单相交直交变频电路的仿真
- 格式:doc
- 大小:275.50 KB
- 文档页数:4
单相桥式整流电路
1、实验目的
了解单相桥式整流电路的运行原理,并用Multisim软件模拟仿真。
2、原理说明
整流电路的任务是将交流电变成直流电。
完成这一任务的主要是靠二极管的单向导通作用,因此二极管是构成整流电路的关键元件。
在小功率整流电路中,常见的主要有单相半波、全波、桥式和倍压整流电路。
单相桥式整流电路的作用是将交流电网电压变成整流电路要求的交流电压,是要求直流供电的负载电阻,四只整流二极管接成电桥形式,故有桥式整流电路之称。
3、仿真模拟验证
(1)单相桥式整流电路
(2)单相桥式整流、电容滤波电路
由于电抗元件在电路中有储能作用,并联的电容器C在电源供给的电压升高时,能把部分能量储存起来,而当电源电压降低时,就把电场能量释放出来,使负载电压比较平滑,即电容具有平波的作用。
内容总结
(1)单相桥式整流电路
1、实验目的
了解单相桥式整流电路的运行原理,并用Multisim软件模拟仿真
(2)单相桥式整流电路
1、实验目的
了解单相桥式整流电路的运行原理,并用Multisim软件模拟仿真
(3)2、原理说明
整流电路的任务是将交流电变成直流电
(4)完成这一任务的主要是靠二极管的单向导通作用,因此二极管是构成整流电路的关键元件。
辽 宁 工 业 大 学 电力电子技术课程设计(论文) 题目:单相交直交变频实验装置
院(系): 电气工程学院 专业班级: 电气 091
学 号: 090303007
学生姓名: 张宝全 指导教师: (签字) 起止时间: 2011.12.27---2012.1.6 课课程设计(论文)任务及评语 院(系):电气工程学院 教研室:电气教研室 号 学 全 宝 张
置 装 验
课程设计(论文)任务
大
电压
最 通 流 5。 生 直 A。 学 。 间 2 ,使 法 中 流 , 方 , 电 装置 现 全 大 数 此装 实 。 安 最 参 计 频的 真 T的 出 术 设 频 仿 BT 输 。 G 、 技 , 交 b I4 、 验 - 证 tla 了 。 、要 教学 交 技术 型号 m。 2、 4 、 教交 济 体 或 书 。约 能 的相 经 具。 试 明 0V压 功 程单 的 的择 调 说 2电 务及 术课 证 案 件 选 。 拟 右 2 流 务 术验 方。。器或图模
左 相交
任 技及 频计计择计路行 字 单出 设计 电子 察 要求 变 设 设 选 设 电 进 00 : 输 设 电观要 交路路算路关室 00 源、 的 力、与 -电
电计电相验
4 电
3。
完成
功能
足电
试
任务
-直 流 变 过 动 制 实 成 参数 流 V。 0W。 题完 现功 满足 置测 计任 交 整 逆 通 驱 绘 在 完 术参 交 50V 100 课实为装设 1、2、3、4、5、6、7、 8、技1、为: 该 大 率 过
最 功 第控9 证天第 论6; 案第真 方; 或仿 天 设计 试 3 路 调 第 变电 系 料逆天 资料 : 8天 辩 收集5天 第 :答 :
收第;天 天 ;第 择 10 2 ; 选 第设器第 习电天书 学波7明 中 滤 说 集流第写 天入计并 1 输 设 结
第
: 电路
:总
4
天
制 天
指导教师评语及成绩
日 字月
题目一晶闸管单相交流调压电路的仿真1、电阻性负载的交流调压器的原理分析其晶闸管VT1和VT2反并联连接,与负载电阻R串联接到交流电源上。
当电源电压U2正半周开始时刻触发VT1,负半周开始时刻触发VT2,形同一个无触点开关。
若正、负半周以同样的移相角α触发VT1和VT2,则负载电压有效值随α角而改变,实现了交流调压。
移相角为α时的输出电压u的波形。
搭建电路电路图的模块提取路径如下表P1,P2模块的参量设置如下将最后一行的α分别改为30°,60°,90°,120°其他参量为默认值电路图搭建好并将仿真结束时间设置为0.03s2 仿真波形:触发角为30°时的波形图触发角为60°时的波形图触发角为90°时的波形图触发角为120°时的波形图2、带阻感负载的单相交流调压电路的原理分析设负载的阻抗角为φ=arctan(wL / R)。
