2019高考物理专题牛顿运动定律测试题(答案及解释)(可编辑修改word版)
- 格式:docx
- 大小:371.57 KB
- 文档页数:20
高考物理力学知识点之牛顿运动定律知识点总复习含答案解析(5)一、选择题1.如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图(乙)所示,则A.1t时刻小球动能最大B.2t时刻小球动能最大C.2t~3t这段时间内,小球的动能先增加后减少D.2t~3t这段时间内,小球增加的动能等于弹簧减少的弹性势能2.起重机通过一绳子将货物向上吊起的过程中(忽略绳子的重力和空气阻力),以下说法正确的是()A.当货物匀速上升时,绳子对货物的拉力与货物对绳子的拉力是一对平衡力B.无论货物怎么上升,绳子对货物的拉力大小都等于货物对绳子的拉力大小C.无论货物怎么上升,绳子对货物的拉力大小总大于货物的重力大小D.若绳子质量不能忽略且货物匀速上升时,绳子对货物的拉力大小一定大于货物的重力3.在匀速行驶的火车车厢内,有一人从B点正上方相对车厢静止释放一个小球,不计空气阻力,则小球()A.可能落在A处B.一定落在B处C.可能落在C处D.以上都有可能m,弹簧及挂钩的质量忽略不计,挂钩吊着一质量4.如图所示,弹簧测力计外壳质量为0为m的重物,现用一竖直向上的拉力F拉着弹簧测力计,使其向上做匀加速直线运动,弹簧测力计的读数为0F,则拉力F大小为()A .0m mmg m + B .00m m F m+ C .00m m mg m +D .000m m F m + 5.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2)A .1JB .1.6JC .2JD .4J6.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( )A .B .C .D .7.一物体放置在粗糙水平面上,处于静止状态,从0t =时刻起,用一水平向右的拉力F 作用在物块上,且F 的大小随时间从零均匀增大,则下列关于物块的加速度a 、摩擦力f F 、速度v 随F 的变化图象正确的是( )A .B .C .D .8.如图所示,有一根可绕端点B 在竖直平面内转动的光滑直杆AB ,一质量为m 的小圆环套在直杆上。
高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。
【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
高考物理牛顿运动定律练习题及答案含解析一、高中物理精讲专题测试牛顿运动定律1.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。
木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。
t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。
碰撞前后木板速度大小不变,方向相反。
运动过程中小物块第一次减速为零时恰好从木板上掉下。
已知木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。
求: (1)t=0时刻木板的速度; (2)木板的长度。
【答案】(1)05/v m s =(2)163l m = 【解析】 【详解】(1)对木板和物块:()()11M m g M m a μ+=+ 令初始时刻木板速度为0v 由运动学公式:101v v a t =+ 代入数据求得:0=5m/s v(2)碰撞后,对物块:22mg ma μ=对物块,当速度为0时,经历时间t ,发生位移x 1,则有21112v x a =,112vx t =对木板,由牛顿第二定律:()213mg M m g Ma μμ++= 对木板,经历时间t ,发生位移x 2221312x v t a t =-木板长度12l x x =+代入数据,16=m 3l2.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ;(2)当无人机悬停在距离地面高度H=100m处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t1.【答案】(1)75m(2)40m/s (3)55s 3【解析】【分析】【详解】(1)由牛顿第二定律 F﹣mg﹣f=ma代入数据解得a=6m/s2上升高度代入数据解得 h=75m.