分布式控制系统
- 格式:docx
- 大小:131.06 KB
- 文档页数:36
控制系统中的分布式控制技术随着科技的进步,控制系统在各个领域中扮演着重要的角色。
为了提高控制系统的效率和可靠性,分布式控制技术逐渐得到应用。
本文将介绍分布式控制技术的概念、基本原理以及在实际应用中的优势和挑战。
一、概述分布式控制技术是指将控制系统中的任务分散到多个节点上进行处理的技术。
相比传统集中式控制系统,分布式控制技术具有更高的系统可用性、更灵活的系统配置和更强大的计算能力。
二、基本原理1. 网络通信分布式控制系统中各个节点之间通过网络进行通信,实现任务的分配和信息的交换。
常用的通信方式包括以太网、无线通信等。
2. 数据同步分布式控制系统需要确保各个节点上的数据保持一致性。
数据同步可以通过时间同步和消息同步来实现,确保各个节点之间的数据一致性。
3. 分布式算法为了实现协同控制,分布式控制系统需要采用分布式算法来实现任务的分配和协调。
常见的分布式算法包括分布式PID控制算法、分布式模糊控制算法等。
三、实际应用1. 工业控制系统在工业生产中,分布式控制技术可以将任务分配到不同的节点上进行处理,提高生产效率和系统可靠性。
例如,在自动化生产线中,将不同的任务分配到各个节点上,可以同时处理多个环节,提高生产效率。
2. 智能交通系统分布式控制技术在智能交通系统中也得到广泛应用。
例如,在城市交通信号控制系统中,可以将信号控制任务分布到各个信号灯上,通过协同控制来优化交通流量,提高交通效率。
3. 智能电网在智能电网中,分布式控制技术可以将电力系统中的控制任务分配给不同的发电站和负载节点,实现对电力的分布式管理和优化控制,提高电力系统的可靠性和效率。
四、优势与挑战分布式控制技术的优势在于提高了系统的可靠性和鲁棒性,使系统更加灵活和可扩展。
然而,分布式控制技术也存在着一些挑战,如网络通信的延时和丢包问题、数据同步的复杂性以及分布式算法的设计和实现难度。
结论随着科技的不断进步,分布式控制技术在控制系统中的应用越来越广泛。
分布式控制系统的设计和实现随着科技的不断发展和普及,分布式控制系统已经逐渐成为了现代企业和科研机构中不可或缺的技术之一。
那么,什么是分布式控制系统?分布式控制系统是指网络化、分散化的控制系统,由多个控制器和多个执行机构构成,这些控制器和执行机构可以分散在不同的地点上。
在分布式控制系统中,各个控制器通过网络相互连接,实现对整个系统的协调控制,从而达到优化系统性能的目的。
在分布式控制系统的设计过程中,需要考虑多个方面的因素。
首先,需要考虑系统的安全性和可靠性。
在当今社会,信息的安全问题已经成为了人们非常关注的问题之一。
对于分布式控制系统来说,信息的安全性尤为重要,因为系统中的数据和指令是通过网络传输的,容易被黑客攻击和窃取。
因此,在设计分布式控制系统时,需要采取一系列措施来保证数据和指令的安全传输,比如采用数据加密技术、建立防火墙等。
其次,需要考虑系统的实时性和可扩展性。
由于分布式控制系统中各个执行机构分散在不同的地方,因此需要通过网络实时传输数据和指令,使得各个执行机构能够准确地执行任务。
同时,如果系统需要扩展,需要增加执行机构或控制器,都需要保证系统的实时性和稳定性不受影响。
另外,还需要考虑系统的可配置性和可维护性。
在分布式控制系统中,不同的执行机构可能需要不同的配置参数和参数设置,因此需要提供相应的配置界面和配置工具,使得用户能够方便地对系统进行设置和配置。
同时,由于系统中可能存在硬件故障或网络故障等问题,因此需要提供相应的维护工具和故障排除工具,以便用户及时排除故障并进行系统维护。
在分布式控制系统的实现过程中,需要采用一系列技术来实现分布式控制系统的各个方面功能。
首先,需要采用网络技术来实现分布式控制系统中各个执行机构和控制器之间的通信,比如采用TCP/IP协议来实现数据的传输和通信。
其次,需要采用编程语言和编译器来实现分布式控制系统的编程和开发,比如采用C++语言和相关编译器来开发和编译分布式控制系统的程序。
dcs控制方案一、概述DCS(分布式控制系统)是一种基于计算机网络和现场总线技术的自动化控制系统。
它可以集成各类控制设备、执行器和传感器,并通过高效的数据通信实现对生产过程的监控和控制。