如果用导线把晶闸管完全短接,稳态时负载电流应是正弦波,其相位滞后于电源电压u1的角度为φ。
在用晶闸管控制时,由于只能通过出发延迟角α推迟晶闸管的导通,所以晶闸管的触发脉冲应在电流过零点之后,使负载电流更为滞后,而无法使其超前。
为了方便,把α=0的时刻仍定义在电源电压过零的时刻,显然,阻感负载下稳态时α的移相范围为φ≤α≤π。
搭建电路:电路图的模块提取路径如下表:电路图搭建好并将仿真结束时间设置为0.03s2 仿真波形:触发角为30°时的波形图触发角为60°时的波形图触发角为90°时的波形图触发角为120°时的波形图。
单相全波可控整流电路仿真设计首先,我们需要了解单相全波可控整流电路的基本结构和原理。
单相全波可控整流电路由主变压器、整流电路和滤波电路组成。
主变压器将外部交流电源的电压变换为适合整流电路工作的电压,整流电路将交流电转换成直流电,滤波电路用于平滑输出的直流电。
在Multisim中,我们可以利用模拟电源来模拟交流电源,该电源具有可调的频率和电压。
首先,在Multisim中选择一个恰当的电源模块,设置其频率为50Hz,电压为220V。
将该电源与单相全波可控整流电路的输入端相连。
在整流电路部分,我们采用双向可控硅器件(thyristor)作为开关元件。
在Multisim中,选择恰当的双向可控硅器件模块,设置其相关参数(如触发角等)。
将相应的双向可控硅器件添加到Multisim的工作区域,并将其与交流电源相连。
在滤波电路部分,我们可以采用电容滤波来平滑输出的直流电。
在Multisim中,选择恰当的电容模块,将其添加到双向可控硅器件的输出端,并与负载相连。
完成上述连接后,我们需要对整个电路进行仿真。
在Multisim中,点击“运行”按钮,通过模拟电路中的双向可控硅器件的触发角来控制整流电路的开关状态,从而实现交流电转换成直流电的功能。
同时,可以通过添加示波器测量电路中不同节点的电压和电流,并根据实际情况进行参数调整,以获得理想的电路效果。
在进行仿真过程中,我们还可以通过Multisim的仿真分析工具,对电路进行性能评估。
例如,可以使用电流表、电压表等工具实时监测电路的工作状态,同时进行电流和电压波形分析,以评估电路的稳定性和效率。
综上所述,单相全波可控整流电路的仿真设计包括电源模拟、添加双向可控硅器件、连接滤波电路以及进行仿真分析等步骤。
通过Multisim等仿真工具,我们可以直观地观察电路的工作状态,并对其进行优化和改进。
希望本文对你的学习和实践有所帮助。
由于传统能源的枯竭,各国对环境保护的重视以及现存电力系统的种种弊端,分布式发电将在未来的供电系统中发挥越来越重要的作用。
近年来以燃料电池发电技术,微型燃气轮机发电技术,光伏电池发电技术和风力发电技术为代表的新型分布式发电技术发展迅速。
但是分布式发电技术发出的电都不是与电网供电系统相同的交流电,无法与大电网联网或者直接供给普通负载使用,都需要变频装置将其变换成负载可以使用的交流电或者与大电网电压、频率相匹配的工频交流电。
因此,针对特定的分布式发电技术研究与其相配套的变频电源就很有必要。
本文针对内燃机拖动永磁发电机的中小功率分布式发电系统,设计一套变频电源,将发电机发出的中频交流电变换为相电压220V,频率50Hz的工频交流电。
在论述和分析了变频电源及其控制技术发展的概况和趋势的基础上,结合本课题任务的实际情况,设计了一套中小功率的逆变电源。
系统中PWM控制信号采用专用集成芯片SA4828生成,减轻了控制器的工作量也提高了系统的可靠性。
控制器选用集成了A/D转换器的单片机,使得系统的硬科复杂性降低,提高了可靠性。
