固体废物的热解教学内容

  • 格式:doc
  • 大小:106.50 KB
  • 文档页数:23

下载文档原格式

  / 23
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七学习单元第七学习单元(8课时):固体废物的热解

7.1 固体废物热解原理

7.2 固体废物热解方式

7.3 影响热解的主要因素

7.4 几种固体废物的热解工艺流程

本学习单元的重点和难点:

固体废物的热解原理

固体废物热解的主要影响因素

7.1固体废物热解原理

7.1.1导言

1、为什么要学习本单元?

让大家了解热解的概念、原理、过程及产物、热解工艺、热解方式、热解的主要因素、典型固体废物的热解工艺流程的相关知识。

2、本单元学习内容

热解的概念、原理、过程及产物、热解工艺、热解方式、热解的主要因素(反应温度、反应湿度、加热速率、反应时间、废物组成)、典型固体废物(如:塑料、橡胶、城市垃圾、污泥)热解的产物及工艺流程。

3、学习目标

掌握固体废物热解概念、原理、热解过程与工艺;了解固体废物的热解方式;掌握影响热解的主要因素;了解典型固体废物的热解技术;掌握焚烧与热解技术的异同点。

7.1.2 热解的概念

热解是一种古老的工业化生产技术,该技术最早应用于煤的干馏,所得到的焦炭产品主要作为冶炼钢铁的燃料。在工业上称之为干馏。

热解(pyrolysis):固体废物热解是利用有机物的热不稳定性,在无氧或缺氧条件下受热分解的过程。热解法与焚烧法相比是完全不同的二个过程,焚烧是放热的,热解是吸热的,焚烧的产物主要是二氧化碳和水,而热解的产物主要是可燃的低分子化合物:气态的有氢、甲烷、一氧化碳,液态的有甲醇,丙酮、醋酸,乙醛等有机物及焦油,溶剂油等,固态的主要是焦炭或碳黑。焚烧产生的热能量大的可用于发电,量小的只可供加热水或产生蒸汽,就近利用。而热解产物是燃料油及燃料气,便于贮藏及远距离输送。

7.1.3热解的原理

热解原理应用于工业生产已有很长的历史,木材和煤的干馏、重油裂解生产各种燃料油等早已为人们所知。但将热解原理应用到固体废物制造燃料,还是近几十年的事。国外利用热解法处理固体废物已达到工业规模,虽然还存在一些问题,但实践表明这

是一种有前途的固体废物处理方法。1927年美国矿业局进行过一些固体废物的热解研究。60年代,人们开始以城市垃圾为原料的资源化研究,证明热解过程产生的各种气体可作为锅炉燃料。1970年Sanner等进行实验证明,城市垃圾热解不需要加辅助燃料,能够满足热解过程中所需热量的要求。1973年Battle 研究使用垃圾热解过程所产生的能量超过固体废物含能量的80%获得成功。原联邦德国于1983年在巴伐利亚的Ebenhausen 建设了第一座废轮胎、废塑料、废电缆的热解厂,年处理能力为600-800吨废物。而后,又在巴伐利亚州的昆斯堡建立了处理城市垃圾的热解工厂,年处理能力为35000吨废物,成为原联邦德国热解新工艺的实验工厂。美国纽约市也建立了采用纯氧高温热解法日处理能力达3000吨的热解工厂。1981年我国农机科学研究院,利用低热解的农村废物进行了热解燃气装置的试验取得成功。小型农用气化炉已定点生产,为解决农用动力和生活能源,找到了方便可行的代用途径。

热解的原理:可以将固体废物中的有机物转化为以燃料气、燃料油和炭黑为主的贮存性能源;由于是缺氧分解,排气量少,有利于减轻对大气环境的二次污染;废物中的硫、重金属的有害成分大部分被固定在炭黑中;由于保持还原条件,Cr(III)不会转化为Cr(VI);NOx的产生量少。

7.1.4热解的过程及产物

热解的过程及产物:固体废物热解过程是一个复杂的化学反应过程。包括大分子的键断裂,异构化和小分子的聚合等反应,最后生成各种较小的分子。

高温热解:T>1000℃,供热方式几乎都是直接加热。

中温热解:T=600~700℃,主要用在比较单一的废物的热解,如废轮胎、废塑料热解油化。

低温热解:T< 600℃。农业、林业和农业产品加工后的废物用来生产低硫低灰的炭,生产出的炭视其原料和加工的深度不同,可作不同等级的活性炭和水煤气原料。

7.1.5 热解工艺

一个完整的热解工艺包括:进料系统、反应器、回收净化系统、控制系统几个部分。热解反应器包括:固定床、流化床、旋转炉、分段炉等

热解工艺:热解的基本工艺有两种:一种是将废塑料加热熔融,通过热解生成简单的碳氢化合物,然后在催化剂的作用下生成可燃油品。另一种将热解和催化热解分为两段。热解工艺主要由:前处理-熔融-热分解-油品回收-残渣处理-中和处理-排气处理等七道工序组成。

焙烧

是在低于熔点的温度下热处理废物的过程,目的是改变废物的化学性质和物理性质,以便于后续的资源利用。固体物料在高温不发生熔融的条件下进行的反应过程,可以有氧化、热解、还原、卤化等,通常用于无机化工和冶金工业。

7.2 固体废物热解方式

热分解过程由于供热方式、产品状态、热解炉结构等方面的不同,热解方式各异。

按供热方式可分成内部加热和外部加热。外部加热是从外部供给热解所需要的能量。内部加热是供给适量空气使可燃物部分燃烧,提供热解所需要的热能。外部供热效率低,不及内部加热好,故采用内部加热的方式较多。

按热分解与燃烧反应是否在同一设备中进行,热分解过程可分成单塔式和双塔式。

按热解过程是否生成炉渣可分成造渣型和非造渣型。

按热解产物的状态可分成气化方式、液化方式和碳化方式。

还有的按热解炉的结构将热解分成固定层式、移动层式或回转式,由于选择方式的不同,构成了诸多不同的热解流程及热解产物。

7.3 影响热解的主要因素

影响热解过程的主要因素有反应温度、反应湿度、加热速率、反应时间、废物组成等。

7.3.1 反应温度

温度是影响热解的关键因素,热解产物的产量和成分都可通过控制反应器的温度有效地改变。热解温度与气体产量成正比,而各种液体物质和固体残渣均随分解温度的增加而相应减少。再者,热解温度不仅影响气体产量,也影响气体质量。

7.3.2 反应湿度

热解过程中湿度会影响产气的量和成分、热解内部化学过程以及整个系统的能量平衡。热解过程中的水分主要来自两个方面,一是来自物料自身的含水量,二是来自外加的高温水蒸气。反应过程中生成的水分其作用主要接近于外加的高温蒸汽。