理论,电磁波的波动方程为:P = │P│e-j(αx-αr)﹒e-βr(1)(1)式中第二个指数-βr是一个与时间无关的项,它表示电磁波在空间各点的场值随着离场源的距离增大而减小,β为吸收系数。
式中第一个指数幂中αr表示电磁波传播时的相位项,α为相位系数,与电磁波传播速度V的关系为:V = ω/α(2)当电磁波的频率极高时,上式可简略为:V = c/ε1/2(3)式中c为电磁波在真空中的传播速度;ε为介质的相对介电常数。
地质雷达所使用的是高频电磁波,因此地质雷达在地下介质中的传播速度主要由介质中的相对介电常数确定。
电磁波向地下介质传播过程中,遇到不同的波阻抗界面时将产生反射波和透射波。
反射和透射遵循反射与透射定律。
反射波能量大小取决于反射系数R,反射系数的数学表达式为:R =[(ε1)1/2 -(ε2)1/2]/[(ε1)1/2 +(ε2)1/2] (4)式中ε1和ε2分别表示反射界面两侧的相对介电常数。
地质雷达的原理及其应用地质雷达是20 世纪70 年代发展起来的一种用于确定地下介质分布的广谱电磁法,具有探测效率高、对探测场地和目标无破坏性、有较高的分辨率及较强的抗干扰能力等特点, 在工程建设领域应用广泛,具体表现在以下几个方面:①工程选址、建设用地地质灾害危险性评估;②工程地质勘察;③地下管道、电缆、洞穴以及障碍物的探测;④地下建筑的无损检测地质雷达是一种用于确定地下介质分布的广谱电磁技术,雷达通过发射天线向介质中发射高频 10 ~ 10 H z、宽频带电磁波,经介质中的分层界面或目标的反射界面产生反射回波信号,由接收天线接收并数据化,电磁波行程需时t =4z 2 + x 2 v , 其中, x 为天线间距, 每次探测具有确定的数值,v 为电磁波在介质中的传播速度,可以用共中心点法现场实测,也可以查经验数值表获取,故可通过上式确定反射界面或目标的深度位置。
电磁波在介质中传播的路径、电磁场强度以及波形将随介质的电性特征及几何形态而变化,故可依据记录到的电磁波走时及波幅等波形资料,解译出目标的几何形态或结构异常。
探地雷达法有广泛的用途,在建筑结构、道路桥梁、地质勘探、市政管线甚至考古刑侦等方面都有用武之地。
1 .路面测厚路面厚度检测是公路检测的主要内容之一。
一般简易路面厚100 一200mm ,高等级公路路面厚200 一300mm ,机场跑道路面厚400mm ,这就要求公路路面厚度检测有较高的分辨率,误差小于10mm 。
雷达测厚是利用电磁波在不同介质界面处的反射一折射、其原理如图1 所示。
对于200mm 厚度以上的混凝土或沥青路面,检测精度达到10mm 以内,则探地雷达使用900MHz 以卜中心频率的天线。
2 .路面与路基缺陷检测公路在修筑过程中对路基进行处理,随着公路投人使用,路基介质经历压实或外来扰动的影响,使原来软弱地基发生变化,这类缺陷会引起公路陷落,造成事故。
监测这类软弱地基的变化,将有利于提高公路运输的安全性。
地质雷达简介学校:大连大学院系:建筑工程学院学号:11344004姓名:赵阳豪日期:2013年9月17日地质雷达简介地质雷达是目前分辨率最高的工程地球物理方法,在工程质量检测、场地勘察中被广泛采用,近年来也被用于隧道超前地质预报工作。
地质雷达能发现掌子面前方地层的变化,对于断裂带特别是含水带、破碎带有较高的识别能力。
在深埋隧道和富水地层以及溶洞发育地区,地质雷达是一个很好的预报手段。
1发展及现状基于电磁反射原理解决各种地下目标的探测问题, 这种设想最初可追溯到1937 年4 月29 日公布的一个美国专“Electromagnetic prospecting method (电磁探测法) ”。
该专利描述了一种地震探测法的电磁模拟系统。
尽管这一专利当时并未付诸实用,但从发明的角度说, 它却开了地质雷达探测技术的先河。
因此可以讲, 利用电磁反射原理探测地下目标的设想几乎是和地对空雷达的发明同时出现的。
只不过由于受社会、经济、技术等诸因素的制约, 二者在实用化进程方面存在显著差距。