Since the exhaustion of the traditional energy, the high opinion of the environment anda variety of defeats of the current power system, distributed generation would bring into play more and more significant action. Recent years, some new distributed generation technology,such as fuel cell, micro gas turbine, solar cell and wind power generation, developed rapidly.But electricity generated by them can not merge into the electrified。
目录一、单相交流调压电路(电阻负载) 11 原理图 12 建立仿真模型 13 仿真波形 34 小结 5二、单相交流调压电路(阻感负载) 61 原理图 62建立仿真模型 63 仿真波形 74 小结 8一、单相交流调压电路(电阻负载)1 原理图图1-1为纯电阻负载的单相调压电路。
图中晶闸管VT1和VT2反并联连接与负载电阻R串联接到交流电源U2上。
当电源电压正半周开始时出发VT1,负半周开始时触发VT2,形同一个无触点开关,允许频繁操作,因为无电弧,寿命特长。
在交流电源的正半周时,触发导通VT1,导通角为=;在负半周+时,触发导通VT2,导通角为=。
负载端电压为下图所示斜线波形。
这时负载电压U为正弦波的一部分,宽度为(),若正负半周以同样的移相角触发VT1和VT2,则负载电压U的宽度会发生变化,那么负载电压有效值也将随角而改变,从而实现交流调压。
图1 -1单相交流调压电路的电路(电阻负载)原理图2 建立仿真模型根据原理图用MATLAB软件画出正确的仿真电路图,如图1-2。
图1-2 单相交流调压电路电路(电阻负载)的MATLAB仿真模型仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0.0结束时间2.0如图1-3。
图1-3 仿真时间参数电源参数,如图1-4。
图1-4 交流电源参数触发脉冲参数设置,如图1-5、1-6。
图1-5 触发脉冲参数图1-6 触发脉冲参数3 仿真波形设置触发脉冲α分别为0°、60°、120°、180°。
与其产生的相应波形分别如图1-6、图1-7、图1-8、图1-9。
在波形图中第一列波为触发脉冲波形,第二列波为晶闸管电压波形,第三列波为负载电流波形,第四列波为负载电压波形。
图1-6 α=0°单相交流调压电路(电阻负载)仿真结果图1-7 α=60°单相交流调压电路(电阻负载)仿真结果图1-8 α=120°单相交流调压电路(电阻负载)仿真结果图1-9 α=180°单相交流调压电路(电阻负载)仿真结果4 小结在电源电压正半波(0~π区间),晶闸管Ug1承受正向电压,在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流Id,负载上有输出电压和电流。
目录一、单相交流调压电路(电阻性负载)的建模与仿真 (2)1. 单相交流调压电路(电阻性负载)的结构与工作原理如图1-1 (2)2. 单相交流调压电路(电阻性负载)的建模如图1-2所示 (2)3. 单相交流调压电路(电阻性负载)的仿真 (2)4. 小结 (3)二、单相交流调压电路(阻感性负载)的建模与仿真 (4)1. 单相交流调压电路(阻感性负载)的结构与工作原理如图1-1 (4)2. 单相交流调压电路(阻感性负载)的建模如图1-2所示 (4)3. 单相交流调压电路(阻感性负载)的仿真(L=0.005H,R=2Ω,ω=50Hz) (4)4. 小结 (6)三、单相交流调功电路的建模与仿真 (6)1. 单相交流调功电路的结构与工作原理如图1-1 (6)2. 单相交流调功电路的建模如图1-2所示 (6)3. 单相交流调功电路的仿真 (7)4. 小结 (8)四、降压斩波电路(Buck电路)的建模与仿真 (8)1.降压斩波电路(Buck电路)的结构与工作原理如图1-1 (8)2.降压斩波电路(Buck电路)的建模如图1-2所示 (8)3.降压斩波电路(Buck电路)的仿真 (9)4.小结 (10)五、升压斩波电路(Boost电路)的建模与仿真 (10)1.升压斩波电路(Boost电路)的结构与工作原理如图1-1 (10)2.