(2)下落过程中 mg﹣f=ma1代入数据解得落地时速度 v2=2a1H,代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F﹣mg+f=ma2代入数据解得设恢复升力时的速度为v m,则有由 v m=a1t1代入数据解得.3.如图所示,在光滑水平面上有一段质量不计,长为6m的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A、B,现同时对A、B两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A滑块的质量mA=2kg,B滑块的质量mB=4kg,A、B滑块与绸带之间的动摩擦因素均为μ=0.5,A、B两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A、B两滑块加速度的大小;(2)0到3s时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.4.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为10m/s .当两车快要到一十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间为0.5s ).已知甲车紧急刹车时制动力为车重的0.4倍,乙车紧急刹车时制动力为车重的0.5倍,g 取10m/s 2.(1)若甲车司机看到黄灯时车头距警戒线15m ,他采取上述措施能否避免闯警戒线? (2)为保证两车在紧急刹车过程中不相撞,甲、乙两车行驶过程中至少应保持多大距离?【答案】(1)见解析(2)2.5m 【解析】 【分析】(1)根据甲车刹车时的制动力求出加速度,再根据位移时间关系求出刹车时的位移,从而比较判定能否避免闯红灯;(2)根据追及相遇条件,由位移关系分析安全距离的大小.(1)甲车紧急刹车的加速度为210.44/a g m s ==甲车停下来所需时间0112.5v t s a == 甲滑行距离 20112.52v x m a == 由于12.5 m <15 m ,所以甲车能避免闯红灯;(2)乙车紧急刹车的加速度大小为:220.55/a g m s ==设甲、乙两车行驶过程中至少应保持距离0x ,在乙车刹车2t 时刻两车速度相等,0120022()v a t t v a t -+=-解得2 2.0t s =此过程中乙的位移: 220002121152x v t v t a t m =+-= 甲的位移:210021021()()12.52x v t t a t t m =+-+= 所以两车安全距离至少为:012 2.5x x x m =-= 【点睛】解决本题的关键利用牛顿第二定律求出加速度,再根据运动学公式进行求解.注意速度大者减速追速度小者,判断能否撞上,应判断速度相等时能否撞上,不能根据两者停下来后比较两者的位移去判断.5.如图是利用传送带装运煤块的示意图.其中,传送带的从动轮与主动轮圆心之间的距离为3s m =,传送带与水平方向间的夹角37θ=o ,煤块与传送带间的动摩擦因数0.8μ=,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度1.8H m =,与运煤车车箱中心的水平距离0.6.x m =现在传送带底端由静止释放一煤块(可视为质点).煤块恰好在轮的最高点水平抛出并落在车箱中心,取210/g m s =,sin370.6=o ,cos370.8=o ,求:(1)主动轮的半径; (2)传送带匀速运动的速度;(3)煤块在传送带上直线部分运动的时间. 【答案】(1)0.1m (2)1m/s ;(3)4.25s【分析】(1)要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零,根据平抛运动的规律求出离开传送带最高点的速度,结合牛顿第二定律求出半径的大小. (2)根据牛顿第二定律,结合运动学公式确定传送带的速度.(3)煤块在传送带经历了匀加速运动和匀速运动,根据运动学公式分别求出两段时间,从而得出煤块在传送带上直线部分运动的时间. 【详解】(1)由平抛运动的公式,得x vt = ,21H gt 2= 代入数据解得v =1m/s要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零, 由牛顿第二定律,得2v mg m R=,代入数据得R =0.1m (2)由牛顿第二定律得mgcos mgsin ma μθθ=﹣ ,代入数据解得a =0.4m/s 2由212v s a=得s 1=1.25m <s ,即煤块到达顶端之前已与传送带取得共同速度,故传送带的速度为1m/s .