直到本世纪50 年代, 美国才率先开始地质雷达的可行性方案研究; 60年代进入实用性试验研究; 到70 年代, 地质雷达正式进入实用化阶段, 主要是用于地面解决各种工程地质问题, 如探测各种管线、混凝土钢筋等地下掩埋体, 以及地基浅部地质情况等。
70 年代美国地球物理勘探公司(GSSI)开发出了第一个真正投入市场的地质雷达系列Subsurface Interface Radar system (地下界面雷达系统) , 简称SIR系列。
这是地质雷达正式进入实用化阶段的主要标志。
SIR系统曾获美国专利, 同时还在别的几个国家申请了专利, 一度成为地质雷达的主导产品。
随后, 日本、加拿大等国纷纷在SIR技术的基础上, 开展对地质雷达探测技术的研究。
1983 年, 日本的原·坂山等人探讨了地质雷达在地基探测中的实用性, 继而将SIR产品改型为OAO系列产品。
探地雷达使用提纲1、适用范围及适用条件2、设计规范及收费标准3、不同地质情况的雷达波形特征1、适用范围及适用条件1.1适用范围:探地雷达法适用于基岩深度、水位深度、软土层厚度与深度,断裂构造等地质工程探查,城市路面塌陷、岩溶塌陷、土洞、滑坡面等地质灾害调查,地下水污染带监测,地基加固效果评价,路面、机场跑道、洞室衬砌检测,堤坝隐患,地下泄露,地下管线及其他埋设物探测,考古探查等。
1.2适用条件:(1)探测目的体与周边介质之间应存在明显介电常数差异,电性稳定,电磁波发射信号明显;(2)目的体在探测深度或距离范围内,其尺寸应满足探测分辨率的要求;(3)测线上天线经过的表面应相对平缓,无障碍,且易于天线移动;(4)测区内不应存在大范围金属构件、无线电发射频源等较强的电磁波干扰,或通过处理无法消除的干扰;(5)不应存在极低阻屏蔽层;(6)单孔或跨孔检测时不得有金属套管;2地质雷达测线测点设计规范及收费标准2.1测线测点设计规范2.1.1工程物探应根据任务要求、探测方法、目的物的规模与埋深等因素综合确定工作比例尺,测网布置应与工作比例尺一致,测网密度应能保证异常的连续、完整和便于追踪;2.1.2布置测线时,测线方向宜避开地形及其它干扰的影响,应垂直于或大角度相交于目的物或已知异常的走向,岩溶、采空区、防空洞等走向多变体的探测宜布设两组相互正交的测线;2.1.3测线长度应保证异常的完整和具有足够的异常背景;2.1.4探测范围内有已知点时,测线应通过或靠近该已知点的布设;2.1.5点测时,测点布设位置、测量应满足资料解释推断的需要;2.1.6工作比例尺确定后,宜参照表1选择测网密度。
表1 工作比例尺与测网密度2.2收费标准地质雷达探测收费参见《工程勘察设计收费标准》第7章——工程物探,收费标准见表2表2 地质雷达收费标准3、波形特征在工程勘察中,常见的不良地质现象有:断层破碎带、裂隙带、富水带、岩溶洞穴、岩性变化带等。
探地雷达在工程地质勘探中的应用简介摘要:探地雷达因其所具有的高分辨率和高勘探效率,而成为了工程地质勘探中非常重要的勘探设备。
近些年来,随着探地雷达技术的完善和发展以及操作经验的积累,已经逐渐的应用在多个领域的工程地质勘探过程中。
本文首先对于探地雷达的特点和功能进行分析,从而对于探地雷达在工程地质勘查中的应用进行研究,希望通过本文,能够为探地雷达在工程地质勘探中的应用提供一些参考和帮助。
关键词:探地雷达;工程地质勘探;实际应用1.探地雷达的特点和功能探析探地雷达,也被称作为地下或者地质雷达,英文缩写为GPR,是通过利用电磁波的收发来对地下进行勘探的一种电子设备。
主要是利用天线来将高频电磁波以短脉冲的形式输入到地下,电磁波到达地层或物体后返回地面,再由天线来进行接收。
探地雷达对于地下数据的采集主要通过波形的方式来进行体现,正负的波峰分别用黑色和白色来进行标记,也可利用其它的颜色来进行标记,从而对于地下的反射面进行形象的体现。
通过在波形图上利用测线进行标记的方式来形成雷达的剖面。
作为工程地质勘探中的非常有效的勘探电子设备,探地雷达的特点主要包括以下几个方面:首先是高分辨率,一般可达到数厘米,工作频率可达到五千兆赫兹。
其次,探地雷达不具备破坏性,通过电磁波来达到勘探的目的,不会对地表或地下造成任何损害。
