初二数学三角形练习题
- 格式:docx
- 大小:18.84 KB
- 文档页数:2
初二下册直角三角形练习题
直角三角形是初中数学中重要的内容之一,通过练习直角三角形的
计算题可以巩固对三角函数的理解和运用。
下面将为大家提供一些初
二下册直角三角形练习题,希望能够帮助大家提高解题能力。
题目一:已知一个直角三角形的斜边长为10cm,一个锐角的对边
长为6cm,求这个直角三角形的另一个锐角的对边长和邻边长。
题目二:已知一个直角三角形的一条直角边长为8cm,另一条直角
边长为6cm,求这个直角三角形的斜边长和另一个锐角的对边长。
题目三:已知一个直角三角形的斜边长为15cm,一个锐角的邻边
长为9cm,求这个直角三角形的另一个锐角的邻边长和对边长。
题目四:在一个直角三角形中,一个锐角的对边长是斜边长的一半,求这个直角三角形的两个锐角的弧度。
题目五:已知一个直角三角形的斜边长为12cm,一个锐角的对边
长为4cm,求这个直角三角形的另一个锐角的对边长和邻边长。
题目六:已知一个直角三角形的一条直角边长为7cm,另一条直角
边长为5cm,求这个直角三角形的斜边长和另一个锐角的对边长。
题目七:已知一个直角三角形的斜边长为17cm,一个锐角的邻边
长为8cm,求这个直角三角形的另一个锐角的邻边长和对边长。
以上是一些直角三角形的练习题,希望能够帮助大家提高解题能力。
在解答这些题目时,可以运用三角函数的定义和性质进行求解,例如
正弦定理、余弦定理等。
通过不断的练习和思考,相信大家能够掌握直角三角形的计算方法,提高数学解题能力。
祝愿大家学业进步!。
三角形、★★★主要知识点:1.三角形的分类三角形按边分类可分为_______与______(等边三角形是等腰三角形的特殊情况);按角分类可分为______、_______与_______,2.一般三角形的性质(1)角与角的关系:三个内角的与等于___°;三个外角的与等于___;一个外角等于与它不相邻的两个内角之与,并且大于任何—个与它不相邻的内角,____________。
(2)边与边的关系:三角形中任两边之与大于第三边,任两边之差小于第三边。
(3)边与角的大小对应关系:在一个三角形中,__边对等角;等角对等____。
(4)三角形的主要线段的性质(见下表):3. 几种特殊三角形的特殊性质〔1〕等腰三角形的特殊性质:①等腰三角形的两个_____角相等;②等腰三角形_______、_____中线与______是同一条线段,三线合一;这条线段所在的直线是等腰三角形的对称轴。
〔2〕等边三角形的特殊性质:①等边三角形每个内角都等于___°。
②三线合一H PGFED CB A 〔3〕直角三角形的特殊性质:①直角三角形的两个锐角互为___角; ②直角三角形斜边上的中线等于斜边的一半。
③s=21ab(a 、b 分别为两直角边〕或S △ = 21a h 〔 h 是a 边上的高 〕4. 三角形的面积一般三角形:S △ = 21a h 〔 h 是a 边上的高 〕 例1: (根底题) 如图, AC //DF , GH 是截线. ∠CBF =40°, ∠BHF =80°.求∠HBF , ∠BFP , ∠BED .∠BEF 的度数例2: (根底题) ①在△ABC 中,∠B = 40°,∠C = 80°,那么∠A = 〔度〕②如图,△ABC 中,∠A = 60°,∠C = 50°,那么外角∠CBD = 。
③,在△ABC 中, ∠A + ∠B = ∠C ,那么△ABC 的形状为〔 〕A 、直角三角形B 、钝角三角形C 、锐角三角形D 、以上都不对 ④以下长度的三条线段能组成三角形的是〔 〕A.3cm ,4cm ,8cmB.5cm ,6cm ,11cmC.5cm ,6cm ,10cmD.3cm ,8cm ,12cm⑤如果一个三角形的三边长分别为x ,2,3,那么x 的取值范围是 。