(3)由v=at 1解得煤块加速运动的时间t 1=2.5s 煤块匀速运动的位移为s 2=s ﹣s 1=1.75m ,可求得煤块匀速运动的时间t 2=1.75s煤块在传送带上直线部分运动的时间t =t 1+t 2代入数据解得t =4.25s6.如图,t=0时,水平桌面上质量为m=1kg 的滑块获得02/v m s =的水平向右初速度,同时对滑块施加一个水平向左的恒定拉力,前2s 内滑块的速度-时间关系图线如图.(1)求前2s 内滑块的位移大小和方向; (2)分别求滑块所受拉力和摩擦力大小;(3)若在t=2s 时将拉力撤去,则撤力后滑块还能滑行多远距离?【答案】(1)0.6m ,方向与初速度方向相同;(2)1.4N 和0.6N ;(3)0.53m . 【解析】 【分析】(1)根据v-t 图象中图线与坐标轴所围“面积”表示位移,根据几何知识求出位移. (2)速度-时间图象中直线的斜率等于物体的加速度.根据数学知识求出斜率,得到加速度.再由牛顿第二定律求拉力和摩擦力.(3)撤去拉力后,由牛顿第二定律和运动学公式结合求滑块能滑行的距离. 【详解】(1)前2s 内滑块的位移大小为:x=12×1×2-12×1×0.8=0.6m 方向与初速度方向相同. (2)0-1s 内加速度大小为:211122/1v a m s t ===V V 根据牛顿第二定律得:F+f=ma 1…① 1-2s 内加速度大小为:22220.80.8/1v a m s t ===V V 根据牛顿第二定律得:F-f=ma 2…② 联立①②解得:F=1.4N ,f=0.6N (3)撤去拉力后,加速度大小为:230.60.6/1f a m s m === 还能滑行的距离为:22230880.53220.615v s m m a ===≈⨯. 【点睛】对于速度图象问题,抓住“斜率”等于加速度,“面积”等于位移是关键.知道加速度时,根据牛顿第二定律求力.7.如图所示,水平轨道与竖直平面内的圆弧轨道平滑连接后固定在水平地面上,圆弧轨道B 端的切线沿水平方向.质量m=1.0kg 的滑块(可视为质点)在水平恒力F=10.0N 的作用下,从A 点由静止开始运动,当滑块运动的位移x=0.50m 时撤去力F .已知A 、B 之间的距离x 0=1.0m ,滑块与水平轨道间的动摩擦因数μ=0.10,取g=10m/s 2.求:(1)在撤去力F 时,滑块的速度大小; (2)滑块通过B 点时的动能;(3)滑块通过B 点后,能沿圆弧轨道上升的最大高度h=0.35m ,求滑块沿圆弧轨道上升过程中克服摩擦力做的功.【答案】(1)3.0m/s ;(2)4.0J ;(3)0.50J . 【解析】试题分析:(1)滑动摩擦力f mg μ=(1分) 设滑块的加速度为a 1,根据牛顿第二定律1F mg ma μ-=(1分)解得219.0/a m s =(1分)设滑块运动位移为 0.50m 时的速度大小为v ,根据运动学公式212v a x =(2分)解得 3.0/v m s =(1分)(2)设滑块通过B 点时的动能为kB E从A 到B 运动过程中,依据动能定理有 k W E =∆合 0 kB F x fx E -=, (4分)解得 4.0kB E J =(2分)(3)设滑块沿圆弧轨道上升过程中克服摩擦力做功为f W ,根据动能定理0f kB mgh W E --=-(3分)解得0.50f W J =(1分) 考点:牛顿运动定律 功能关系8.质量为5.0kg 的物体,从离地面36m 高处,由静止开始匀加速下落,经3s 落地,g 取10m/s 2,求:(1)物体下落的加速度的大小; (2)下落过程中物体所受阻力的大小。
2019 高考物理试题分类汇编(1、〔2018 上海卷〕、如,圆滑斜面固定于水平面,滑 A、B 叠放后一起冲上斜面,且始保持相静止,A 上表面水平。
那么在斜面上运, B 受力的表示〔〕答案: A 5) - 牛顿运动定律(含详解)F N F N F N F NBA F f F f F fF fG G G G(A)(B)(C)(D)2、(2018 全国理综 ) . 〔 11 分〕1 牛第二定律的装置表示。
中打点器的源50Hz 的交流源,打点的隔用t 表示。
在小量未知的状况下,某同学了一种方法用来研究“在外力必定的条件下,物体的加快度与其量的关系”。
〔 1〕完成以下步中的填空:①均衡小所受的阻力:小吊中不放物,整木板右端的高度,用手小,直到打点器打出一系列________的点。
②按住小,在小吊中放入合适量的物,在小中放入砝。
③打开打点器源,放小,得有点列的袋,在袋上出小中砝的量m。
④按住小,改小中砝的量,重复步③。
⑤在每条上清楚的部分,没 5 个隔注一个数点。
量相数点的距s1,s2,⋯。
