粘弹性阻尼墙及其高层建筑结构风振控制性能研究
- 格式:pdf
- 大小:247.97 KB
- 文档页数:2
高层建筑的风振控制研究摘要:高层建筑在风振作用下可能产生显著的振动,引起居住者或使用人员的不舒适感,降低生活质量或生产效率,因此结构抗风设计还必须满足舒适度的要求。
文中分析了高层建筑的外部风环境、内部风环,以及风振控制中的被动控制、主动控制和混合控制系统,这一研究对于高层建筑安全设计具有一定意义。
关键词:风振控制;建筑风环境;控制系统0 引言高层建筑和高耸结构正向着日益增高和高强轻质的方向发展,使得结构的刚度和阻尼不断下降,直接影响了高层建筑和高耸结构的正常使用。
建筑在风振作用下可能产生显著的振动,引起居住者或使用人员的不舒适感,降低生活质量或生产效率,因此结构抗风设计还必须满足舒适度的要求。
本文基于人员不舒适感分析了高层建筑风振控制,这一研究对于高层建筑安全设计具有一定意义。
1 高层建筑的风环境1.1 外部风环境根据高层建筑物的外形,相互布局情况及风的相对方向,有可能测得的建筑物外部环境的不舒适参数Ψ值,在风振舒适感控制中都是基于下述效应为基础。
(1)压力连通效应:当风垂直吹向错开排列的高层建筑物时,若建筑物间的距离小于建筑物的高度,则有部分压力较高的风流向背面压力较低的区域,形成街道风,在街道上形成不舒适区域。
(2)间隙效应:如图2所示,当风吹过突然变窄的剖面时(如底层拱廊),在该处形成不舒适区域。
图2 间隙效应(3)拐角效应:如图3所示,当风垂直吹向建筑物时,在拐角处由于迎面风的正压与背面风的负压连通形成一个不舒适的拐角区域;有时,当两幢并排建筑物的间距L≤2d(d为建筑物沿风向的长度)时,两幢间也形成不舒适区域。
图3 拐角效应(4)尾流效应:如图4所示,在高层建筑物尾流区里,自气流分离点的下游处,形成不舒适的涡流区。
图4 尾流效应(5)下洗涡流效应:如图5所示,当风吹向高层建筑物时,自驻点向下冲向地面形成涡流。
图5下洗涡流效应2.2内部风环境高层建筑的内部风环境是指,由于风荷载的作用,高层建筑受到脉动风影响而发生振动现象,这种振动会给生活或者工作在高层建筑内部人带来不舒适感,对高层建筑物的正常使用造成影响。
(铅)粘弹性阻尼结构的试验与研究共3篇(铅)粘弹性阻尼结构的试验与研究1铅粘弹性阻尼结构是结构控制领域中一种常用的被动控制手段,在减震、减振等方面有着广泛的应用。
本文将介绍铅粘弹性阻尼结构的试验与研究。
一、引言结构振动是工程领域中的一个重要问题,它不仅会对结构的安全性和使用寿命产生负面影响,而且还会对周围环境产生一定的噪声和振动。
因此,研究和探讨结构振动的控制手段是非常重要的。
铅粘弹性阻尼结构作为一种被动控制手段,因其结构简单、可靠性高以及适用范围广等优点,逐渐受到了广泛的关注。
二、铅粘弹性阻尼结构原理铅粘弹性阻尼结构由铅、弹簧和阻尼器三部分组成。
其主要原理是通过阻尼器中铅的黏性特性和弹簧的弹性特性,将结构振动的能量转化为热能,从而实现结构的减振和减震效果。
三、铅粘弹性阻尼结构试验研究1.试验设备铅粘弹性阻尼结构试验系统主要由振动台、铅粘阻尼器和振动传感器等组成。
其中振动台为试样施加振动荷载,铅粘阻尼器作为结构的控制装置,振动传感器用于测量结构的振动响应。
2.试验方法在试验中,首先需要对试样进行预处理,即先对其进行单自由度系统结构参数的实验识别,比如质量、刚度、阻尼等,然后再选取合适的铅粘阻尼器和弹簧参数进行试验。
试验中可以采用单向或双向振动荷载,通过改变振动频率和振幅等参数进行试验,得到不同振动频率下的结构响应和阻尼比等数据。
同时也可以通过对比试验,比较结构在有无铅粘弹性阻尼器的情况下的振动响应和控制效果。