八年级数学第十一章《三角形》测试卷姓名一、选择题(每题 3 分,共 30分)1、以下三条线段,能组成三角形的是()A 、3,3, 3B、3, 3,6C、3, 2, 5D、3, 2,62、若是一个三角形的三条高的交点正是三角形的一个极点,那么这个三角形是()A 、锐角三角形B 、钝角三角形C、直角三角形D、都有可能A3、以以以下列图, AD 是△ ABC 的高,延伸 BC 至 E,使 CE=BC ,△ ABC 的面积为 S1,△ ACE 的面积为 S2,那么()B D C EA 、S1>S2B、S1=S2C、 S1< S2 D 、不能够确定(第3题)4、以以下列图形中有牢固性的是()A 、正方形B 、长方形C、直角三角形D、平行四边形B5、如图,正方形网格中,每个小方格都是边长为 1 的正方形, A、 B 两点在小方格AC 也在小方格的极点上,且以A、 B、C 为极点的三角的极点上,地址如图形所示,形面积为 1 个平方单位,则点 C 的个数为()A、3个B、4 个C、5 个D、6 个第5题图6、已知△ ABC 中,∠ A、∠ B、∠ C 三个角的比比方下,其中能说明△ABC 是直角三角形的是()A 、2:3: 4B、1:2:3C、 4:3: 5D、1:2:2AD7、点 P 是△ ABC 内一点,连结 BP 并延伸交 AC 于 D,连结 PC,P2则图中∠ 1、∠ 2、∠ A 的大小关系是()B1C 第7题A 、∠ A>∠ 2>∠ 1B 、∠ A>∠ 2>∠ 1C、∠ 2>∠ 1>∠ AD、∠ 1>∠ 2>∠ A8、在△ ABC 中,∠ A= 80°, BD 、CE 分别均分∠ ABC、∠ ACB,BD、 CE 订交于点 O,则∠ BOC 等于()A 、140°B、100 °C、 50°D、 130 °A C9、以下正多边形的地砖中,不能够铺满地面的正多边形是()A 、正三角形B 、正四边形C、正五边形D、正六边形B D10、在△ ABC 中,∠ABC= 90°,∠ A= 50°, BD ∥AC,则∠ CBD 等于()第10题A 、 40°B 、 50° C、45° D、 60°二、填空题(每题 3 分,共 30 分)11、若∠ A:∠ B:∠ C=1: 3: 5,这个三角形为三角形.12、 P 为△ ABC 中 BC 边的延伸线上一点,∠A=50°,∠ B=70°,则∠ ACP= _____。
初二数学上册三角形练习题含答案一、选择题1. 在锐角三角形ABC中,已知角A的度数为45°,边AC的长度为3,边AB的长度为4,则边BC的长度为A. 3B. 4C. 5D. 62. 设一舞蹈场馆的跳跃板为一个等腰梯形,已知两腰边长分别为5米和8米,底边长为6米,则该跳跃板的面积为A. 15平方米B. 24平方米C. 30平方米D. 48平方米3. 已知一个锐角三角形的两个角的度数分别为30°和60°,则第三个角的度数为A. 30°B. 60°C. 90°D. 120°4. 在直角三角形ABC中,已知边AB的长度为5,边BC的长度为12,则角B的度数为A. 30°B. 45°C. 60°D. 90°5. 将一个边长为10的正方形对角线上的一点与其两个端点相连,形成一个直角三角形,该直角三角形的斜边长为A. 10B. 10√2C. 14D. 14√2二、填空题1. 若一三角形的两边长分别为5cm和8cm,且这两边夹角的度数为60°,则该三角形的面积为_________。
2. 在锐角三角形ABC中,已知边AC的长度为4cm,边BC的长度为6cm,角A的度数为45°,则边AB的长度为_________。
3. 若一等腰直角三角形的斜边长为10cm,则其腰边长为_________。
4. 若一角度为30°的角的两边的长度比为1:√3,则其中一边的长度为_________。
5. 设一锐角三角形的两腰边分别为3cm和4cm,夹角的度数为60°,则该三角形的面积为_________。
三、解答题1. 已知锐角三角形ABC中,边AB的长度为6cm,边AC的长度为8cm。
请计算角B的度数。
解答:根据余弦定理可得:cosB = (AC^2 + BC^2 - AB^2) / (2 * AC * BC)= (8^2 + BC^2 - 6^2) / (2 * 8 * BC)= (64 + BC^2 - 36) / (16 * BC)= (BC^2 + 28) / (16 * BC)又知0 < B < 90°,所以cosB > 0,故BC^2 + 28 > 0。