求出与不一样 m相的加快度 a。
⑥以砝的量 m横坐1坐,在座上做出1关系。
假加快度与小a am和砝的量成反比,那么1与 m成 _________关系〔填“ 性”或“非性” 〕。
a〔2〕完成以下填空:〔ⅰ〕本中,了保在改小中砝的量,小所受的拉力近似不,小吊和中物的量之和足的条件是_______________________ 。
〔ⅱ〕上三个相数点的距s1、s2、s3。
a 可用 s1、s3和 t 表示 a=__________。
2 用米尺量某一上的 s1、s3的状况,由可出 s1=__________mm,s3=__________。
由此求得加快度的大小 a=__________m/s 2。
〔ⅲ〕图 3 为所得实验图线的表示图。
设图中直线的斜率为 k ,在纵轴上的截距为 b ,假设牛顿定律成立,那么小车遇到的拉力为 ___________,小车的质量为 ___________。
高中物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.2.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=3.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值;()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.4.如图所示,质量M=0.5kg 的长木板A 静止在粗糙的水平地面上,质量m=0.3kg 物块B(可视为质点)以大小v 0=6m/s 的速度从木板A 的左端水平向右滑动,若木板A 与地面间的动摩擦因数μ2=0.3,物块B 恰好能滑到木板A 的右端.已知物块B 与木板A 上表面间的动摩擦因数μ1=0.6.认为各接触面间的最大静摩擦力与滑动摩擦力大小相等,取g=10m/s 2.求:(1)木板A 的长度L ;(2)若把A 按放在光滑水平地面上,需要给B 一个多大的初速度,B 才能恰好滑到A 板的右端;(3)在(2)的过程中系统损失的总能量.【答案】(1) 3m (2) /s (3) 5.4J 【解析】 【详解】(1)A 、B 之间的滑动摩擦力大小为:11= 1.8f mg N μ= A 板与地面间的最大静摩擦力为:()22= 2.4f M m g N μ+= 由于12f f <,故A 静止不动B 向右做匀减速直线运动.到达A 的右端时速度为零,有:202v aL =11mg ma μ=解得木板A 的长度 3L m =(2)A 、B 系统水平方向动量守恒,取B v 为正方向,有 ()B mv m M v =+物块B 向右做匀减速直线运动22112B v v a s -=A 板匀加速直线运动 12mg Ma μ=2222v a s =位移关系12s s L -=联立解得/B v s = (3)系统损失的能量都转化为热能1Q mgL μ=解得 5.4Q J =5.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ′μ1m A gx A =12m A v A ′2 解得:v A ′ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ′=0-12m A v A 2 解得 x A ′=0.08m x A ′=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.6.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t =对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W7.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s '=-= 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.8.某研究性学习小组利用图a 所示的实验装置探究物块在恒力F 作用下加速度与斜面倾角的关系。
物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1(2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解;(2)对木板分析,先向右减速后向左加速,分过程进行分析即可;(3)分别求出二者相对地面位移,然后求解二者相对位移;【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: 01212v mg mg m t μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t =时间内,木板向右减速运动,其向右运动的位移为:01100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:12 2.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