第三是高效率,探地雷达采取的是信息采集和处理一体化的装置,便于携带,操作简单,具有较高的工作效率。
最后,探地雷达具有较强的抗干扰能力,能够在多种恶劣环境下进行使用。
从目前的情况来看,探地雷达的种类很多,例如美国的SIR系列和日本的GEORADAR系列以及加拿大的Pulse EKKO系列等等。
一般来说,探地雷达主要由发射和接收天线、控制面板、计算机、发射和接收电路这几个部分所组成,各部分的具体功能如下:(1)发射和接收天线:这两种天线实际上可以互换进行使用,通过发射天线向地下介质发射电磁波,由接收天线来接收地下介质的返回信号。
【浅谈探地雷达检测技术】探地雷达【摘要】在实际工作中,探地雷达作为新型的无损检测设备,具有携带方便、非破坏性、检测快速、精度高等特点,受到广大技术人员越来越多的关注,并且已经在路面厚度检测和隧道衬砌厚度检测中得到推广和应用。
本文概要介绍了探地雷达检测路面结构层厚度和检测隧道二衬厚度的工作原理,并说明了在检测过程中注意的事项,最后探察进一步指出了使用探地雷达检测技术的优缺点。
【关键词】探地雷达;检测技术;路面;隧道一、引言探地雷达方法是通过发射向地下发射高频电磁波,通过接收天线接收反射回地面的电磁波,电磁波在中所地下介质中传播时察觉到存在电性差异的分界面时发生反射,根据接收到的电磁波电磁场的波形、振幅强度和时间的变化等差异特征推断地下介质的空间位置、结构、形态和埋藏深度。
探地雷达是一种广谱电磁技术,用于确定地下介质的分布异常情况。
近年来,由于探地雷达具有高采样率、无损检测等优点,它逐渐取代了原有的钻孔取芯法而在各种工程中得到极为广泛的须要用。
在进行检测的过程中,这种方法只要及少量的钻孔就能够了解公路的结构配合地层的各种变化情况,非常有效地克服了现行钻孔法的严重不足。
并且可以准确地提供关于基层和面层厚度变化的一些真实情况,为实际施工提供了极具参考价值的富有可靠参数。
二、探地雷达检测厚度的工作电磁场1、探地雷阵地雷达检测路面结构层厚度的工作原理在道路的可靠性控制工作中,最重要的一部分就是进行碎石结构层厚度的检测。
传统上所使用的钻心取样法已经远远不能满足精确检测的要求,因此通过对探地雷达测厚的工作原理进行厚认识论分析,可以看出探地雷达技术在公路工程质量检测中所具有独特的。
利用探地雷达检测公路面层厚度是一种反射波探测法。
在特定的介质中,电磁波的传播速度v是保持不变的,因此根据探地雷达所记录的地面反射波与地下反射波的时间差△t,即可依据公式h=v△t/2,量度出界面的厚度值h的大小,对于路面结构层厚度的检测而言,h即为面层的厚度,v表示电磁波在地下介质(面层)中传播时的速度。
⼤穿透深度地质雷达、探地雷达100m⼤穿透深度地质雷达COBRA Plug-in ⼀、前⾔常⽤的地质雷达探测深度⼀般在10-15⽶以内,要增加探测深度必须采⽤低频天线,然⽽它⼜使屏蔽发⽣困难,限制了低频天线的应⽤领域。
为此,瑞典RADARTEM公司研发和⽣产了⼤穿透深度Cobra plug-In地质雷达,该系统采⽤先进的实时采样技术,使信噪⽐提⾼45dB,勘探深度增加⼀倍以上,采⽤具有强烈抗⼲扰能⼒的、半屏蔽技术的收发⼀体天线,进⼀步保障了最⼤勘探深度,勘探深度0-100m,在北京和厦门地区的应⽤结果表明,在很强⼲扰地区仍可获得⼗分可靠的探测结果。
此外该公司研发的双通道、双天线CobraWifi地质雷达具有极⾼的分辨率和极强的抗⼲扰能⼒,探测深度0-10m。
⼆、原理简介地质雷达探测的⼯作原理,简单地说是通过特定仪器向地下发送脉冲形式的⾼频、甚⾼频电磁波。
电磁波在介质中传播,当遇到存在电性差异的地下⽬标体,如空洞、分界⾯等时,电磁波便发⽣反射,返回地⾯⽤接收天线接收,并对接收数据进⾏处理和分析,根据接收到的雷达波形、强度、双程时间等参数便可推断地下⽬标体的空间位置、结构、电性及⼏何形态,从⽽达到对地下隐蔽⽬标物的探测(如图1 所⽰) ,可以⾮常安全和⽅便地⽤于很多领域,并具有很⾼的探测精度和分辨率。