3.试验结果试验结果表明,铅粘弹性阻尼结构能够有效地减少结构的振动响应。
并且该结构在低频振动时的控制效果更好。
同时,铅粘弹性阻尼结构还具有阻尼力随振幅增大而增大的特点,这与实际工程中的情况较为符合。
四、结论本文介绍了铅粘弹性阻尼结构的试验与研究,试验结果表明,铅粘弹性阻尼结构具有很好的控制效果和应用前景。
但是,该结构在实际工程中的应用还需综合考虑多种因素,包括结构的尺寸、质量、振动频率等等。
黏滞阻尼器在框架结构抗震加固中的应用与研究摘要:近年来利用阻尼器对既有建筑结构进行减震加固得到了广泛关注。
本文建立了某实际4层框架结构的非线性模型,然后设置黏滞阻尼器(VFD),利用时程分析法对有、无控结构进行地震响应分析计算,得出该结构的耗能减震效果。
最后利用云图法,选取数条地震波对结构进行分析计算,对有、无控结构进行概率地震分析,通过对比概率需求模型、易损性曲线的差异分析黏滞阻尼器的耗能减震作用。
计算结果表明,通过对该结构设置若干VFD,结构的地震响应得到显著地减小,结构整体减震效果明显;有控结构的地震需求易损性曲线相较无控结构趋于平缓,表明VFD对该结构的耗能减震加固作用明显。
关键词:框架结构;黏滞阻尼器;非线性时程分析;云图法;结构概率地震需求分析耗能减震技术就是在结构的选定位置增设耗能装置,在小震作用下,耗能装置和结构一并处于弹性状态,可减小结构的地震响应,使结构主体处于安全范围,一旦出现大震,这些装置可以在结构破坏前率先达到屈服状态,来消耗大部分能量。
近年来利用耗能减震器对既有建筑结构进行减震加固得到了广泛关注。
1.消能减震的概念及耗能原理为了达到消震减能的目的,可以通过消能装置的安装来避免主体结构因地震能量而响应而造成的破坏,究其本质,消能减震技术是一种加固技术。
传统的抗震思路是进行“硬抗”,但却存在诸多的弊端问题。
而消能减震技术,则能够避免传统抗震加固的不足,通过“以柔克刚”的方式进一步达到抗震加固的效果。
从消能减震结构角度来看,其方式就是融入了减震控制思想,在原结构当中增加了消能减震装置,从而形成新的结构系统,图1对其进行了展现,通过图中资料的了解,无论是原结构还是消能减震装置,都是新结构系统的重要组成部分,并且在其中发挥了重要的作用。
相较于原结构而言,新结构系统在效能能力以及动力特征方面有自身的独特性,能够降低原结构承受的地震作用,这也是进行地震反应控制的一种有效方式,其目的是为了减少对主体结构造成的损害。
粘滞阻尼器的研究与应用发表时间:2018-07-02T11:46:36.937Z 来源:《建筑学研究前沿》2018年第3期作者:李旋[导读] 阻尼是结构振动衰减的根本原因,但由于实际结构中的阻尼复杂特性使得并不能精准定位阻尼。
武汉城市职业学院湖北武汉 430064摘要:粘滞阻尼器是根据流体运动,特别是当流体通过节流孔时会产生粘滞阻力的原理而制成的,是一种与刚度、速度相关型阻尼器。
一般由油缸、活塞、活塞杆、衬套、介质、销头等部分组成,活塞可以在油缸内作往复运动,活塞上设有阻尼结构,油缸内装满流体阻尼介质。
当外部激励(地震或风振)传递到结构中时,结构产生变形并带动阻尼器运动。
在活塞两端形成压力差,介质从阻尼结构中通过,从而产生阻尼力并实现能量转变(机械能转化为热能),达到减小结构振动反应的目的。
关键词:阻尼器;耗能减震;动力分析一、基本概念及构造特点(1)基本概念阻尼是结构振动衰减的根本原因,但由于实际结构中的阻尼复杂特性使得并不能精准定位阻尼,故在结构分析中一般认为结构阻尼为线性粘滞阻尼,也即是认为阻尼力与速度成正比,且假定结构中设置粘滞阻尼器后所附加给结构的阻尼与结构本身的阻尼基本一致。