牛顿运动定律的应用一、单项选择题1.2018年10月23日,港珠澳大桥正式开通.建造大桥过程中最困难的莫过于沉管隧道的沉放和精确安装,每节沉管隧道重约G=8×108N,相当于一艘中型航母的重量.通过缆绳送沉管到海底,若把该沉管的向下沉放过程看成是先加速运动后减速运动,且沉管仅受重力和缆绳的拉力,则拉力的变化过程可能正确的是()C2.如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r 的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A 滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1B.1∶1C.3∶1 D.1∶3B3.某消防队员从一平台上跳下,下落2 m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m,在着地过程中地面对他双脚的平均作用力估计为()A.自身所受重力的2倍B.自身所受重力的5倍C.自身所受重力的8倍D.自身所受重力的10倍B4.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70 kg,汽车车速为90 km/h,从踩下刹车闸到车完全停止需要的时间为5 s,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)()A.450 N B.400 NC.350 N D.300 NC5.如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点,竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心,已知在同一时刻:a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道分别沿AM、BM 运动到M点;c球由C点自由下落到M点.则()A.a球最先到达M点B.c球最先到达M点C.b球最先到达M点D.b球和c球都可能最先到达MB6.在设计游乐场中“激流勇进”的倾斜滑道时,小组同学将划艇在倾斜滑道上的运动视为由静止开始的无摩擦滑动,已知倾斜滑道在水平面上的投影长度L是一定的,而高度可以调节,则()A.滑道倾角越大,划艇下滑时间越短B.划艇下滑时间与倾角无关C.划艇下滑的最短时间为2L gD.划艇下滑的最短时间为2L gC7.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车刹车前的速度为()A.7 m/s B.14 m/sC.10 m/s D.20 m/sB8.在汽车内的悬线上挂着一个小球m,实验表明当汽车做匀变速直线运动时,悬线将与竖直方向成某一固定角度θ,如图所示,若在汽车底板上还有一个跟它相对静止的物体M,则关于汽车的运动情况和物体M的受力情况分析正确的是()A.汽车一定向右做加速运动B.汽车的加速度大小为g sin θC.M只受到重力、底板的支持力作用D.M除受到重力、底板的支持力作用外,还一定受到向右的摩擦力的作用D9.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.m 2gh t +mgB.m 2ght -mgC.m gh t +mgD.m gh t-mgA二、多项选择题10.如图所示,5块质量相同的木块并排放在水平地面上,它们与地面间的动摩擦因数均相同,当用力F 推第1块木块使它们共同加速运动时,下列说法中正确的是( )A .由右向左,两块木块之间的相互作用力依次变小B .由右向左,两块木块之间的相互作用力依次变大C .第2块木块与第3块木块之间的弹力大小为0.6FD .第3块木块与第4块木块之间的弹力大小为0.6F解析:选BC11.绷紧的传送带长L =32 m ,铁块与带间动摩擦因数μ=0.1,g =10 m/s 2,下列正确的是( )A .若皮带静止,A 处小铁块以v 0=10 m/s 向B 运动,则铁块到达B 处的速度为6 m/s B .