图1 探地雷达⼯作原理⽰意图图1 中T 为发射天线, R 为接收天线,电磁波在地下介质中遇到⽬标体和基岩时发⽣反射, 信号返回地⾯由天线R 接收并记录再通过主机的回放处理,就可以得到雷达记录的回波记录(如图2 所⽰) 。
图2 探地雷达回波记录⽰意图图2 中横坐标的单位为m ,横轴代表地表⾯的探测距离,纵坐标代表电磁波从发射到遇见地下⽬标体或基岩时反射回地⾯并被仪器接收所需要的时间t。
,即双程反射时间t,按下式算出⽬标体的埋藏深度:其中, t 为⽬标层雷达波的双程反射时间; c 为雷达波在真空中的传播速度(0. 3 m/ ns) ; εr 为⽬标层以上介质的相对介电常数均值。
100m大穿透深度地质雷达COBRA Plug-in 一、前言
常用的地质雷达探测深度一般在10-15米以内,要增加探测深度必须采用低频天线,然而它又使屏蔽发生困难,限制了低频天线的应用领域。
为此,瑞典RADARTEM公司研发和生产了大穿透深度Cobra plug-In地质雷达,该系统采用先进的实时采样技术,使信噪比提高45dB,勘探深度增加一倍以上,采用具有强烈抗干扰能力的、半屏蔽技术的收发一体天线,进一步保障了最大勘探深度,勘探深度0-100m,在北京和厦门地区的应用结果表明,在很强干扰地区仍可获得十分可靠的探测结果。
此外该公司研发的双通道、双天线CobraWifi地质雷达具有极高的分辨率和极强的抗干扰能力,探测深度0-10m。
二、原理简介
地质雷达探测的工作原理,简单地说是通过特定仪器向地下发送脉冲形式的高频、甚高频电磁波。
电磁波在介质中传播,当遇到存在电性差异的地下目标体,如空洞、分界面等时,电磁波便发生反射,返回地面用接收天线接收,并对接收数据进行处理和分析,根据接收到的雷达波形、强度、双程时间等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标物的探测(如图1 所示) ,可以非常安全和方便地用于很多领域,并具有很高的探测精度和分辨率。
图1 探地雷达工作原理示意图
图1 中T 为发射天线, R 为接收天线,电磁波在地下介质中遇到目标体和基岩时发生反射, 信号返回地面由天线R 接收并记录再通过主机的回放处理,就可以得到雷达记录的回波记录(如图2 所示) 。
图2 探地雷达回波记录示意图
图2 中横坐标的单位为m ,横轴代表地表面的探测距离,纵坐标代表电磁波从发射到遇见地下目标体或基岩时反射回地面并被仪器接收所需要的时间t。
,即双程反射时间t,按下式算出目标体的埋藏深度:
其中, t 为目标层雷达波的双程反射时间; c 为雷达波在真空中的传播速度(0. 3 m/ ns) ; εr 为目标层以上介质的相对介电常数均值。
地质雷达数据处理方法与地震反射法数据处理方法基本相同,主要有以下几方面:1) 滤波及时频变换处理;2) 自动时变增益或控制增益处理;3) 多次重复测量平均处理;4) 速度分析及雷达合成处理等。
数据处理的目的旨在优化数据资料、突出目标体、最大限度地减少外界干扰,为进一步解释提供清晰可辨的图像。
处理后的雷达剖面图和地震反射的时间剖面图相似,可依据该图进行地质解释。
电磁波在地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,因此在探地雷达的运用中,探测结果能否反应出目标体与以下的因素有关:
1)纵向分辨率:λ/4
探地雷达在纵向上能分辨的最小厚度是发射电磁波波长的1/4。
2)横向分辨率:r f=λ /2(λ-雷达子波波长,h-目标体的埋藏深度)
探地雷达在水平能够分辨的最小尺寸为r f。
3)反射能力:P r=(ε−ε)
(ε+ε)2
(ε ost-背景介质的相对介电常数,εtarget-目
标体的相对介电常数)
当P r>0.01就能有足够的反射。
4)探测深度:约为雷达子波的波长的10倍。
一般来说,时间等效采样技术的探地雷达其极限探测深度为10倍发射雷达子波波长,实时采样技术的地质雷达探测深度要大的多。
三、实时采样与时间等效采样技术
为了实现被测信号的重构,采集系统都需要对连续的信号进行离散化的采集,我们称之为数字采样。
