BIG DATA大数据
- 格式:doc
- 大小:364.00 KB
- 文档页数:7
大数据和小数据的应用区别一、概念解析大数据和小数据是数据领域中两个重要的概念。
大数据(Big Data)指的是规模庞大、复杂多变、难以用传统数据管理工具进行处理和分析的数据集合。
小数据(Small Data)则是相对于大数据而言,规模较小、结构较简单、易于处理和分析的数据集合。
二、数据规模1. 大数据应用:大数据通常以TB(1TB = 1024GB)或PB(1PB = 1024TB)为单位进行存储和处理。
大数据的规模庞大,可能包含数十亿或数百亿条记录,例如社交媒体数据、传感器数据、交易数据等。
2. 小数据应用:小数据通常以GB(1GB = 1024MB)或TB为单位进行存储和处理。
小数据的规模相对较小,可能只包含几百万或几千万条记录,例如企业内部的销售数据、客户数据等。
三、数据结构1. 大数据应用:大数据常常具有复杂的数据结构,包括结构化、半结构化和非结构化数据。
结构化数据是指具有明确定义的数据结构,如数据库中的表格数据;半结构化数据是指具有部分结构化特征的数据,如XML、JSON格式的数据;非结构化数据是指没有明确结构的数据,如文本、图像、音频和视频等。
2. 小数据应用:小数据通常具有简单的数据结构,主要为结构化数据。
这些数据往往以表格形式存储,具有明确的字段和数据类型,易于进行分析和处理。
四、数据处理技术1. 大数据应用:由于大数据的规模和复杂性,传统的数据处理工具和技术往往无法满足大数据的处理需求。
因此,大数据应用需要采用分布式计算、并行处理、集群存储等技术来处理和分析数据。
常用的大数据处理框架包括Hadoop、Spark等。
2. 小数据应用:小数据的规模较小,可以使用传统的数据处理工具和技术进行处理。
例如,使用关系型数据库管理系统(RDBMS)进行数据存储和查询,使用SQL语言进行数据分析和报表生成。
五、数据分析方法1. 大数据应用:大数据的特点是包含大量的细节信息和隐含的模式,可以通过大数据分析来发现隐藏在数据中的规律和趋势。
1FortiAnalyzer Big DataFortiAnalyzer Big Data delivers high-performance big data network analytics for large and complex networks. It is designed for large-scale data center and high-bandwidth deployments, offering the most advanced cyber threat protection byemploying hyperscale data ingestion and accelerated parallel data processing. Together with its new distributed software and hardware architecture and Fortinet’s high performance next generation firewalls, this powerful 4RU chassis offers blazing fast performance, enterprise-grade data resiliency, built-in horizontal scalability, and consolidated appliance management.DATA SHEETBig Data Analytics Scalable Performance Built-in High AvailabilityHigh Performance§Totally redesigned and optimized architecture, employing the newest Big Data Kafka/ Hadoop/ Spark technologies §Massive Parallel event streaming and data processing for high-speed ingestion, data storage, and search capabilities §The highest performing FortiAnalyzer appliance:300 000 logs/sec out-of-box, horizontally scalable to petabytes of storage Unified Appliance Management§Enterprise-grade Big Data Appliance with consolidated hardware and software monitoring through the Cluster Manager §Simple installation, updating, expansion, and data management §Built-in automation and customizable job templates Reliable and Scalable Deployment§Built-in enterprise high availability and data resiliency based on a newly optimized software and hardware architecture §Designed for rapid scalability with multiple Big Data appliances using high speed 40 Gb/s built-in switch modules §Specifically designed to accelerate the visibility and expansion of the Fortinet Security FabricBig Data Security Analytics§Monitor and analyze your entire network from end-to-end at an accelerated rate, maximizing the visibility of your entire attack surface, network traffic, applications, users, and end-point hosts §Interactive dashboards and informative reports using real-time tracking of key security metrics, link health status, and application steering performance §Ready to use and customizable report templates for compliance, security posture assessments, and system performance checks §Use log analytics to query IPFIX log messagescollected, when Ingestion is configured in Flow mode Rapid Incident Detection and Response§Intuitive event and incident workflow for SOC teams to focus on critical alerts §The built-in correlation engine automates and groups alerts to remove false positives §Out-of-box connectors and extensive APIs for security teams to automate repetitive tasksAvailable in:ApplianceVirtual MachineDATA SHEET | FortiAnalyzer Big Data2HIGHLIGHTSFortiAnalyzer Big Data supports all of the features and technologies of FortiAnalyzer family. FortiAnalyzer Big Data alsoprovides additional scalability and high-speed performance using new massive parallel data processing and Columnar Data Store processes. After the data ingest, the FortiAnalyzer Big Data provides an easy to use front-end UI that interacts with the distributed big data SQL engine to search, query, and aggregate the data.Security Analytics Log View✓⃝✓⃝Interactive FortiView Dashboards ✓⃝✓⃝Fabric View - Assets and