若皮带始终以4 m/s 的速度向左运动,而铁块从A 处以v 0=10 m/s 向B 运动,铁块到达B 处的速度为6 m/sC.若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块将一直向右匀加速运动D.若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块到达B 处的速度为8 m/sABD12.如图所示,质量为m=1 kg的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s时,给物体施加一个与速度方向相反的大小为F=2 N的恒力,在此恒力作用下(取g=10 m/s2)()A.物体经10 s速度减为零B.物体经2 s速度减为零C.物体速度减为零后将保持静止D.物体速度减为零后将向右运动BC13.从某一星球表面做火箭实验.已知竖直升空的实验火箭质量为15 kg,发动机推动力为恒力.实验火箭升空后发动机因故障突然关闭,如图所示是实验火箭从升空到落回星球表面的速度随时间变化的图象,不计空气阻力,则由图象可判断()A.该实验火箭在星球表面达到的最大高度为320 mB.该实验火箭在星球表面达到的最大高度为480 mC.该星球表面的重力加速度为2.5 m/s2D.发动机的推动力F为37.50 NBC三、非选择题14.我国现在服役的第一艘航母“辽宁号”的舰载机采用的是滑跃起飞方式,即飞机依靠自身发动机从静止开始到滑跃起飞,滑跃仰角为θ.其起飞跑道可视为由长度L1=180 m的水平跑道和长度L2=20 m倾斜跑道两部分组成,水平跑道和倾斜跑道末端的高度差h=2 m,如图所示.已知质量m=2×104 kg的舰载机的喷气发动机的总推力大小恒为F=1.2×105 N,方向始终与速度方向相同,若飞机起飞过程中受到的阻力大小恒为飞机重力的0.15,飞机质量视为不变,并把飞机看成质点,航母处于静止状态.(1)求飞机在水平跑道运动的时间;(2)求飞机在倾斜跑道上的加速度大小.解析:(1)设飞机在水平跑道的加速度大小为a1,由牛顿第二定律得F1-f=ma1解得a1=4.5 m/s2由匀加速直线运动公式L1=12at2解得t=45s.(2)设沿斜面方向的加速度大小为a2,在倾斜跑道上对飞机受力分析,由牛顿第二定律得F-f-mg sin θ=ma2,其中sin θ=hL2解得a2=3.5 m/s2.答案:(1)45s(2)3.5 m/s215.如图所示,有一质量m=1 kg的物块,以初速度v=6 m/s从A点开始沿水平面向右滑行.物块运动中始终受到大小为2 N、方向水平向左的力F作用,已知物块与水平面间的动摩擦因数μ=0.1.求:(取g=10 m/s2)(1)物块向右运动时所受摩擦力的大小和方向; (2)物块向右运动到最远处的位移大小;(3)物块经过多长时间回到出发点A ?(结果保留两位有效数字) 解析:(1)物块向右运动时所受摩擦力的大小 F f =μmg =1 N物块向右运动时所受摩擦力的方向水平向左. (2)物块向右运动时的加速度大小 a 1=F +Ff m=3 m/s 2物块向右运动到最远处时的位移大小 2a 1x =v 2,x =v22a1=6 m. (3)物块向右运动的时间:t 1=va1=2 s物块返回时的加速度大小:a 2=F -Ffm =1 m/s 2由x =12a 2t 2得物块返回过程的时间t 2=2xa2=23 s≈3.5 s 物块回到出发点A 的时间 t =t 1+t 2=5.5 s.答案:(1)1 N 水平向左 (2)6 m (3)5.5 s。
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
2019 高考物理专题牛顿运动定律测试题 一、单选题(共 12 小题) 1. 如右图所示,物块 a 放在轻弹簧上,物块 b 放在物块 a 上静止不动.当用力 F 使物块 b 竖直向上做匀加速直线运动时,在下图所示的四个图象中,能反映物块 b 脱离物块 a 前的过程中力 F 随时间 t 变化规律的是 ( )
A. 答案 A B. 答案 B C. 答案 C D. 答案 D 2. 质量 m=1 kg 的物体在光滑平面上运动,初速度大小为 2 m/s.在物体运动的直线上施以一个水平恒力, 经过 t=1 s,速度大小变为 4 m/s,则这个力的大小可能是( )