初二数学三角形专项训练试题及解析一.选择题1. 下列图形中,△ABC的高画法错误的是( )2. 六边形外角和等于( )A. 180°B.360°C. 420°D. 480°3. 若三角形的两边长分别为6.8,则第三边长可以是( )A. 1B. 2C.10D. 154. 如图, AB⊥BD, ∠A=52° , 则∠ACD= ( )A. 128°B. 132°C. 138°D. 142°5. 已知某个正多边形的一个外角为40°,这个正多边形内角和等于( )A. 1080°B. 1260°C. 1440°D. 1620°6.三角形的一个外角是锐角,则此三角形的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7. 如图, 在△ABC中, ∠ACB=80° , 点D在AB上,将△ABC沿CD折叠, 点B落在边AC的点E处. 若∠ ADE=30°,则∠A的度数为( )A. 25°B. 30°C. 35°D. 40°8.等腰三角形的一个内角是100°,它的另外两个角的度数是( )A. 50° 和50°B. 40° 和40°C. 35° 和35°D. 60° 和20°9. 如图, ∠A+∠B+∠C+∠D+∠E+∠F的值是( )A. 360°B. 480°C. 540°D. 720°参考答案一. 选择题1.解:A、图中所画是△ABC的边BC上的高,画法正确,不符合题意:B、图中所画不是△ABC的高,画法错误,符合题意;C、图中所画是△ABC的边AC上的高,画法正确,不符合题意;D、图中所画是△ABC的边AB上的高,画法正确,不符合题意;故选: B.2.解: 六边形外角和等于360°.故选: B.3.解:设第三边的长为x,根据三角形的三边关系,得8-6<x<8+6.即2<x<14.只有10适合。
初二数学练习题三角形在初二数学中,三角形是一个重要的几何概念。
它是由三条边和三个角组成的多边形。
在本文中,我们将介绍一些初二数学练习题,以帮助您更好地理解和掌握三角形的基本概念和性质。
题目一:已知三角形ABC中,∠A=60°,BC=5,AC=8,求AB的长度。
解答:根据三角形的内角和性质,三角形ABC的三个内角和为180°。
已知∠A=60°,所以∠B+∠C=180°-60°=120°。
又已知BC=5,AC=8,我们可以利用余弦定理解题。
根据余弦定理,我们有cosA=(b²+c²-a²)/2bc,代入已知条件,得到cos60°=(5²+8²-AB²)/(2×5×8)。
化简得到1/2=(89-AB²)/80,解方程得AB=√(89-40)=√49=7。
所以AB的长度为7。
题目二:已知三角形ABC是等腰三角形,AB=AC=6,BC=8,求三角形的面积。
解答:根据等腰三角形的性质,等腰三角形的两个底角相等,即∠B=∠C。
又已知AB=AC=6,BC=8,我们可以利用三角形面积公式解题。
根据三角形面积公式,三角形的面积等于底乘以高除以2。
由于三角形ABC是等腰三角形,所以高线AB是边BC的中线,即高线AB=4。
所以三角形的面积为(8×4)/2=16。
题目三:已知三角形ABC是直角三角形,∠B=90°,AB=3,BC=4,求三角形的面积。
解答:根据直角三角形的性质,直角三角形的两个锐角的和为90°。
已知∠B=90°,所以∠A+∠C=90°。
又已知AB=3,BC=4,在此情况下,我们可以利用三角形面积公式解题。
根据三角形面积公式,三角形的面积等于底乘以高除以2。
由于直角三角形ABC的直角边为AB,所以高线BC=3。
初二数学三角形巩固练习题一、填空题1. 在直角三角形ABC中,若AB = 5 cm,BC = 12 cm,则AC的长度为________ cm。
2. 在等腰三角形DEF中,DE = DF = 7 cm,且∠DEF = 110°,则∠DFE的度数为________°。
3. 在锐角三角形PQR中,∠P = 30°,PR = 8 cm,PQ = 2PR,则QR的长度为________ cm。