目前市场上出售的地质雷达一般都采用时间等效采样技术,而Cobra plug_In采用的是最先进的实时采样技术。
所谓实时采样就是对雷达反射信号进行实时逐点顺序采样,只要采样速率满足奈奎斯特采样定理的要求,便可还原反射信号的真实波形,简单地说就是当一个信号周期完成后,被测信号也同时完成、同时储存,并且是反射信号的真实波形,(如图3)。
图3 实时采样示意图
由于地质雷达的信号频率非常高,所以实时采样技术对采样速率的要求也非常高,对采样数据的存储速度和存储容量的要求也非常高。
但A/D转换器的采样速率、数据存储速度、数据存储容量等,都是有限制的,所以一般的地质雷达无法实现实时采样。
因而都采取一种变通的方式。
也即把实时采样中的多个相同周期、不同时间的真实反射信号(图
4A)。
重新组合成一个相同周期的仿真信号(图4B),以降低采样数量、数据存储数据数量和存储容量。
前提是,反射信号必须是严格的周期信号,但这是很难达到的,因此一般地质雷达所采用的时间等效采样技术会造成反射信号失真,降低了信噪比。
然而,实时采样技术,由于采样量非常大,所以叠加次数非常多,其信噪比相对时间等效采样技术高45dB,理论研究和实际表明,信噪比每提高30dB,穿透深度就提高两倍。
图4 等效采样示意图
简而言之,等效采样就是将多个周期的不同时间的采样点组合而成的一个完整周期的信号。
这种采样方式虽然大大降低了对采集系统硬件的要求。
但是,这种采样方式的前提必须是周期信号,地质雷达反射信号不是严格的周期信号,因此,等效采样会造成反射信号失真,影响了测量的准确性和正确性。
理论研究和实践表明,实时采样技术比等效采样技术提高信噪比45dB,而信噪比每提高30dB穿透深度就提高两倍。
四、SE低频天线的半屏蔽技术
低于100Hz的低频天线(LF)无法像高频天线(HF)那样进行金属屏蔽,因为低频天线尺寸较大,屏蔽后体积太大,又笨重,无法应用,目前所有地质雷达制造商生产的低频天线都是非屏蔽天线。
这些非屏蔽低频天线发射的雷达电磁波仅50%进入地下,50%进入空中。
进入空中的电磁波遇到树木和其它地面物体时便会反射回来,形成强烈的干扰,限制了低频天线的应用。
Cobra Plug-in地质雷达采用的是 SE系列半屏蔽低频天线,是radarteam公司从设计理念上制作的具有半屏蔽效果的低频天线,而非物理意义上的金属屏蔽天线,具有很强的抗干扰能力。
它是电阻性负载的曲面天线,安装在圆柱体上,具有向地下发射的绝对优势和向空中发射最小的低频天线,90%电磁波能量进入地下,仅10%能量进入空中。
所以SE低频天线穿透深度大,受地面物体例如树、路灯等干扰最小。
雷达波射线
图5 SE系列半屏蔽天线模式
五、仪器介绍
Radarteam Sweden AB是全球探地雷达天线研发和制造的领导者,其COBRA系列探地雷达已经被广泛的运用于各个领域中,包括公路检测、溶洞探测、大坝病害诊断、地质构造探测、管线探测、军事与安全、考古探测、冰川考察等等。
COBRA探地雷达系列包括最新一代具有实时采样技术的Cobra PLUG-IN GPR和双通道超高分辨率的Cobra Wifi。
1.COBRA PLUG-IN
COBRA plug-In探地雷达为Radarteam公司最新一代的产品,它将传统的分离式低频天线组合成了一体,大大的提升了施工的效率。
COBRA plug-In基于不同的工作目的配有三种不同频率的天线可选。
图6 搭载SE-70天线的Cobra plug-In
图7 Cobra 采集系统单元、控制单元以及天线SE-150、SE-40、SE-70(从左至右)
作为现阶段最先进的低频雷达系统,Cobra plug-In相对与其他的雷达系统而言有如下特点:
1)先进的实时采样技术使信噪比提高45dB,勘探深度是同频率的等效采样技术的两
倍,最深可达100m。
2)收发一体,空气耦合,体积小,重量小。
施工非常方便,非困难地形条件下完全
可以一个人完成工作。
3)先进的半屏蔽技术,具有很强的抗电磁干扰能力。
采集系统主要技术参数:
SUBECHO系列天线主要技术指标:
2.。