升压斩波电路(Boost电路)的建模如图1-2所示 (10)3.升压斩波电路(Boost电路)的仿真 (11)4.小结 (12)六、升降压斩波电路(buck-boost)的建模与仿真 (12)1.升降压斩波电路(buck-boost)的结构与工作原理如图1-1 (12)2.升降压斩波电路(buck-boost)的建模如图1-2所示 (12)3.升降压斩波电路(buck-boost)的仿真 (13)4.小结 (14)七、 Cuk斩波电路的建模与仿真 (14)1. Cuk斩波电路的结构与工作原理如图1-1 (14)2. Cuk斩波电路的建模如图1-2所示 (14)3. Cuk斩波电路的仿真 (15)4.小结 (16)八、总结 (16)一、单相交流调压电路(电阻性负载)的建模与仿真1.单相交流调压电路(电阻性负载)的结构与工作原理如图1-1U2VT1VT2Ug1Ug2R Uo 图1-12.单相交流调压电路(电阻性负载)的建模如图1-2所示3.单相交流调压电路(电阻性负载)的仿真(1)当α=0°时(2)当α=30°时(3)当α=90°时(4)当α=180°时4.小结① α的移相范围为0~π。
100W单相交-直-交变频电路要点引言100W单相交-直-交变频电路是一种常见的电力电子设备,用于将交流电源转换为直流电源,并通过变频器将直流电转换为可调频交流电。
本文将介绍100W单相交-直-交变频电路的基本原理和要点。
主要构成100W单相交-直-交变频电路主要由三个部分组成:整流器、滤波器和逆变器。
整流器整流器的作用是将交流输入电压变成直流输出电压,常用的整流器有单相桥式整流器和三相桥式整流器。
单相桥式整流器有4个二极管和一个电容组成,三相桥式整流器则是在单相桥式整流器的基础上增加3个并联的二极管和3个电容。
滤波器滤波器的作用是在整流器直流输出电压上起到平滑作用,通常采用电容滤波器和电感滤波器相结合的方式。
逆变器逆变器的作用是将滤波后的直流电压转换成可调频的交流电源,常用的逆变器有单相桥式逆变器和三相桥式逆变器。
单相桥式逆变器有4个开关管和一个三角形电感组成,三相桥式逆变器则是在单相桥式逆变器的基础上增加3个并联的开关管和3个三角形电感。
实现方法100W单相交-直-交变频电路可以采用基于单片机的PWM调制方式、基于模拟电路的多电平逆变法、基于功率开关器件的电压源逆变法等几种实现方法。
基于单片机的PWM调制方式基于单片机的PWM调制方式是一种较为成熟的控制方式,通过单片机的PWM控制,将电源电压变成与PWM脉宽成正比的电压,从而达到可调输出电压的效果。
基于模拟电路的多电平逆变法基于模拟电路的多电平逆变法是一种利用多电平逆变器的特性来实现输出电压可调的方法,通过对逆变器控制电路进行优化,降低变压器分接线的数量,减少电感、电容等元器件,从而实现高效低成本的电源设计。
基于功率开关器件的电压源逆变法基于功率开关器件的电压源逆变法是一种采用了IGBT、MOSFET等功率开关器件的控制方式,通过电压源逆变器进行控制,将直流输入电流通过变换器器件,进行可控输出的电压变换。
通过本文对100W单相交-直-交变频电路的构成、实现方法等方面的介绍,可以发现在电力电子领域中,交-直-交变频电路作为一种常用电源,其构成要点和实现方法具有一定的复杂性,需要根据实际情况设计和改进。
辽宁工业大学电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真院(系):电气工程学院专业班级:自动化111班学号: *********学生姓名:指导教师:(签字)起止时间:2013.12.30-2014.1.10课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号 1103020 学生姓名 专业班级课程设计(论文)题目单相桥式整流/逆变电路的设计及仿真课程设计(论文)任务 课题完成的功能、设计任务及要求、技术参数 实现功能整流电路是将交流电能变成直流电供给直流用电设备,在生产实际中,用于电阻加热炉、电解、电镀中,这类负载属于电阻类负载。
逆变电路是把直流电变成交流电。
逆变电路应用广泛,在各种直流电源中广泛使用。