本文将详细介绍DCS控制方案的设计与实施。
二、系统组成1. 硬件方案DCS控制方案的硬件组成主要包括控制器、输入/输出模块、执行器和传感器等。
控制器具备高性能的数据处理能力,负责控制算法的执行和监控系统的运行。
输入/输出模块则负责与外部设备进行数据交互,传输控制信号和采集过程数据。
执行器和传感器承担着实际动作和信号采集的任务,将系统状态信息反馈给控制器。
2. 软件方案DCS控制方案的软件方案是整个系统的核心。
它包括了实时嵌入式操作系统、控制算法、监视系统以及人机界面等。
实时嵌入式操作系统保证了系统的高可用性和稳定性,控制算法则实现了对生产过程的精确控制。
监视系统通过对采集到的数据进行分析和处理,提供运行状态的监控报告和故障诊断。
人机界面提供了直观友好的操作界面,方便操作人员进行实时监控和调整参数。
三、DCS控制方案设计1. 系统需求分析在设计DCS控制方案之前,需要对待控制的生产过程进行全面的需求分析。
包括对工艺流程、设备性能要求、安全性要求和监控需求等进行详细的了解。
通过充分了解系统需求,才能制定出符合实际情况的控制方案。
2. 系统结构设计根据分析得出的系统需求,进行系统结构设计。
将整个生产过程划分为若干个子系统,根据不同的功能和控制需求进行模块化设计。
同时考虑实时性、可靠性和安全性等因素,确定控制器和传感器的布置位置,以及各个子系统之间的数据通信方式。
3. 控制算法设计根据生产过程的特点和控制需求,设计合理的控制算法。
可以采用传统的PID控制算法,也可以结合先进的模糊控制、神经网络控制或模型预测控制等。
控制算法需要综合考虑系统的稳定性、鲁棒性和响应速度,以实现对生产过程的精确控制。
四、DCS控制方案实施1. 系统集成根据设计方案,进行硬件设备的安装和网络连接。
DCS控制系统管理规定DCS控制系统管理规定第一章总则1.1 目的和适用范围本规定旨在规范DCS(分布式控制系统)控制系统的管理,以确保该系统的顺利运行和安全性。
本规定适用于所有使用DCS控制系统的单位。
1.2 定义和缩略语1.2.1 DCS控制系统:分布式控制系统的简称,是一种通过网络连接多个控制节点的系统,用于实时监控和控制各种工业过程。
1.2.2 单元:指控制系统中的一个独立操作单元,例如工业生产线、设备、机械等。
1.2.3 授权人员:被授权对DCS控制系统进行管理和操作的人员。
1.2.4 系统管理员:负责DCS控制系统的日常管理和维护的人员。
第二章 DCS控制系统管理2.1 系统安全2.1.1 授权管理2.1.1.1 确保只有经过授权的人员可以访问和操作DCS控制系统。
2.1.1.2 建立用户账户和密码策略,定期更新密码,并限制对敏感操作权限的授权。
2.1.1.3 对授权人员进行培训,提高其对系统安全的意识和能力。
2.1.2 网络安全2.1.2.1 建立防火墙和入侵检测系统,防止未经授权的网络访问。
2.1.2.2 定期进行网络安全测试和漏洞扫描,及时修补系统漏洞。
2.1.2.3 控制网络设备的物理访问权限,限制外部设备的连接。
2.2 系统维护2.2.1 定期维护2.2.1.1 制定系统维护计划,包括硬件设备和软件系统的检查、更新和维护。
2.2.1.2 定期备份系统数据,并确保备份数据的安全性和完整性。
2.2.2 故障处理2.2.2.1 设立故障处理流程,规定故障报告和处理的步骤。
2.2.2.2 提供故障处理的紧急联系方式,确保故障得到及时解决。
2.3 监控和报警2.3.1 系统监控2.3.1.1 建立实时监控系统,对DCS控制系统的运行状态进行监测。
2.3.1.2 设立告警机制,及时发现和处理系统异常和故障。
2.3.2 告警管理2.3.2.1 设定告警级别和颜色,以便及时辨识告警的紧急程度。
课题一、三相异步电动机Y/Δ换接启动及正反转控制一、实验目的在电机进行正反向的转、换接时,有可能因为电动机容量较大或操作不当等原因使接触器主触头产生较为严重的起弧现象,如果在电弧还未完全熄灭时,反转的接触器就闭合,则会造成电源相间短路。
用PLC来控制电机起停则可避免这一问题。
二、实验要求1、掌握自锁、互锁、定时等常用电路的编程2、利用基本顺序指令编写电机正反转和Y/△启动控制程序。