4. 请根据相似三角形的性质求出下列比值:a) 直角三角形ABC和直角三角形DEF的斜边比值为______;b) 锐角三角形MNP和锐角三角形XYZ的周长比值为______。
二、选择题1. 在直角三角形ABC中,∠C = 90°,则以下哪个选项是正确的?a) ∠A + ∠B = 90°b) ∠A + ∠B = 180°c) ∠A + ∠B + ∠C = 180°d) ∠A + ∠B + ∠C = 360°2. 在等腰三角形DEF中,DE = DF = 6 cm,且∠DEF = 80°,则∠DFE的度数为________°。
a) 80°b) 100°c) 130°d) 160°3. 在锐角三角形PQR中,∠Q = 30°,PR = 6 cm,PQ = 2PR,那么∠R的度数为________°。
a) 15°b) 30°c) 45°d) 60°4. 若两个角是共有顶点的两条射线,这两个角之间的夹角是________。
a) 钝角b) 直角c) 锐角d) 平角三、解答题1. 已知直角三角形ABC中,∠C = 90°,AB = 24 cm,BC = 7 cm。
求∠A的度数和AC的长度。
2. 在等腰直角三角形DEF中,∠E = ∠F = 45°,EF = 10 cm。
初二数学三角形试题答案及解析1.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】设所求多边形边数为n,则360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选B.【考点】多边形内角与外角2.到△ABC的三个顶点距离相等的点是△ABC的( ).A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三条边的垂直平分线的交点【答案】D.【解析】到三角形三个顶点的距离相等的点是三角形的三边垂直平分线的交点,故选D.【考点】线段垂直平分线的性质.3.求证:等腰三角形底边上的中点到两腰上的距离相等.(要求画图,写已知,求证和证明)【答案】证明见解析.【解析】根据题意画出图形,写出已知与求证,然后证明:连接AD,由AB=AC,D为BC中点,利用等腰三角形的“三线合一”性质得到AD为顶角的平分线,由DE与AB垂直,DF与AC垂直,根据角平分线上的点到角两边的距离相等即可得到DE=DF,得证.如图,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.证明:连接AD,∵AB=AC,D是BC中点,∴AD为∠BAC的平分线(三线合一的性质),又∵DE⊥AB,DF⊥AC,∴DE=DF(角平分线上的点到角的两边相等).【考点】等腰三角形的性质.4.如图,在△ABC和△DEF中,已知:AC=DF,,BC=EF,要使△ABC△DEF,还需要的条件可以是;(只填写一个条件)【答案】∠ACB=∠F. 答案不唯一【解析】本题要判定△ABC≌△DEF,有AC=DF,BC=EF,可以加∠ACB=∠F,就可以用SAS 判定△ABC≌△DEF.(或AB=DE。
答案不唯一)试题解析:由分析得:∠ACB=∠F.考点: 全等三角形的判定.5.如图,中是腰的垂直平分线,的度数是。
【答案】15°.【解析】已知∠A=50°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.试题解析:∵∠A=50°,AB=AC,∴∠ABC=∠ACB=(180°-∠A)=65°又∵DE垂直且平分AB,∴DB=AD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°.即∠DBC的度数是15°.考点: 1.线段垂直平分线的性质;2.等腰三角形的性质.6.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA【答案】D【解析】因为△ABC和△CDE都是等边三角形,所以 BC=AC,CE=CD,∠BCA=∠ECD=60°,所以∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,所以在△BCD和△ACE中,所以△BCD≌△ACE(SAS),故A成立.