粘滞阻尼器(墙)是根据流体运动,特别是当流体通过节流孔或在封闭空间中进行相对运动时与壁缸或壁筒产生相互作用,将流体运动产生的动能转化为热能,从而耗散地震输入的能量。
这种因流体运动将动能转化为热能所产生粘滞阻尼的耗能装置,即被称之为粘滞阻尼器,又称之为速度型阻尼器,其阻尼力的大小与流体运动的速率密切相关,速度越大,阻尼力越大,速度为0时,阻尼力为0,是一种刚度无关、速度相关的阻尼器。
(1—1)其中:F——粘滞阻尼器的粘滞阻尼力;C——阻尼系数,与壁缸或壁筒的具体尺寸、粘滞流体的粘度等因素密切相关。
粘滞阻尼器以其优异的抗风、抗震(振)能力和经济性,近年来在工程结构领域得到广泛应用。
其应用领域包括:民用建筑(如住宅、办公楼、商场等多层高层及大跨建筑结构)、生命线工程(如医院、学校、城市功能建筑)、工业建筑(如厂房、塔架、设备减振)、桥梁(人行桥、高架路桥)、军工行业等。
基于DMA法的新型黏弹性材料阻尼特性研究作者:许俊红李爱群苏毅等来源:《振动工程学报》2015年第02期摘要:鉴于黏弹性阻尼材料在建筑结构抗震减震及抗风方面的重要性,以丁腈橡胶为基体、基于DMA法,首先考察了氯化聚丙烯(CPP)、短碳纤维(CARB)、200目石墨粉(GRAP)、鳞片石墨(FLAKE)、云母粉(MICA)等与基体材料共混物的基本力学性能,其次研究了掺合剂对基体材料的影响,并给出了组分比对基体胶阻尼性能的影响效果对比分析。
研究结果满足了两个设计要求:1.改进了材料的阻尼性能,使损耗因子提高至1.26;2.使原材料的温位Tg从28.2℃调整至15℃左右,并大大拓展了tanδ>0.5的温域。
并且研究发现,单纯添加200目石墨粉的效果最佳,粒径大的炭黑类材料如高耐磨炭黑(FEF)和软质快压出炭黑(HAF)对NBR材料的改进效果不大。
关键词:抗震减震;丁腈橡胶;掺合料;DMA;损耗因子中图分类号:TU951; TB324文献标志码: A文章编号: 10044523(2015)02020308DOI:10.16385/ki.issn.10044523.2015.02.0051概述中国建筑结构消能减震设计于2001年首次被纳入《建筑抗震设计规范(GB500112001)》[1],并在2010版中[2]得到了进一步加强与应用推广,消能减震设计在建筑结构减灾防灾方面发挥着不可或缺的重要职能。
黏弹性阻尼装置是建、构筑结构被动控制中主要的耗能构件,由钢板夹层黏弹性阻尼材料构造而成(如图1),通过钢板间夹层材料的剪切变形而使输入的动荷载衰减[3,4]。
而该耗能装置的核心材料,则通常采用阻尼系数较高的丁腈橡胶,丁腈橡胶图1黏弹性阻尼器初始构件(Nitrile Butadiene Rubber,简称NBR)是由丁二烯与丙烯腈共聚而制得的一种合成橡胶[5],分子结构如图2,具有损耗因子较大、耐油、耐老化性能较好的优良特质,因此得以推广应用于建筑结构抗震减震设计。
高层建筑风效应及风振控制分析摘要:科技的发展与应用,使高层建筑被普遍应用,在设计高层建筑的时候,需要注意风效应对其的影响。
既要满足居住需求,又要满足减少振动的要求,一般高层建筑风振控制有耗能减振系统、吸振减振系统、锚索控制、主动控制与混合控制系统等。
关键词:高层建筑;风效应;风振控制随着经济的飞速发展与科学技术的广泛应用,高强度材料在高层建筑行业被普遍应用,使高层建筑与高耸结构不断出现,为建筑行业带来新的革命,也为城市居民生产生活带来了新形式。
高层建筑师在设计过程中,注意力多集中于建筑的平面功能布置、外观合理与空间的有效利用上,很少考虑到高层建筑间气流的影响问题。
如果高层建筑群之间的布局不合理,会为业主带来极大的不便。