3、掌握电机星/三角换接启动主回路的接线。
学会用可编程控制器实现电机星/三角换接降压启动过程的编程方法。
课题二、十字路口交通灯控制一、实验目的本实验作为综合性设计实验,要求学生观察某十字路口的交通灯运行状态,自行设计十字路口交通灯控制的实际动作,并根据动作要求设计I/O接口,可连接指示灯模拟交通灯动作。
也可以在实验箱的十字路口交通灯控制实验区完成本实验。
以下给出参考方案。
二、实验要求熟练使用各基本指令,根据控制要求,掌握PLC的编程方法和程序调试方法,使学生了解用PLC解决一个实际问题的全过程。
课题三、电梯控制系统说明:本实验作为综合性实验,要求学生自行设计电梯运行的实际动作,并根据动作要求设计I/O 接口,可连接指示灯模拟电梯动作。
也可以在实验箱的电梯控制系统实验区完成本实验。
以下给出参考方案。
一、实验目的1、通过对工程实例的模拟,熟练的掌握PLC 的编程和程序测试方法。
2、进一步熟悉PLC 的I/O 连接。
3、熟悉三层楼电梯自动控制的编程方法。
二、控制要求实验内容完成对三层楼电梯的自动控制,电梯上、下由一台电动机驱动:电机正转则电梯上升;电机反转则电梯下降。
每层楼设有呼叫按钮SB1、SB2、SB3,呼叫指示灯HL1、HL2、HL3和到位行程开关LS1,LS2和LS3。
电梯上升途中只响应上升呼叫,下降途中只响应下降呼叫,任何反方向呼叫均无效。
响应呼叫时呼叫楼层的呼叫指示灯亮,电梯到达呼叫楼层时指示灯熄灭;呼叫无效时,呼叫楼层的指示灯不亮。
DCS的体系结构DCS(分布式控制系统)是一种广泛应用于工业自动化领域的控制系统。
它通过将控制设备和传感器分布在被控制的过程或系统中来实现控制和监测。
DCS采用了分布式的架构,使得系统具有更高的可靠性、可扩展性和灵活性。
下面将对DCS的体系结构进行详细介绍。
控制层是DCS的最底层,主要负责对被控制对象进行实时的控制和调节。
它由多个控制器组成,每个控制器负责控制一个或多个设备或过程。
这些控制器分布在整个系统中,通过网络连接进行通信。
控制层的主要功能是接收来自传感器的反馈信号,根据预设的控制算法生成控制信号,并将其发送给执行器或驱动器来控制被控制对象。
此外,控制层还需要监测和调节控制过程中的参数,以确保系统的稳定性和安全性。
操作层位于控制层之上,主要负责人机交互和监控。
操作层包括操作站和工程站。
操作站是系统操作员与DCS进行交互的界面,通常采用图形化界面,操作员可以通过它来监测和控制整个系统。
操作站还提供了报警和事件处理功能,能够及时通知操作员系统中的异常情况。
工程站是用于配置和管理DCS系统的工具,它提供了网络配置、设备参数设置、控制策略配置等功能,可以对DCS进行灵活的调整和扩展。
信息层是DCS系统的最高层,主要负责数据存储、传输和分析。
信息层通常由数据库、历史数据服务器和报表服务器组成。
数据库用于存储实时数据、历史数据和配置信息,可以提供数据查询和统计分析功能。
历史数据服务器用于存储历史数据,可以在需要时进行回放和分析,用来进行故障诊断和性能优化。
报表服务器用于生成各种报表,如生产报表、能耗报表等,可以为管理人员提供决策支持。
整个DCS系统的各个层次通过网络连接起来,形成一个完整的系统。
因为采用了分布式的架构,DCS具有很高的可靠性和可扩展性。
如果一些控制器或传感器发生故障,系统可以自动切换到备用设备,保证系统的正常运行。
此外,DCS还支持远程访问和管理,可以通过网络连接远程监控和控制系统,方便维护人员对系统进行远程配置和故障排查。
DCS控制系统介绍DCS控制系统(Distributed Control System)是一种基于现代信息技术的自动化控制系统,用于工业生产过程的监控、控制和数据处理等功能。
它基于计算机网络、通信技术和控制算法等技术,将控制任务分散到不同的控制节点上,实现多任务分布式自动化控制。
DCS控制系统由监控层、控制层和执行层构成。
监控层是最高层,主要负责监控过程工艺参数、生产状态和设备运行状态等信息,提供用户界面供操作员使用。
控制层是中间层,负责控制过程参数,调节和改变系统的工作状态。
执行层是最底层,主要负责执行控制层的指令,控制、调节和保护各种设备。