因为△BCD≌△ACE,所以∠DBC=∠CAE.因为∠BCA=∠ECD=60°,所以∠ACD=60°.在△BGC和△AFC中,所以△BGC≌△AFC,故B成立.因为△BCD≌△ACE,所以∠CDB=∠CEA,在△DCG和△ECF中,所以△DCG≌△ECF,故C成立.故选D.7.在Rt△ABC中,∠BAC=90°,AB=AC=1,以AC为腰作等腰直角三角形ACD ,则线段BD 的长为.【答案】2或.【解析】①以A为直角顶点,向外作等腰直角三角形DAC,图①∵∠DAC=90°,且AD=AC,∴BD=BA+AD=1+1=2;②以C为直角顶点,向外作等腰直角三角形ACD,图②连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°,又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴在中,∴【考点】等腰直角三角形8.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=()A.5B.4C.6D.10【答案】C.【解析】如图,∵图中的四边形为正方形,∴∠ABD=90°,AB=DB,∴∠ABC+∠DBE=90°,∵∠ABC+∠CAB=90°,∴∠CAB=∠DBE,∵在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴AC=BE,∵DE2+BE2=BD2,∴ED2+AC2=BD2,∵S1=AC2,S2=DE2,BD2=1,∴S1+S2=1,同理可得S2+S3=2,S3+S4=3,∴S1+2S2+2S3+S4=1+2+3=6.故选C.【考点】1.勾股定理;2.全等三角形的判定与性质;3.正方形的性质.9.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,则∠DFE= .【答案】390.【解析】连接BD、AE,∵DA⊥AB,FC⊥AB,∴∠DAB=∠BCF=90°,又∵DA=BC,FC=AB,∴△DAB≌△BCF(SAS),∴BD=BF,∴∠BDF=∠BFD,又∵AD∥CF,∴∠ADF=∠CFD,∴∠ABF=∠DFB+∠ADF=∠BFC+2∠CFD,同理可得,∠BAF=∠AFC+2∠CFE,又∵∠AFB=51°,∴∠ABF+∠BAF=129°,∴∠BFC+2∠CFD+∠AFC+2∠CFE=51°+2∠DFE=129°,∴∠DFE=39°.【考点】①全等三角形的性质与判定;②平行线的性质;③三角形内角和定理.10.如图,等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=60°,则图中有几对全等的等腰三角形()A.5对B.6对C.7对D.8对【答案】C【解析】由题, 等边△ABC中,AD是BC边上的高,所以∠B=∠C=60°,BD="CD,"∠BAD=∠CAD=30°,又因为∠BDE=∠CDF=60°,所以∠EDF=60°,△BDE和△CDF为等边三角形,所以BE=CF=BD=CD=DE=DF=BC=AB=AC,因为∠EDF=60°AE=AF,所以△DEF和△AEF为等边三角形,所以∠EDA=∠FDA=30°,因为∠BAD=∠CAD=30°,所以△ADE和△ADF为等腰三角形,易知△BED≌△DEF≌△CDF≌△AEF, △AED≌△AFD,前者有6对,共7对.有两个角是60°的三角形是等边三角形,有一个角是的等腰三角形是等边三角形,由题, 等边△ABC中,AD是BC边上的高,所以∠B=∠C=60°,BD="CD," ∠BAD=∠CAD=30°,又因为∠BDE=∠CDF=60°,所以∠EDF=60°,△BDE和△CDF为等边三角形,所以BE=CF=BD=CD=DE=DF=BC=AB=AC,因为∠EDF=60°AE=AF,所以△DEF和△AEF为等边三角形,所以∠EDA=∠FDA=30°,因为∠BAD=∠CAD=30°,所以△ADE和△ADF为等腰三角形,易知△BED≌△DEF≌△CDF≌△AEF, △AED≌△AFD,前者有6对,共7对.