Identity ✓⃝✓⃝Out-of-Box Report Templates✓⃝✓⃝Global Search across all Big Data clusters —✓⃝IPFIX Support—✓⃝Incident Response Indicators of Compromise Service ✓⃝✓⃝Event Correlation and Alerting✓⃝✓⃝Incident Escalation Workflow and Management✓⃝✓⃝Automation and Integration Security Fabric Connectors ✓⃝✓⃝Security Fabric Integration ✓⃝✓⃝REST API✓⃝✓⃝Multi-Tenancy and RBAC ADOM✓⃝✓⃝Role-Based Access Control ✓⃝✓⃝Performance and ScalabilityDeploymentSmall, Medium Enterprise Large Enterprise and ServiceProvidersHigh Availability and Redundancy Yes, requires a second unit Yes, built-in HA andredundancy Sustained Rate Up to 100 000 logs/secStart at 300 000 logs/secHorizontal Scalability —✓⃝Big Data Analytics Engine —✓⃝Massive Parallel Data Processing —✓⃝Distributed Architecture —✓⃝Columnar Data Store—✓⃝Appliance Management Chassis—✓⃝Cluster Manager—✓⃝To download the FortiAnalyzer Datasheet, please visit - https:///content/dam/fortinet/assets/data-sheets/fortianalyzer.pdfFortiAnalyzer Big Data Virtual MachinesFortinet offers FortiAnalyzer Big Data in a stackable Virtual license model, with a-la-carte services available for 24x7 FortiCare support and subscription licenses for the FortiGuard Indicator of Compromise (IOC), FortiAnalyzer SOC component, and FortiGuard Outbreak Detection Service.This software-based version of the FortiAnalyzer Big Data hardware appliance is designed to run on many virtualization platforms, which allows you to expand your virtual solution as your environment grows.3Total Interfaces 4x 40 GE QSFP and 8x 10 GE SFP+Storage Capacity Blade#1: 2 x NVMe 750 GB SSD = 1.5 TB; Blade#2 ~#14: 13 x 2 x 7.68 TB SSD x = 200 TBUsable Storage 200 TBRemovable Hard Drives28 (Max) SSD, each blade 2 x 2.5” Storage DeviceRedundant Hot Swap Power Supplies**✓⃝* The max number of days if receiving logs continuously at the sustained log ingestion rate. This number can increase if the average log rate is lower.** All four power supplies must be installed and plugged in to a reliable power source when the device is turned on / powered up. Three power supplies are required for the device tofully operate, which allows hot swap of one power supply at a time. The max power consumption of the unit is 4967 W and each PSU supports 2200 W. The fourth power supply provides redundancy.SPECIFICATIONSSafety CertificationsFCC Part 15 Class A, RCM, VCCI,CE, UL/cUL, CBversion. Visit https:///product/fortianalyzer-bigdata/ and find the Release Information at the bottom section. Go to “Product Integration and Support” -> “FortiAnalyzer BigData [version] support” -> “Virtualization”FBD-DAT-R6-20220524Copyright © 2022 Fortinet, Inc. All rights reserved. Fortinet , FortiGate , FortiCare and FortiGuard , and certain other marks are registered trademarks of Fortinet, Inc., and other Fortinet names herein may also be registered and/or common law trademarks of Fortinet. All other product or company names may be trademarks of their respective owners. Performance and other metrics contained herein were attained in internal lab tests under ideal conditions, and actual performance and other results may vary. Network variables, different network environments and other conditions may affect performance results. Nothing herein represents any binding commitment by Fortinet, and Fortinet disclaims all warranties, whether express or implied, except to the extent Fortinet enters a binding written contract, signed by Fortinet’s General Counsel, with a purchaser that expressly warrants that the identified product will perform according to certain expressly-identified performance metrics and, in such event, only the specific performance metrics expressly identified in such binding written contract shall be binding on Fortinet. For absolute clarity, any such warranty will be limited to performance in the same ideal conditions as in Fortinet’s internal lab tests. Fortinet disclaims in full any covenants, representations, and guarantees pursuant hereto, whether express or implied. Fortinet reserves the right to change, modify, transfer, or otherwise revise this publication without notice, and