高层建筑的主要荷载为水平风荷载,相比于地震等振动作用,风力作用频繁且持续时间长,影响力要大得多,为防止高层建筑在风力作用下出现倒塌、结构开裂等问题,必然要对高层建筑的风效应及风振控制进行合理的分析,使高层建筑结构抗风设计满足实际生活使用需求、安全需求、舒适度需求等。
一、高层建筑风效应的数值分析以高层建筑小区风效应进行分析,常见高层建筑小区的布局有三种形式:行列式、错列式和周边式,针对这三种布局的高层建筑,利用计算机进行模拟数值分析,得出高层建筑群内气流流动速度,并分析其影响度。
数据举例:行列式为4排每排4栋,共计16栋;错列式为五排交错排列,共计18栋;周边式为4排,呈口字形排列,共计12栋。
行列式错列式周边式拟定风向为正北和正西北两种,风速5m/s。
按人在1.8米位置进行计算。
其数值结果对比分析如下:(一)正北风向时:行列式第三、四排的风速达最高;错列式在第一、二列的第四排侧;周边式在第一、三列第四排。
其涡流形式,除错列式中间位置出现涡流外,其他二种不出现或很少出现。
通过对风速的变化趋势进行对比发现:三种布局风速会沿建筑高速而增大,行列式排末高层的高速区可达5.8m/s;错列式高层高速区达7.7m/s;周边区则达6.8m/s。
高层建筑的风振分析与控制在现代城市的天际线中,高层建筑如林立的巨人般引人注目。
然而,这些高耸的建筑在面对自然界的风力作用时,面临着严峻的挑战。
风振现象可能导致结构的损坏、使用者的不适,甚至威胁到建筑的安全性。
因此,对高层建筑进行风振分析与控制是至关重要的。
风对于高层建筑的影响是多方面的。
首先,风会在建筑表面产生压力分布的不均匀,从而导致水平方向的力和扭矩。
这种水平力可能引起建筑的整体晃动,尤其是在强风条件下。
其次,风的脉动特性会激发建筑的振动,类似于风吹过琴弦产生的振动。
如果这种振动的频率与建筑的固有频率接近,就会发生共振现象,使振动幅度急剧增大。
为了准确分析高层建筑的风振特性,工程师们采用了多种方法和技术。
风洞试验是其中一种常用且有效的手段。
在风洞中,可以模拟不同风速和风向条件下的风场,将缩小比例的建筑模型放置其中,通过测量模型表面的压力和模型的响应来获取风振相关的数据。
计算流体动力学(CFD)也是一种重要的分析方法,它通过数值模拟来计算风场和建筑表面的相互作用。
此外,基于结构动力学的理论分析方法,可以建立建筑的数学模型,计算其固有频率、振型和响应等。
在风振分析中,建筑的外形和结构形式对风振特性有着显著的影响。
流线型的建筑外形通常能够减少风的阻力和压力差,从而降低风振响应。
例如,一些现代化的高层建筑采用了逐渐收分的外形或者带有弧形边缘的设计。
结构的刚度和质量分布也会影响固有频率和振型,从而改变风振的响应特性。
增加结构的刚度,如使用更强大的梁柱体系或增加剪力墙,可以提高建筑抵抗风振的能力。
当分析出高层建筑可能存在较大的风振风险时,就需要采取相应的控制措施。
一种常见的方法是增加结构的阻尼。
阻尼可以消耗振动能量,减小振动的幅度。
通过在结构中安装阻尼器,如粘滞阻尼器、调谐质量阻尼器(TMD)或调谐液体阻尼器(TLD)等,可以有效地控制风振响应。
以 TMD 为例,它通常由质量块、弹簧和阻尼器组成,其固有频率被调整到接近建筑的主要振动频率,当建筑发生振动时,TMD 产生相反的力来抵消振动。
粘弹性材料在工程力学中的应用研究引言:粘弹性材料是一类具有特殊性质的材料,在工程力学领域中有着广泛的应用。
它们具有类似于固体和液体的特性,可以在外力作用下发生形变,并且具有一定的恢复能力。
本文将探讨粘弹性材料在工程力学中的应用研究。
一、粘弹性材料的特性粘弹性材料具有独特的力学特性,主要表现为两个方面:粘性和弹性。
1. 粘性:粘弹性材料在外力作用下会发生形变,并且具有持久的变形特性。
这是由于材料内部的分子结构发生变化,导致形变的延展性和持续性。