【考点】等腰三角形和等边三角形.11.如图,Rt△ABC中,AC=BC=4,点D、E分别是AB、AC的中点,在CD上找一点P,使PA+PE最小,则这个最小值是_______________.【答案】【解析】要求PA+PE的最小值,PA,PE不能直接求,可考虑通过作辅助线转化PA,PE的值,从而找出其最小值求解.如图,连接BE,则BE就是PA+PE的最小值,∵Rt△ABC中,AC=BC=4,点D,E分别是AB,AC的中点,∴CE=2cm,∴.【考点】1.轴对称;2.勾股定理.12.如图,大正方形面积13,小正方形面积为1,直角三角形的两直角边为a,b,求a+b=。
专题训练:全等三角形专题一全等三角形的性质及应用1.如图,△ABC ≌△EBD ,问∠1与∠2相等吗?若相等请证明,若不相等说出为什么?解析:由三角形全等,得到对应角相等,然后再沟通∠1和∠2之间的关系.2.如图,已知△EAB ≌△DCE ,AB 、EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数.专题二全等三角形的探究题3.全等三角形又叫合同三角形, 平面内的合同三角形分为真正合同三角形与镜面合同三角形.假设△ABC 和△A 1B 1C 1是全等(合同)三角形,且点A 与A 1对应,点B 与B 1对应,点C 与点C 1对应,当沿周界A →B →C →A 及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形,如图1;若运动方向相反,则称它们是镜面合同三角形,如图2.C 1B 1A 1C B AC 1B 1A 1CB A (1)(2)BA E 21FC D O两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中一个翻折180°,下列各组合同三角形中,是镜面合同三角形的是().DC B A 4.如图所示,A ,D ,E 三点在同一直线上,且△BAD ≌△ACE .(1)试说明BD =DE +CE ;(2)△ABD 满足什么条件时,BD ∥CE ?5.如图所示,△ABC 绕着点B 旋转(顺时针)90°到△DBE ,且∠ABC =90°.(1)△ABC 和△DBE 是否全等?指出对应边和对应角;(2)直线AC 、直线DE 有怎样的位置关系?AB C DE【知识要点】1.能够完全重合的两个图形叫全等形,能够完全重合的两个三角形叫全等三角形.2.全等三角形的对应边相等,对应角相等.【温馨提示】1.利用全等三角形的性质解决问题时,一定要找准对应元素.2.全等三角形的对应边相等、对应角相等、周长相等、面积相等,但周长、面积相等的两个三角形不一定是全等三角形.【方法技巧】1.全等三角形是指能够完全重合的两个三角形,准确的找出两个全等三角形的对应元素是解决全等三角形问题的关键.在表示两个三角形全等时,对应的顶点要写在对应的位置上.2.全等三角形的对应边相等,对应角相等,利用这两个性质可以说明线段或角相等,以及线段的平行或垂直等.3.一个图形经过平移、翻折、旋转后,位置发生了变化,但形状和大小都没有改变,即经过平移、翻折、旋转前后的图形全等.像这样只改变图形的位置而不改变图形的形状和大小的变换叫全等变换,常见的有平移变换,翻折变换,旋转变换.参考答案:1.解:∠1和∠2∵△ABC≌△EBD,∴∠A=∠E(全等三角形对应角相等),又∵∠A+∠AOF+∠1=180°,∠E+∠EOB+∠E=180°(三角形内角和定理),∠AOF=∠BOE(对顶角相等),∴∠1=∠2(等式的性质).2.解:因为AB、EC是对应边,所以∠AEB=∠CDE=100°,又因为∠C=35°,所以∠CED=180°-35°-100°=45°,又因为∠DEB=10°,所以∠BEC=45°-10°=35°,所以∠AEC=∠AEB-∠BEC=100°-35°=65°.3.B提示:A与C中的两个三角形可以通过旋转,使它们重合.D中的两个三角形可以用平移、旋转相结合的方式使之重合.