the most current version of the publication shall be applicable.Fortinet is committed to driving progress and sustainability for all through cybersecurity, with respect for human rights and ethical business practices, making possible a digital world you can always trust. You represent and warrant to Fortinet that you will not use Fortinet’s products and services to engage in, or support in any way, violations or abuses of human rights, including those involving censorship, surveillance, detention, or excessive use of force. Users of Fortinet products are required to comply with the Fortinet EULA (https:///content/dam/fortinet/assets/legal/EULA.pdf ) and report any suspected violations of the EULA via the procedures outlined in the Fortinet Whistleblower Policy (https:///domain/media/en/gui/19775/Whistleblower_Policy.pdf).ORDER INFORMATIONFortiAnalyzer-BigData-4500FFAZ-BD-4500FFortiAnalyzer high-performance chassis for big data analytics with 14 blade servers, 4x 40 GE QSFPPorts, 8x 10 GE SFP+ Ports, 300 000 logs/sec ingestion rate, and 200TB SSD storage in a single system. Horizontally scalable up to petabytes of storage.Hardware BundleFAZ-BD-4500F-BDL-466-DD Hardware plus 24x7 FortiCare and FortiAnalyzer Enterprise Protection.Enterprise Protection Bundle FC-10-BD45F-466-02-DD Enterprise Protection (24x7 FortiCare plus Indicators of Compromise Service, SOC Subscription license, and FortiGuard Outbreak Alert service).SOC Subscription License FC-10-BD45F-335-02-DD Subscription license for the FortiAnalyzer SOC component.IOC Subscription LicenseFC-10-BD45F-149-02-DD Subscription license for the FortiGuard Indicator of Compromise (IOC).Outbreak Alert Subscription License FC-10-BD45F-462-02-DD Subscription license for FortiGuard Outbreak Alert Service.24x7 FortiCare Contract FC-10-BD45F-247-02-DD 24x7 FortiCare Contract.FortiAnalyzer-BigData-VMFAZ-BD-VM FortiAnalyzer-BD virtual appliance with 150 000 logs/sec ingestion rate and 200TB storage capacity to start. Support add-on to scale up performance and storage.FortiAnalyzer-BigData-VM Add-On * FAZ-BD-VM-UGFortiAnalyzer-BD virtual appliance ADD-ON to add additional capacity with 50 000 logs/sec ingestion rate and 50TB storage. Multiple ADD-ONs can be stacked together to scale up the ingestion rate and storage.Enterprise Protection Bundle VM FC-10-ZBDVM-575-02-DD Enterprise Protection (24x7 FortiCare plus Indicators of Compromise Service, SOC Subscription license, and FortiGuard Outbreak Detection service).SOC Subscription License VM FC-10-ZBDVM-335-02-DD Subscription license for the FortiAnalyzer SOC component.IOC Subscription License VMFC-10-ZBDVM-149-02-DD Subscription license for the FortiGuard Indicator of Compromise (IOC).Outbreak Alert Subscription License VM FC-10-ZBDVM-462-02-DD Subscription license for FortiGuard Outbreak Detection Service.24x7 FortiCare Contract VMFC-10-ZBDVM-248-02-DD24x7 FortiCare Contract.* FortiAnalyzer-BD virtual appliance ADD-ON can stack up to a maximum of 500 000 logs/sec。
大数据 20202024鄂州 1 / 16 大 数 据 大数据 20202024鄂州
2 / 16 目录 大数据(IT行业术语) ............................................................................................................................3 大数据特征 ...................................................................................................................................................6 大数据结构 ...................................................................................................................................................7 大数据应用 ...................................................................................................................................................8 大数据意义 ...................................................................................................................................................9 大数据趋势 ................................................................................................................................................ 10 趋势一:数据的资源化 ................................................................................................................ 