A. 3 N B. 4 N C. 6 N D. 8 N 3. 如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为 M 的竖直竹竿,当竿上一质量为 m 的人以加速度 a 加速下滑时,竿对“底人”的压力大小为 ( ) A. (M+m)g B. (M+m)g-ma C. (M+m)g+ma D. (M-m)g 4. 如图所示,粗糙水平面上放置 B、C 两物体,A 叠放在 C 上,A、B、C 的质量分别为 m、2m 和 3m,物体 B、C 与水平面间的动摩擦因数相同,其间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为 FT.现用水平拉力 F 拉物体 B,使三个物体以同一加速度向右运动,则( )
A. 此过程中物体 C 受重力等五个力作用 B. 当 F 逐渐增大到 FT 时,轻绳刚好被拉断 C. 当 F 逐渐增大到 1.5FT 时,轻绳刚好被拉断
D. 若水平面光滑,则绳刚断时,A、C 间的摩擦力为 5. 质量不同、半径相同的两个小球从高空中某处由静止开始下落,设它们所受空气阻力 f 与下落速度 v 的关系为 f=kv,k 为定值.则质量较大小球的 v—t 图线是( )
A. ① B. ② C. ③ D. ④ 6. 下列实例属于超重现象的是( ) A. 拱形桥顶端汽车驶过时 B. 汽车驶过凹形桥最低位置时 C. 跳水运动员被跳板弹起离开跳板向上运动 D. 蹦床运动员在空中下落过程 7. 如图所示,将一物体用两根等长 OA,OB 悬挂在半圆形架子上,B 点固定不动,在悬挂点 A 由位置 C 向位置 D 移动的过程中,物体对 OA 绳的拉力变化是( )
A. 由小变大 B. 由大变小 C. 先减小后增大 D. 先增大后减小 8. 如图所示,质量为 M 的封闭箱子内装有质量为 m 的物体,物体刚好同箱子的顶部与底部相接触.现以某一初速度向上竖直将箱子抛出,至最高点后又落回地面,箱子在运动过程中受到的空气阻力大小与速度大小成正比 . 则 ( ) A. 上升过程中,箱对物体的弹力逐渐减小 B. 下落过程中,箱对物体的弹力始终为零 C. 上升时间大于下落时间 D. 上升过程中箱子处于超重状态,下降过程中箱子处于失重状态 9. 如图所示,小车上有一个定滑轮,跨过定滑轮的绳一端系一重球,另一端系在弹簧测力计上,弹簧测力计下端固定在小车上,开始时小车处于静止状态.当小车沿水平方向运动时,小球恰能稳定在图中虚线位置,下列说法中正确的是( )
A. 小球处于超重状态,小车对地面压力大于系统总重力 B. 小球处于失重状态,小车对地面压力小于系统总重力 C. 弹簧测力计读数大于小球重力,但小球既不超重也不失重 D. 弹簧测力计读数大于小球重力,小车一定向右匀加速运动 10. 如图所示,与轻绳相连的物体 A 和 B 跨过定滑轮,质量 mA则在 A 向上运动的过程中,轻绳的拉力( )
A.T=mAg B.T>mAg C.T=mBg D.T>mBg 11. 质量为 M 的长方形木块静止放置在倾角为 θ 的斜面上,斜面对木块的作用力的方向应该是( ) A. 沿斜面向下 B. 垂直于斜面向上 C. 沿斜面向上 D. 竖直向上 12. 某学校教室里的磁性黑板上通常粘挂一些小磁铁,小磁铁被吸在黑板上可以用于“贴”挂图或试题答案 ,如图所示.关于小磁铁,下列说法中正确的是( )
A. 磁铁受到的磁吸引力大于受到的弹力才能被吸在黑板上 B. 磁铁与黑板间在水平方向上存在两对作用力与反作用力 C. 磁铁受到五个力的作用 D. 磁铁受到的支持力与黑板受到的压力是一对平衡力
二、实验题(共 3 小题) 13. 某实验小组利用图所示的装置探究加速度与力、质量的关系. ①下列做法正确的是 (填字母代号) A.调节滑轮的高度,使牵引木块的细绳与长木板保持平行 B.在调节木板倾斜度平衡木块受到的滑动摩擦力时,将装有砝码的砝码桶通过定滑轮拴在木块上C.实验时,先放开木块再接通打点计时器的电源 D.通过增减木块上的砝码改变质量时,不需要重新调节木板倾斜度 ②为使砝码桶及桶内砝码的总重力在数值上近似等于木块运动时受到的拉力,应满足的条件是砝码桶及桶内砝码的总质量 木块和木块上砝码的总质量.(选填“远大于”、“远小于”或“近似等于”)
③甲、乙两同学在同一实验室,各取一套图所示的装置放在水平桌面上,木块上均不 放砝码,在没有平衡摩擦力的情况下,研究加速度 a 与拉力 F 的关系,分别得到图中甲、乙两条直线.设甲、乙用的木块质量分别为 m 甲、m 乙,甲、乙用的木块与木板间的动摩擦因数分别为 μ 甲、μ 乙,由图可知,m
甲 m 乙,μ 甲 μ 乙.(选填“大于”、“小于”或“等于”)
14. 某组同学设计了“探究加速度 a 与物体所受合力 F 及质量 m 的关系”实验.下图甲为实验装置简图,A 为小车,B 为电火花计时器,C 为装有细砂的小桶,D 为一端带有定滑轮的长方形木板,实验中认为细绳对小车拉力 F 等于细砂和小桶的总重量,小车运动的加速度 a 可用纸带上打出的点求得.