而B中的两个三角形可以用翻折的方法使之重合,故B 中的三角形是镜面合同三角形.4.解:(1)因为△BAD≌△ACE,所以BD=AE,AD=CE,又因为AE=AD+DE=CE+DE,所以BD=DE+CE.(2)∠ADB=90°,因为△BAD≌△ACE,所以∠ADB=∠CEB,若BD ∥CE,则∠CED=∠BDE,所以∠ADB=∠BDE,又因为∠ADB+∠BDE=180°,所以∠ADB=90°.5.解:(1)由题知可得:△ABC≌△DBE,AC和DE,AB和DB,BC和BE是对应边;∠A和∠D,∠ACB和∠DEB,∠ABC和∠DBE是对应角;(2)延长AC交DE于F.∵△ABC≌△DBE∴∠A=∠D,又∵∠ACB=∠DCF(对顶角相等),∠A+∠ACB=90°,∴∠D+∠DCF=90°,即∠AFD =90°.∴AC与DE是垂直的位置关系.。
初二数学第一讲全等三角形1、如图1,ΔABD≌ΔCDB,且AB、CD是对应边;下面四个结论中不正确的是:A、ΔABD和ΔCDB的面积相等B、ΔABD和ΔCDB的周长相等C、∠A+∠ABD =∠C+∠CBDD、AD//BC,且AD = BC2.下列命题正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相同的两个三角形C.两个周长相等的三角形是全等三角形D.全等三角形的周长、面积分别相等3.如图,△ACE≌△DBF,若∠E =∠F,AD = 8,BC = 2,则AB等于( ) A.6B.5C.3D.不能确定4.如图,ΔABC≌ΔADE,∠B = 70º,∠C = 26º,∠DAC = 30º,则∠EAC = ( ) A.27ºB.54ºC.30ºD.55º5.如图2,已知ΔABE≌ΔACD、∠ADE =∠AED,∠B =∠C,指出其他对应边和对应角分析:对应边和对应角只能从两个三角形中找,所以需将ΔABE和ΔACD从复杂的图形中分离出来6.已知:如图3,ΔABC≌ΔADE,试找出对应边、对应角分析:连结AO,此图中,将ΔABC沿AO翻折180º即可得到ΔADE,对应元素易找.说明:利用“运动法”来找翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素7.如图4,ΔADE≌ΔCBF,AD = BC;求证:AE//CF分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等说明:解此题的关键是找准对应角,可以用平移法.8.如图5,已知ΔACF≌ΔDBE,∠E =∠F,AD = 9cm,BC = 5cm;求AB的长.分析:AB不是全等三角形的对应边,但它通过对应边转化为AB = CD,而使AB+CD = AD−BC,可利用已知的AD与BC求得.说明:解决本题的关键是利用三角形全等的性质,得到对应边相等.。
1/2 练习题(一)
几何题:1、已知一个三角形的两边长分别为2cm 和13cm ,若该三角形的周长为奇数,则第三边长为多少?
2、如图,线段AB,CD 相交于点O ,能否确定AB+CD 与AD+BC 的大小关系,请说明理由
3、如图,在△ABC 中,AB=2.5cm,BC=4cm ,△ABC 的高AD 与CE 的比是多少?
4、如图,AD 是△ABC 的角平分线,D E ∥AC,DE 交AB 于E ,,D F ∥AB,DF 交AC 于F ,图中DA 是不是∠EDF 的平分线?说明理由。
5、如图已知,△ABC 中,∠B=40°,∠C=62°,AD 是BC 边上的高,AE 是∠BAC 的平分线。
求:∠DAE 的度数。
6、如图,△ABC 中,高AD 与CE 的长分别为2㎝,4㎝ 求AB 与BC 的比是多少?
7、如图,△ABC 中,BD 是∠ABC 的角平分线,DE ∥BC,交AB 于E,∠A=60°,∠BDC=95°,求△
E D C
B A
2/2 BDE 各内角的度数.
D A
E
C B
8、如图,△ABC 中,∠A=36°,∠ABC=40°,BE 平分∠ABC ,∠E=18°,CE 平分 ∠ACD 吗?为什么?。