10 趋势二:与云计算的深度结合 .................................................................................................. 10 趋势三:科学理论的突破 ........................................................................................................... 11 趋势四:数据科学和数据联盟的成立 .................................................................................... 11 趋势五:数据泄露泛滥 ................................................................................................................ 11 趋势六:数据管理成为核心竞争力......................................................................................... 12 趋势七:数据质量是BI(商业智能)成功的关键 ............................................................. 12 趋势八:数据生态系统复合化程度加强 ............................................................................... 12 大数据IT分析工具 ................................................................................................................................. 13 大数据促进发展 ....................................................................................................................................... 14 大数据 20202024鄂州
大数据读后感大数据(Big Data)是指规模庞大、类型多样、变化快速的数据集合,通过高效的处理和分析技术,可以揭示出隐藏在数据中的有价值的信息和模式。
阅读了与大数据相关的书籍后,我对大数据的重要性和应用前景有了更深入的理解。
首先,大数据在各个领域的应用已经成为不可忽视的趋势。
无论是商业领域的市场营销、金融风险管理,还是科学研究领域的基因组学、气象学,大数据都扮演着重要的角色。
通过对大数据的分析,可以匡助企业做出更准确的决策,提高效率和竞争力;同时,也可以匡助科学家们发现新的规律和解决复杂的问题。
其次,大数据分析的关键在于数据挖掘和机器学习技术的应用。
数据挖掘是从大数据中发现隐藏的模式和知识的过程,可以匡助人们做出更准确的预测和决策。
机器学习是一种通过训练模型来自动化分析数据的方法,可以匡助人们从大数据中提取实用的信息。
这些技术的发展和应用,为大数据的分析提供了强有力的工具和方法。
此外,大数据分析也面临着一些挑战和问题。
首先是数据隐私和安全性的问题。
大数据中包含着大量的个人信息和敏感数据,如何保护这些数据的安全性和隐私性是一个重要的问题。
其次是数据质量的问题。
大数据往往包含着大量的噪声和错误,如何清洗和提高数据的质量是一个需要解决的难题。
此外,大数据分析也需要面对计算能力和存储能力的挑战,因为大数据的处理需要庞大的计算资源和存储空间。
在未来,大数据的应用前景仍然非常广阔。
随着物联网和云计算技术的发展,大数据的规模和种类将会进一步增加,同时也会带来更多的机遇和挑战。
在商业领域,大数据分析将会成为企业决策的重要工具,匡助企业更好地了解市场和客户需求。
在科学研究领域,大数据分析将会匡助科学家们发现更多的规律和解决更复杂的问题。
在社会领域,大数据分析还可以应用于城市规划、交通管理等方面,提升城市的智能化水平。
总之,大数据的重要性和应用前景不可忽视。
通过对大数据的分析,可以揭示出隐藏在数据中的有价值的信息和模式,匡助人们做出更准确的决策和预测。
大数据常见术语解释(全文)胡经国大数据(B ig Data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的出现产生了许多新术语,这些术语往往比较难以理解。
为此,我们根据有关大数据文献编写了本文,供大家认识大数据参考。
1、聚合(Aggregation)聚合是指搜索、合并、显示数据的过程。
2、算法(Algorithms)算法是指可以完成某种数据分析的数学公式。
3、分析法(Analytics)分析法用于发现数据的内在涵义。
4、异常检测(Anomaly Detection)异常检测用于在数据集中搜索与预期模式或行为不匹配的数据项。
除了“Anomalies”以外,用来表示“异常”的英文单词还有以下几个:outliers,exceptions,surprises,contaminants。
它们通常可提供关键的可执行信息。
5、匿名化(Anonymization)匿名化使数据匿名,即移除所有与个人隐私相关的数据。
6、应用(Application)在这里,应用是指实现某种特定功能的计算机软件。
7、人工智能(Artificial Intelligence)人工智能是指研发智能机器和智能软件;这些智能设备能够感知周围的环境,并根据要求作出相应的反应,甚至能自我学习。
8、行为分析法(Behavioural Analytics)行为分析法是指根据用户的行为如“怎么做”,“为什么这么做”以及“做了什么”来得出结论,而不是仅仅针对人物和时间的一门分析学科。
它着眼于数据中的人性化模式。
9、大数据科学家(Big Data Scientist)大数据科学家是指能够设计大数据算法使得大数据变得有用的人。
10、大数据创业公司(Big Data Startup)大数据创业公司是指研发最新大数据技术的新兴公司。
大数据的起源简介:大数据(Big Data)是指以传统数据处理软件无法处理的规模、速度和多样性的数据集合。
它不仅仅是一种数据量的概念,更是一种数据处理和分析的方法论。
大数据的起源可以追溯到20世纪90年代,随着互联网的发展和智能设备的普及,大数据开始成为一个热门话题,并逐渐引起了人们的关注。
1. 互联网的兴起大数据的起源可以追溯到互联网的兴起。
20世纪90年代,互联网开始进入人们的生活,人们开始使用电子邮件、浏览网页、在线购物等。
这些活动产生了大量的数据,但传统的数据处理方法已经无法胜任。
互联网的兴起为大数据的发展提供了基础。
2. 科技的进步科技的进步也是大数据起源的重要因素之一。
随着计算机技术和存储技术的发展,计算能力和存储容量大幅提升,使得处理大规模数据成为可能。
同时,各种传感器的发展和智能设备的普及,也为大数据的产生提供了源源不断的数据流。
3. 数据爆炸随着互联网的普及和科技的进步,数据量呈指数级增长,产生了数据爆炸的现象。
人们在互联网上产生的数据包括文本、图片、音频、视频等各种形式,这些数据的规模巨大,速度快,种类繁多,传统的数据处理方法已经不再适用。
4. 大数据技术的崛起为了应对数据爆炸的挑战,大数据技术应运而生。
大数据技术包括数据采集、存储、处理和分析等方面,通过利用分布式计算、云计算和机器学习等技术,可以高效地处理和分析大规模数据。
大数据技术的崛起,为人们从海量数据中挖掘出有价值的信息提供了可能。
5. 大数据的应用大数据不仅仅是一种技术,更是一种思维方式。
大数据的应用已经渗透到各个领域,如金融、医疗、交通、能源等。
通过对大数据的分析,可以发现隐藏在数据中的规律和趋势,帮助人们做出更准确的决策和预测。
例如,利用大数据分析,可以预测股市的走势,改善医疗服务,优化交通流量等。
结论:大数据的起源可以追溯到互联网的兴起和科技的进步。
随着互联网的普及和科技的发展,数据量呈指数级增长,传统的数据处理方法已经无法满足需求。
BIG DATA Big data is now part of the P3 syllabus: C1(e) Discuss how big data can be used to inform and implement business strategy. There are many definitions of the term ‘big data’ but most suggest something like the following:
'Extremely large collections of data (data sets) that may be analysed to reveal patterns, trends, and associations, especially relating to human behaviour and interactions.'
In addition, many definitions also state that the data sets are so large that conventional methods of storing and processing the data will not work.