1. 分布式体系结构:DCS控制系统采用分布式体系结构,将控制任务分散到多个控制节点上,使系统具有高可靠性和高稳定性。
即使一些节点发生故障,其他节点仍然可以继续工作,保证系统的连续运行。
2. 多任务运行:DCS控制系统具有多任务运行的特点,可以同时处理多个任务,实现复杂的控制算法和优化运算。
系统可以根据需要进行任务的优先级调度,确保重要任务的执行效果和实时性。
3. 网络通信技术:DCS控制系统基于计算机网络和通信技术,实现控制节点间的数据交换和通信,实现远程控制、监控和故障诊断等功能。
控制节点可以通过网络实现数据共享和远程监控,提高系统的管理效率和设备的利用率。
4. 开放性接口:DCS控制系统通常采用开放式接口设计,使其可以与其他系统进行数据交换和集成。
如与企业资源计划(ERP)系统集成,实现生产计划和物料管理的统一、同时,也可以与其他自动化系统集成,如SCADA系统、MES系统等,实现全面的生产过程控制和管理。
5. 可扩展性:DCS控制系统具有较好的可扩展性,可以根据生产工艺的变化和需求的变化进行扩展和改造。
可以增加新的控制节点,增加新的功能模块,实现对系统的功能和性能的扩展,提高系统的灵活性和适应性。
DCS控制系统在工业生产中有着广泛的应用,包括化工、石油、电力、冶金、食品、制药等行业。
02分布式控制系统的体系结构分布式控制系统(Distributed Control System,简称DCS)是一种由多台个体控制单元组成的控制系统。
其体系结构是由若干分布式控制器、操作站和通讯网络组成,用于实时监测、控制和管理工业过程中的各种生产参数和设备设施。
本文将分析分布式控制系统的体系结构,并介绍其各个组成部分的功能和作用。
一、分布式控制器分布式控制系统的核心部分是分布式控制器。
它是由多个分布式控制因子组成,主要负责接收传感器信号、计算控制算法、驱动执行器,实现对过程参数的实时监测和控制。
分布式控制器通常采用红外线、无线电波、以太网等通信方式与其他组件进行数据传递。
二、操作站操作站是分布式控制系统的用户界面,用于人机交互和控制系统的人工操作。
操作站上装有操作界面、监控界面、数据处理界面和报警界面等,用户可以通过操作站进行对工业过程的监测、控制、调整和设备管理。
操作站通常由计算机、触摸屏和键盘等硬件设备组成,运行着专门的控制软件。
三、通讯网络通讯网络是分布式控制系统中各个组件之间进行数据传输和通信的重要媒介。
通讯网络通常采用现代化的网络技术,如局域网(Local Area Network,简称LAN)、广域网(Wide Area Network,简称WAN)等,以实现高速、可靠、安全的通信。
通讯网络的质量和性能对于整个系统的运行效果和安全性至关重要。
四、传感器和执行器传感器是分布式控制系统中的输入设备,用于实时采集工业过程中的各种参数,如温度、压力、流量、液位、浓度等。
执行器则是分布式控制系统中的输出设备,负责根据控制器的指令对各种执行设备进行控制,如闸门、调节阀、电机等。
传感器和执行器通过信号转换器与分布式控制器进行连接。
五、数据库数据库是分布式控制系统中的重要组成部分,用于保存和管理系统中的各种数据,如传感器采集数据、控制参数、工艺流程、历史记录等。
数据库可以提供实时的数据查询和分析功能,为系统的管理和优化提供依据。
分布式控制系统 分布式控制系统 它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机,通信、显示和控制等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活以及组态方便。 在特殊控制领域,如核电站控制系统,DCS的含义被误叫做数字化控制系统(Digital control system),其实质仍为分布式操作系统。
概 述 首先,DCS的骨架—系统网络,它是DCS的基础和核心。由于网络对于DCS整个系统的实时性、可靠性和扩充性,起着决定性的作用,因此各厂家都在这方面进行了精心的设计。对于DCS的系统网络来说,它必须满足实时性的要求,即在确定的时间限度内完成信息的传送。这里所说的“确定”的时间限度,是指在无论何种情况下,信息传送都能在这个时间限度内完成,而这个时间限度则是根据被控制过程的实时性要求确定的。因此,衡量系统网络性能的指标并不是网络的速率 DCS ,即通常所说的每秒比特数(bps),而是系