2. 弹性:粘弹性材料在外力作用消失后,可以部分或完全恢复到原始状态。
这是由于材料内部的分子结构重新排列,恢复原有的形状和体积。
二、粘弹性材料在结构工程中的应用粘弹性材料在结构工程中具有广泛的应用,主要体现在以下几个方面:1. 减震与隔振:粘弹性材料可以有效减少结构在地震或其他外力作用下的振动幅度,降低结构的动态响应。
通过在结构中引入粘弹性材料,可以提高结构的抗震能力和稳定性。
2. 缓冲与减速:粘弹性材料可以用于缓冲和减速装置,如汽车碰撞保护系统和电梯缓冲器。
在碰撞或急停时,粘弹性材料可以吸收和分散能量,减少冲击力对人体或设备的伤害。
3. 声学控制:粘弹性材料在声学领域中有着重要的应用。
通过在墙体、地板或天花板等结构中使用粘弹性材料,可以有效地减少声音的传播和反射,提高室内的声学环境。
4. 振动控制:粘弹性材料可以用于振动控制装置,如飞机和船舶的振动减缓系统。
通过在关键部位使用粘弹性材料,可以有效减少结构的振动幅度,提高舒适性和安全性。
三、粘弹性材料在土木工程中的应用粘弹性材料在土木工程领域中也有着广泛的应用,主要体现在以下几个方面:1. 地基处理:粘弹性材料可以用于地基处理,改善土壤的力学性质。
通过注入粘弹性材料,可以提高土壤的强度和稳定性,减少地基沉降和变形。
2. 桥梁支座:粘弹性材料可以用于桥梁支座,提供桥梁的支撑和缓冲作用。
通过在桥梁支座中使用粘弹性材料,可以减少桥梁在车辆通过时的振动和冲击力,延长桥梁的使用寿命。
阻尼器在高层钢结构中的减震性能对比分析【摘要】本文通过对阻尼器在高层钢结构中的减震性能进行对比分析,探讨了阻尼器的原理和分类、应用、影响因素,以及各种阻尼器在减震性能上的差异。
通过数值模拟结果分析,比较了不同类型阻尼器在高层钢结构中的减震效果。
研究发现,不同类型的阻尼器在减震性能上存在一定差异,可以根据实际需求选择适合的阻尼器。
总结了不同类型阻尼器在高层钢结构中的减震性能对比,并展望了未来的研究方向。
本研究对于提高高层钢结构的抗震性能具有一定的参考价值。
【关键词】阻尼器、高层钢结构、减震性能、对比分析、原理、分类、应用、影响因素、比较、数值模拟、结果分析、结论、未来研究方向、展望。
1. 引言1.1 研究背景近年来,随着科技的不断发展和建筑结构设计的需求,各种类型的阻尼器不断推陈出新,包括有摩擦阻尼器、粘滞阻尼器、液体阻尼器等。
这些阻尼器通过耗散能量来减小结构的振动幅度,进而提高结构的减震性能。
不同类型的阻尼器在高层钢结构中的减震效果有所不同,需要进一步研究和分析。
对阻尼器在高层钢结构中的减震性能进行对比分析,可以帮助工程师和设计师在实际工程中选择适合的阻尼器类型,提高结构的抗震性能。
本研究旨在探讨各种阻尼器在高层钢结构中的应用情况和减震效果,为今后相关领域的研究提供参考和借鉴。
1.2 研究意义通过对各种类型阻尼器在高层钢结构中的减震性能进行比较分析,可以为工程设计人员在选择合适的阻尼器类型时提供科学依据。
在建筑结构设计和施工中,合理选择和配置阻尼器对于提高高层建筑的抗震性能、减小结构振动对建筑内部设备和人员的影响具有重要意义。
深入研究阻尼器在高层钢结构中的减震性能对比分析对于推动高层建筑结构工程领域的发展具有重要的学术和实用价值。
1.3 研究目的研究目的主要是通过对不同类型阻尼器在高层钢结构中减震性能的对比分析,寻找最适合的阻尼器类型,为高层钢结构的设计和施工提供科学依据。
通过研究阻尼器在高层钢结构中的应用和影响因素,深入探讨阻尼器在减震性能上的作用机理,为提高高层钢结构的抗震性能提供理论支持和实际指导。