(1) 图 5 乙为某次实验得到的纸带,已知实验所用电源的频率为 50 Hz.根据纸带可求出电火花计时器打 B 点时的速度为 m/s,小车的加速度大小为 m/s2.(结果均保留两位有效数字) (2) 在“探究加速度 a 与质量 m 的关系”时,某同学按照自己的方案将实验数据都在坐标系中进行了标注,但尚未完成图象(如下图甲所示).请继续帮助该同学作出坐标系中的图象.
(3) 在“探究加速度 a 与合力 F 的关系”时,该同学根据实验数据作出了加速度 a 与合力 F 的图线如图 乙所示,该图线不通过坐标原点,试分析图线不通过坐标原点的原因.
答: .
15. 在用 DIS 研究小车加速度与外力的关系时,某实验小组采用如图甲所示的实验装置.重物通过滑轮用细线拉小车,位移传感器(发射器)随小车一起沿倾斜轨道运动,位移传感器(接收器)固定在轨道一端.实验中把重物的重力作为拉力 F,改变重物重力重复实验四次,列表记录四组数据. (1)实验中使用位移传感器和计算机,可以便捷地获取信息和处理信息,所获取的信息是 . (2)在如图坐标纸上作出小车加速度 a 和拉力 F 的关系图线.
(3) 从所得图线分析该实验小组在操作过程中的不当之处是: . (4) 如果实验时,在小车和重物之间接一个不计质量的微型力传感器,如图 13 乙所示.并以力传感器示数表示拉力 F,从理论上分析,该实验图线的斜率将 .(填“变大”“变小”或“不变”)
三、计算题(共 3 小题)
16. 如图所示,为一传送货物的传送带 abc,传送带的 ab 部分与水平面夹角 α=37°,bc 部分与水平面夹角β=53°,ab 部分长为 4.7m,bc 部分长为 7.5m。一个质量为 m=1kg 的物体 A(可视为质点)与传送带的动摩
擦因数 μ=0.8。传送带沿顺时针方向以速率 ν=1m/s 匀速转动.若把物体 A 轻放到 a 处,它将被传送带送到 c 处,此过程中物体 A 不会脱离传送带。(sin 37°=0.6,sin 53°=0.8,g=10m/s2)求物体 A 从 a 处被传送到 c 处所用的时间。 17. 如图所示,有一水平放置的足够长的皮带输送机以 v=5m/s 的速率沿顺时针方向运行。有一物体以v0=10m/s 的初速度从皮带输送机的右端沿皮带水平向左滑动。若物体与皮带间的动摩擦因数 μ=0.5,并
取g=10m/s2,求物体从滑上皮带到离开皮带所用的时间。
18. 如下图甲所示,一物块以一定的初速度,沿倾角可在 0~90°之间任意调整的木板向上滑动,设它沿木板向上能达到的最大位移为 x.若木板倾角不同时对应的最大位移 x 与木板倾角 α 的关系如下图乙所示.g 取 10 m/s2.求:
(1) 物体初速度的大小 v0; (2) 物体与木板间的动摩擦因数 μ; (3) 当 α=60°时,它沿木板向上能达到的最大位移. 四、填空题(共 3 小题) 19. 右图为一直线运动加速度测量仪的原理示意图。A 为 U 型底座,其内部放置一绝缘滑块 B;B 的两侧各有一弹簧,它们分别固连在 A 的两个内侧壁上;滑块 B 还与一阻值均匀的碳膜电阻 CD 的滑动头相连(B 与 A 之间的摩擦及滑动头与碳膜间的摩擦均忽略不计),如图所示。电阻 CD 及其滑动头与另外的电路相连 (图中未画出)。