统网络的实时性,即能在多长的时间内确保所需信息的传输完成。系统网络还必须非常可靠,无论在任何情况下,网络通信都不能中断,因此多数厂家的DCS均采用双总线、环形或双重星形的网络拓扑结构。为了满足系统扩充性的要求,系统网络上可接入的最大节点数量应比实际使用的节点数量大若干倍。这样,一方面可以随时增加新的节点,另一方面也可以使系统网络运行于较轻的通信负荷状态,以确保系统的实时性和可靠性。在系统实际运行过程中,各个节点的上网和下网是随时可能发生的,特别是操作员站,这样,网络重构会经常进行,而这种操作绝对不能影响系统的正常运行,因此,系统网络应该具有很强在线网络重构功能。 其次,这是一种完全对现场I/O处理并实现直接数字控制(DDC)功能的网络节点。一般一套DCS中要设置现场I/O控制站,用以分担整个系统的I/O和控制功能。这样既可以避免由于一个站点失效造成整个系统的失效,提高系统可靠 性,也可以使各站点分担数据采集和控制功能,有利于提高整个系统的性能。DCS的操作员站是处理一切与运行操作有关的人机界面(HMI-Human Machine Interface或operator interface)功能的网络节点。 工程师站是对DCS进行离线的配置、组态工作和在线的系统监督、控制、维护的网络节点,其主要功能是提供对DCS进行组态,配置工作的工具软件(即组态软件),并在DCS在线运行时实时地监视DCS网络上各个节点的运行情况,使系统工程师可以通过工程师站及时调整系统配置及一些系统参数的设定,使DCS随时处在最佳的工作状态之下。与集中式控制系统不同,所有的DCS都要求有系统组态功能,可以说,没有系统组态功能的系统就不能称其为DCS。 DCS自1975年问世以来,已经经历了三十多年的发展历程。在这三十多年中,DCS虽然在系统的体系结构上没有发生重大改变,但是经过不断的发展和完善,其功能和性能都得到了巨大的提高。总的来说,DCS正在向着更加开放,更加标准化,更加产品化的方向发展。 作为生产过程自动化领域的计算机控制系统,传统的DCS仅仅是一个狭义的概念。如果以为DCS只是生产过程的自动化系统,那就会引出错误的结论,因为现在的计算机控制系统的含义已被大大扩展了,它不仅包括过去DCS中所包含的各种内容,还向下深入到了现场的每台测量设备、执行机构,向上发展到了生产管理,企业经营的方方面面。传统意义上的DCS现在仅仅是指生产过程控制这一部分的自动化,而工业自动化系统的概念,则应定位到企业全面解决方案,即total solution的层次。只有从这个角度上提出问题并解决问题,才能使计算机自动化真正起到其应有的作用。 DCS DCS具有以下特点:
1. 高可靠性。由于DCS将系统控制功能分散在各台计算机上实现,系统结构采用容错设计,因此某一台计算机出现的故障不会导致系统其他功能的丧失。此外,由于系统中各台计算机所承担的任务比较单一,可以针对需要实现的功能采用具有特定结构和软件的专用计算机,从而使系统中每台计算机的可靠性也得到提高。 2. 开放性。DCS采用开放式,标准化、模块化和系列化设计,系统中各台计算机采用局域网方式通信,实现信息传输,当需要改变或扩充 系统功能时,可将新增计算机方便地连入系统通信网络或从网络中卸下,几乎不影响系统其他计算机的工作。
形态组成 DCS是分布式控制系统的英文缩写(Distributed Control System),在国内自控行业又称之为集散控制系统。 它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机(Computer)、通讯(Communication)、显示(CRT)和控制(Control)等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活、组态方便。)
发展历史 第一阶段 1975-1980年,在这个时期集散控制系统的技术特点表现为: DCS 1)采用微处理器为基础的控制单元,实现分