设计任务及要求 1、确定系统设计方案,各器件的选型 2、设计主电路、控制电路、保护电路; 3、各参数的计算;4、建立仿真模型,验证设计结果。
5、撰写、打印设计说明书一份;设计说明书应在4000字以上。
技术参数整流电路:单相电网220V ,输出电压0~100V ,电阻性负载,,R=20欧姆 逆变电路:单相全桥无源逆变,输出功率200W ,输出电压100Hz 方波 进度计划1、 布置任务,查阅资料,确定系统方案(1天)2、 系统功能分析及系统方案确定(2天)3、 主电路、控制电路等设计(1天)4、 各参数计算(1天)5、 仿真分析与研究(3天)6、 撰写、打印设计说明书(1天)答辩(1天)指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字: 年 月 日摘要整流电路是把交流电转换为直流电的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
逆变电路是把直流电变成交流电的电路,与整流电路相对应。
无源逆变电路则是将交流侧直接和负载连接的电路。
此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。
实验四 单相交直交变频电路的仿真
一、实验目的
(1)了解电压型单相整流逆变电路的工作原理。
(2)了解仿真模型使用的模块及其参数的设置原理。
二、实验原理
1.单相整流—逆变电路的仿真模型
单相整流—逆变电路的仿真模型如图4-1所示,由图可知,单
相50Hz交流电源经单相不控整流环节,进行LC滤波后即为中间直流
环节。再进入PWM逆变,又一次LC滤波后,连接到需要不同于50Hz
的交流电单相负载。万用表检测不控整流桥与逆变桥的电力电子元件
的电压与电流,示波器还检测输出负载电压波形。
图4.1
2仿真模型使用模块提取的路径及其单数设置
离散PWM发生器模块Discrete PWM Generator提取路径是:
Simulink\SimPowerSystems\Power Electronics\Discrete
Control
Blocks\Discrete PWM Generator
信号终结模块Terminator提取路径是:
Simulink\Commonly Used Blocks\Terminator
交流电源模块:“Phase”初相角0°,“Frequency”频率50Hz,
“Sample time”采样时间0(默认值0表示该交流电源为连续
源),“Peak amplitude”当变频输出频率为100Hz时置为600V×2,
当变频输出频率为50Hz时置为50V×2。
滤波电感L1:选Series RLC Branch模块,将参数
“Inductance(H)”置为80e-3。滤波电感L2;选Series RLC Branch
模块,将参数“Inductance(H)”置为30e-3。滤波电容C1:选Series
RLC Branch模块,将参数“Capacitance(F)”置为1800e-6。滤波电
容C2:选Series RLC Branch 278模块,将参数“Capacitance(F)”
置为320e-6。
不控整流桥参数设置如图4-2所示,逆变参数设置如图4-3所示,离
散PWM发生器参数如图4-4所示,RL负载参数设置如图4-5所示。
图4-2
图4-3
图4.4
三、实验仿真
设置仿真开始时间为0,停止时间设置为0.5s,采用Ode23tb
算法,其他参数采用系统默认设置。对图4-1模型仿真.得到仿真结
果,其波形为图4-7与图4-8。
当将交流电源电压与输出频率设置为100Hz是的输出负载电压
用一个示波器检测输出时其仿真波形如图4-8所示。由图可见,输入
交流电源电压始终是50Hz的。当PWM输出频率设置改变时,输出负
载电压的频率就随之而变。
图4.5
四、 实验的结果及思考的问题
对实验电路的要求?
答 1.和整流电路一样,同一组桥内的两个晶闸管靠双触发脉冲保证
同时导通。
2两组桥之间则是靠各自的触发脉冲有足够的宽度,以保证同时
导通。