采用粘弹性阻尼器的剪力墙结构地震反应控制研究[摘要] 本文首先介绍了粘弹性阻尼器的基本工作原理,在此基础上采用等效标准固体模型和随机平均法计算得到了安装粘弹性阻尼器剪力墙结构的等效刚度和等效阻尼,最后对某高层剪力墙住宅结构在多遇及罕遇地震作用下进行了时程分析,结果表明,通过给结构提供附加刚度和附加阻尼,粘弹性阻尼器可以有效降低结构的地震反应,对结构的地震反应控制有着显著的效果。
[关键词] 粘弹性阻尼器;剪力墙;耗能减震;时程分析0 引言建筑结构隔震及消能减震是传统抗震手段之外的一种有效防灾减灾技术,属于结构振动控制的范畴,近年来国内外学者进行了广泛研究,并在工程领域中得到了大量应用[1-2]。
传统抗震设计方法依靠结构自身抗力(强度、刚度)来抵御地震作用,允许结构构件在地震作用下发生损坏,通过结构构件的破坏来耗散地震能量,这是不合理也是不安全的。
消能减震技术则是在结构某些变形较大的部位设置耗能装置,地震发生时,随着结构侧向变形的加大,通过耗能装置的非弹性变形来耗散大部分的地震能量,迅速衰减结构的振动反应,保护主体结构在强震下免遭破坏[3]。
粘弹性阻尼器(VED)是一种构造简单、施工方便、经济实用、性能稳定的耗能减振装置。
本文利用粘弹性阻尼器对某高层剪力墙住宅的抗震加固进行了分析和设计,在多遇和罕遇地震作用下对加固前及加固后的结构进行了弹塑性时程分析,结果表明:粘弹性阻尼器能有效降低结构的地震反应,是一种性能良好的消能减震装置。
1 粘弹性阻尼器的基本原理粘弹性阻尼器大体类型分为板式和筒式两种,由粘弹性材料和约束钢板组成,钢板和粘弹性材料通过硫化的方法粘结在一起,如图1所示。
图1 粘弹性阻尼器构造示意图在激励作用下,阻尼器产生位移,阻尼器中的粘弹性材料因变形而耗散大量能量,从而达到减小结构振动的目的[4]。
粘弹性材料的最大优点是可以在较宽的频带范围内对振动进行抑制,特别适用于随机和宽带领域中动力环境的减震问题(如地震和风振)。
建筑工程结构振动控制技术探究摘要:现代建筑体型日益庞大,高层建筑不断增多,在建筑行业飞速发展的过程中,建筑抗震也成为一大难点。
对于建筑结构而言,研究振动控制技术并应用于实践中具有重要意义,是确保建筑结构稳定性的基础性工作。
基于实践研究,本文对振动控制技术进行研究,仅供参考。
关键词:建筑工程;振动控制;结构抗震0 引言建筑工程行业一直保持着良好的发展势头。
随着建筑行业快速发展,配套技术要求也在不断提高。
近些年来,地震灾害时有发生,造成极大破坏,引发人们对结构抗震性能的普遍关注,相关专家学者也投入结构振动控制研究之中,并且取得一定积极成果。
加强结构振动控制研究,是提高建筑抗震性能,减少地震危害性的重要工作,应保持足够重视。
1 结构振动控制研究现状1.1 被动控制此类技术通过改变结构某些构件的实际构造或者改变体系动力学特征、于结构某处加子系统等方式达到减振目标,技术应用无需外部能源支持。
通常情况下,被动控制结构相对简单、整体造价也不高,维护也很方便。
基于独特技术优势,并且也证实具有一定的抗震性能,成为结构设计热点,在各类工程中有广泛应用。
对于被动技术,根据当前发展情况,主要可分为基础隔振、耗能吸能减振两类。
其中,基础隔振是设置隔振消能装置削减地震向地表传递的大量能量以有效降低结构振动,一般在中低层建筑中使用,高层建筑不适用。
吸能减振技术是在结构节点、支撑处等位置设耗能阻尼减小结构振动。
1.2 主动控制此类控制技术需要外部能量供给才能发挥作用。
主动控制相对复杂,并且在造价上更高,通常也难以进行维护,不过在现代高层建筑工程中,采用主动控制技术实际振动控制效果更好。
现代主动控制也不断采用一些尖端技术,可以实现对结构振动的实时追踪以及对未来振动情况的科学预测,有利于进一步完善结构设计,使抗震性能达到最优。
细分这一类技术,有如下两种:①控制力型:由主动拉索、支撑系统、阻尼系统、挡风板系统等组成,遭遇结构振动时借助外部能源对目标建筑结构施加控制力,利用感应器将收集的信息输入计算机后计算,得到所需施加的控制力,再借助外部能源功能施加控制力,减小结构振动。
粘弹性阻尼墙及其高层建筑结构风振控制性能研究
发表时间:2016-11-02T11:35:50.303Z 来源:《基层建设》2015年32期作者:赵海强1 刘学建2
[导读] 摘要:由于化工企业自身的生产特殊性,化工企业历来都是环保工作的重点单位。
近几年来,环境保护难题越来越突出,已引起各级政府单位的重视,特别是限期治理达标企业,更是存在着环境治理这一重大难题。
这不仅影响自然环境,对企业自身的经济也存在直接的影响。
因此,各个化工企业积极为环保达标开展了各项工作,创建健全了各项办理体制,做好环境保护工作,严格控制污染物的排放。
1.呼和浩特市政府投资非经营性项目代理建设办公室呼和浩特 010020;
2.内蒙古第三电力建设工程有限责任公司包头014000)
摘要:粘弹性阻尼墙是一种新型的粘弹性阻尼器。
本文根据已有文献记录,选取适当的粘弹性材料性能参数。
基于Kelvin模型建立粘弹性阻尼墙的分析模型。
以一栋36层的框架剪力墙结构为研究对象,利用ABAQUS有限元软件建立安装和未安装粘弹性阻尼墙结构的有限元模型。
利用AR模型(自回归模型)生成人工风速时程,通过对两种结构进行风振时程分析,比较两种结构在受到风荷载激励下的响应。
结果表明,粘弹性阻尼墙可以有效减小结构风振响应,改善结构的舒适度
关键词:粘弹性阻尼墙;框架剪力墙结构;风振时程分析
0概述
粘弹性阻尼器则是最早的一类成功安装在高层建筑和其他结构上的用于减小结构地震和风振响应的被动耗能元件。
粘弹性阻尼器具有力学性能稳定、耗能能力强、构造简单、经济实用等优点。
1研究现状
1.1粘弹性阻尼器的研究与应用
1969年,美国3M公司的Mahmoodi研制出第一种用于土木工程领域振动控制领域的粘弹性阻尼器[1]。
1991年至1993年,美国的Chang等对3M公司生产的粘弹性阻尼器进行了力学性能试验,指出影响粘弹性阻尼器的力学性能的主要因素主要有环境温度,加载幅值,加载的循环圈数以及激励频率等[2][3]。
1998年至1999年,吴波,欧进萍等分别对国产的粘弹性阻尼器进行了试验研究[4][5]。
试验确定了国产的几种粘弹性阻尼器的力学性能,并指出了国产粘弹性阻尼器的不足,提出了改进建议。
1.2粘弹性阻尼墙的构造特点
基于粘弹性阻尼器的优点,粘弹性阻尼墙体充分利用建筑结构墙体所提供的空间,可以通过增加粘弹性材料面积来提供所需求的阻尼比以提高耗能能力,并且在所有的振动条件下都能进行耗能,即使在较小的振动条件下,也能够获得良好的耗能能力;粘弹性阻尼墙体力学模型简单,分析设计方法明确易行;在不同的加载频率和循环次数下,粘弹性阻尼墙体动力性能稳定、耗能能力强。
2安装粘弹性阻尼墙结构风振性能分析
2.1粘弹性阻尼墙的恢复力模型
本文使用Kelvin模型模拟粘弹性阻尼器的力学性能,并假设忽略温度对粘弹性材料的影响。
建筑结构内的环境温度较为稳定,且有研究表明,粘弹性阻尼材料的疲劳温升对其性能影响不大[错误!未定义书签。
]。
2.2有限元模型简介
(1)建筑结构概述
某高层商用写字楼,高度为166m,地上36层,地下室3层,主要用作停车场,部分用作设备用房。
地下室大底板结构标高为-12.8m。
结构设计基准期为50年,安全等级为2级,抗震设防烈度为8度,设计基本加速度为0.2g,场地土特征周期为0.45s。
当地重现期为50年的基本风压为0.45kN/m2。
结构为框架—剪力墙筒体结构。
外框柱为型钢混凝土柱,内筒由钢筋混凝土剪力墙组成。
(2)材料本构模型
粘弹性阻尼墙使用SPRING/DASHPOT单元模拟。
根据给定的粘弹性材料的参数,阻尼墙尺寸及结构的一阶自振频率
ω=1.8563rad/s,计算得到一片粘弹性阻尼墙的等效刚度系数k'=4.8×108N/m,等效阻尼系数c'=9.81×107N·s/m。
粘弹性阻尼墙与结构的连接部件的刚度按照《建筑抗震设计规范》(GB50010-2010)12.3.5节规定,由式5计算得到支撑的刚度Kb=2.83×109N/m。
连接件使用T3D2两节点三维桁架单元模拟。
(1)
2.3风速时程及风荷载时程模拟
近年来,线性滤波法中的自回归(AR)模型因其计算量小、速度快,在脉动风速时程的数值模拟中得到了广泛的应用[7]。
(1)风速模拟参数
风速模拟参数如表1所示。
模拟风速功率谱采用Davenport谱。
上截止频率为100Hz,下截止频率为0.00001Hz最终人工风速时程为平均风速与脉动风速之和。
风速时程样本时长取105.4s,其中前三秒为缓冲步。
计算时间步长Δt=0.1s,计算总步数为1055步。
(2)加载方式
在有限元模型中,模拟风速点为5.75,10.95,16.15,21.95,26.15,30.35,34.55,38.75,42.95,47.15,51.35,55.55,59.75,63.95,68.15,72.35,76.55,80.75,84.95,89.15,93.35,97.55,101.75,105.95,110.15,114.35,118.55,122.75,126.95,131.75,136.55,141.35,146.15,150.6,156.9,161(单位:m)处,每层加载点在每层楼板平面内。
每个空间点的迎风面积取相邻两层xz面中心线之间的面积。
2.4模态分析结果
安装阻尼墙对结构的振动特性影响不大,一阶频率仅提高了1%,可见阻尼墙的附加刚度对结构自身的振动特性影响较小。
2.5结构顺风向风振时程分析结果
通过Matlab编程算出每层节点的脉动风速时程v(t)。
将脉动风速时程变换到频域当中,并且采用双对数坐标进行目标谱与模拟谱的
比较,可以看出模拟谱与目标谱吻合良好。
参考文献:
[1]Mahmoodi P.Structural dampers[J].Journal of Structural Devision,ASCE,1969,95(8):1661-1672.
[2]Chang K C,Soong T T,Oh S-T,Lai M L.Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers[R].Technology Report NCEER-91-0012,Department of Civil Engineering State University of New York at Buffalo,Buffalo,New York 14260,1991.
[3]Chang K C,Lai M L,Hao D S,Yeh Y C.Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Damper[R].NCEER 93—0009,National Center for Earthquake Engineering Research,Buffalo,USA,1997.
[4]吴波,郭安薪.粘弹性阻尼器的性能研究[J].地震工程与工程振动,1998,18(2):108-116.
[5]欧进萍,邹向阳.粘弹性耗能器的性能实验研究[J].振动与冲击,1999,18(3):12-19.。