散控制,有各种各样的算法,通过组态独立完成回路控制,具有自诊断功能 2)采用带CRT显示器的操作站与过程单元分离,实现集中监视,集中操作 3)采用较先进的冗余通信系统 第二阶段 1980—1985.,在这个时期集散控制系统的技术特点表现为: 1)微处理器的位数提高,CRT显示器的分辨率提高 2)强化的模块化系统 3)强化了系统信息管理,加强通信功能 第三阶段 1985年以后,集散系统进入第三代,其技术特点表现为: 1)采用开放系统管理 2)操作站采用32位微处理器 3)采用实时多用户多任务的操作系统 进入九十年代以后,计算机技术突飞猛进,更多新的技术被应用到了DCS之中。PLC是一 种针对顺序逻辑控制发展起来的电子设备,它主要用于代替不灵活而且笨重的继电器逻辑。现场总线技术在进入九十年代中期以后发展十分迅猛,以至于有些人已做出预测:基于现场总线的FCS将取代DCS成为控制系统的主角。
特点介绍 DCS是分散控制系统(Distributed Control System)的简称,国内一般习惯称为集散控制系统。它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机(Computer)、通讯(Communication)、显示(CRT)和控制(Control)等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活、组态方便,DCS特点如下。 高可靠性 由于DCS将系统控制功能分散在各台计算机上实现,系统结构采用容错设计,因此某一台计算机出现的故障不会导致系统其它功能的丧失。此外,由于系统中各台计算机所承担的任务比较单一,可以针对需要实现的功能采用具有特定结 构和软件的专用计算机,从而使系统中每台计算机的可靠性也得到提高。 开放性 DCS采用开放式、标准化、模块化和系列化设计,系统中各台计算机采用局域网方式通信,实现信息传输,当需要改变或扩充系统功能时,可将新增计算机方便地连入系统通信网络或从网络中卸下,几乎不影响系统其他计算机的工作。 灵活性 通过组态软件根据不同的流程应用对象进行软硬件组态,即确定测量与控制信号及相互间连接关系、从控制算法库选择适用的控制规律以及从图形库调用基本图形组成所需的各种监控和报警画面,从而方便地构成所需的控制系统。 易于维护 功能单一的小型或微型专用计算机,具有维护简单、方便的特点,当某一局部或某个计算机出现故障时,可以在不影响整个系统运行的情况下在线更换,迅速排除故障。 协调性 各工作站之间通过通信网络传送各种数据,整个系统信息共享,协调工作,以完成控制系统的总体功能和优化处理。 控制功能齐全 控制算法丰富,集连续控制、顺序控制和批处理控制于一体,可实现串级、前馈、解耦、自适应和预测控制等先进控制,并可方便地加入所需的特殊控制算法。DCS的构成方式十分灵活,可由专用的管理计算机站、操作员站、工程师站、记录站、现场控制站和数据采集站等组成,也可由通用的服务器、工业控制计算机和可编程控制器构成。处于底层的过程控制级一般由分散的现场控制站、数据采集站等就地实现数据采集和控制,并通过数据通信网络传送到生产监控级计算机。生产监控级对来自过程控制级的数据进行集中操作管理,如各种优化计算、统计报表、故障诊断、显示报警等。随着计算机技术的发展,DCS可以按照需要与更高性能的计算机设备通过网络连接来实现更高级的集中管理功能,如计划调度、仓储管理、能源管理等。
结构 从结构上划分,DCS包括过程级、操作级和管理级。过程级主要由过程控制站、I/O单元和现场仪表组成,是系统控制功能的主要实施部分。操作级包括:操作员站和工程师站,完成系统的操作和组态。管理级主要是指工厂管理信息系统(MIS系统),作为DCS更高层次的应用,目前国内纸行业应用到这一层的系统较少。 DCS的控制程序:DCS的控制决策是由过程控制站完成的,所以控制程序是由过程控制站执行的。 过程控制站的组成: DCS的过程控制站是一个完整的计算机系统,主要由电源、CPU(中央处理器)、网络接口和I/O组成 I/O:控制系统需要建立信号的输入和输出通道,这就是I/O。DCS中的I/O一般是模块化的,一个I/O模块上有一个或多个I/O通道,用来连接传感器和执行器(调节阀)。 I/O单元:通常,一个过程控制站是有几个机架组成,每个机架可以摆放一定数量的模块。CPU所在的机架被称为CPU单元,同一个过程