In 2001 Doug Laney, an analyst with Gartner (a large US IT consultancy company) stated that big data has the following characteristics, known as the 3Vs:
Volume
Variety
Velocity
These characteristics, and sometimes additional ones, have been generally adopted as the essential qualities of big data.
The commonest fourth 'V' that is sometimes added is: Veracity: is the data true and can its accuracy be relied upon?
Volume The volume of big data held by large companies such as Walmart (supermarkets), Apple and EBay is measured in multiple petabytes. What is a petabyte? It’s 1015 bytes
(characters) of information. A typical disc on a personal computer (PC) holds 109 bytes (a gigabyte), so the big data depositories of these companies hold at least the data that could typically be held on 1 million PCs, perhaps even 10 to 20 million PCs. These numbers probably mean little even when converted into equivalent PCs. It is more instructive to list some of the types of data that large companies will typically store. Retailers Via loyalty cards being swiped at checkouts: details of all purchases you make, when, where, how you pay, use of coupons. Via websites: every product you have every looked at, every page you have visited, every product you have ever bought.
Social media (such as Facebook and Twitter) Friends and contacts, postings made, your location when postings are made, photographs (that can be scanned for identification), any other data you might choose to reveal to the universe. Mobile phone companies Numbers you ring, texts you send (which can be automatically scanned for key words), every location your phone has ever been whilst switched on (to an accuracy of a few metres), your browsing habits. Voice mails. Internet providers and browser providers Every site and every page you visit. Information about all downloads and all emails (again these are routinely scanned to provide insights into your interests). Search terms which you enter. Banking systems Every receipt, payment, credit card information (amount, date, retailer, location), location of ATM machines used. Variety Some of the variety of information can be seen from the examples listed above. In particular, the following types of information are held: Browsing activities: sites, pages visited, membership of sites, downloads, searches
Financial transactions
Interests
Buying habits
Reaction to advertisements on the internet or to advertising emails
Geographical information
Information about social and business contacts
Text
Numerical information
Graphical information (such as photographs)
Oral information (such as voice mails)
Technical information, such as jet engine vibration and temperature analysis
This data can be both structured and unstructured: Structured data: this data is stored within defined fields (numerical, text, date etc) often with defined lengths, within a defined record, in a file of similar records. Structured data requires a model of the types and format of business data that will be recorded and how the data will be stored, processed and accessed. This is called a data model. Designing the model defines and limits the data which can be collected and stored, and the processing that can be performed on it. An example of structured data is found in banking systems, which record the receipts and payments from your current account: date, amount, receipt/payment, short explanations such as payee or source of the money.
Structured data is easily accessible by well-established database structured query languages.
Unstructured data: refers to information that does not have a pre-defined data-model. It comes in all shapes and sizes and it is this variety and irregularity which makes it difficult to store in a way that will allow it to be analysed, searched or otherwise used. An often quoted statistic is that 80% of business data is unstructured, residing it in word processor documents, spreadsheets, powerpoint files, audio, video, social media interactions and map data. Here is an example of unstructured data and an example of its use in a retail environment: