苯加氢工艺原理
- 格式:pdf
- 大小:677.26 KB
- 文档页数:41
加氢苯相关行业知识加氢苯是指将苯分子中的芳香环上的氢原子部分或全部替换成氢原子,从而形成一种具有饱和碳链结构的化合物。
加氢苯是一种重要的有机化合物,在化工行业中具有广泛的应用。
加氢苯在石化行业中有着重要的地位。
苯是石化工业中的重要原料,广泛应用于合成塑料、合成橡胶、合成纤维等方面。
然而,苯具有挥发性大、易燃易爆等特点,不利于储存和运输。
因此,将苯加氢后,可以降低其挥发性,提高其稳定性,从而更好地应用于石化工业。
加氢苯在医药行业中也具有重要的作用。
苯是许多药物的重要中间体,如抗生素、镇痛药等。
然而,苯分子中的芳香环结构不稳定,容易发生氧化反应,从而影响药物的稳定性和活性。
通过加氢苯反应,可以稳定药物分子结构,提高药物的质量和效果。
加氢苯还在食品行业中扮演着重要角色。
苯是许多食品添加剂的原料,如人工香料、防腐剂等。
然而,苯具有一定的毒性,对人体健康有一定的危害。
通过加氢苯反应,可以将苯中的芳香环结构破坏,降低苯的毒性,提高食品的安全性。
加氢苯还可以用于合成高级燃料。
苯加氢后,可以得到环烷烃类化合物,如环己烷等。
这些化合物具有较高的辛烷值和较低的挥发性,是理想的汽车燃料。
通过开发加氢苯技术,可以提高燃料的质量和效能,减少对环境的污染。
在加氢苯相关行业中,加氢催化剂是关键的工艺条件。
加氢催化剂可以促进苯分子中的氢原子替换反应,提高反应的速率和选择性。
常用的加氢催化剂有铂、钯、铑等贵金属催化剂,以及Ni-Mo、Ni-W等过渡金属催化剂。
选择合适的催化剂对于加氢苯反应的效果和经济性具有重要影响。
总的来说,加氢苯是一种重要的有机化合物,在石化、医药、食品和能源等行业中具有广泛的应用。
加氢苯的反应过程需要借助加氢催化剂,通过合理选择催化剂可以提高反应效率和经济性。
随着科技的进步,加氢苯相关行业也将不断发展壮大,为人类社会的进步和发展做出更大的贡献。
3苯加氢制环己烷环己烷是一种重要的有机化工原料,主要用于生产环己醇、环己酮、聚己内酰胺和聚己二酰己二胺等产品,是纤维素醚、树脂、蜡、沥青和橡胶的优良溶剂。
环己烷可以从环烷基原油所得的汽油馏分中提取,但产量有限,纯度不高,要值得99.9%以上的环己烷相当困难。
3.1工艺现状工业生产中,环己烷的生产方法分为苯加氢法和石油烃馏分的分馏精制法。
苯加氢法是环己烷的主要生产方法,可分为液相法和气相法。
常用的催化剂有Pt、Pd和Ni等。
3.1.1气相法苯加氢制备环己烷氢气和苯混合后送入热交换器加热蒸发呈气相,氢气和苯的物质的量比为3.5~8。
混合气体在200~250℃下通入装有具有高温特性催化剂的第一段多管反应器,再在160℃左右通入装有低温特性催化剂的第二段多管反应器,反应热用管外冷却剂吸收除去。
反应产物经冷凝后,经分离器除去未反应氢气即得产品环己烷。
气相苯加氢工艺特点是,气相苯加氢工艺混合均匀,转化率和收率均很高,但反应激烈,易出现“飞温”现象,操作上不易控制。
气相加氢采用固定床,工艺相对简单,投资相对较小,适合于小规模环己烷生产企业采用,应用厂家较多;对氢气纯度要求较低,随着国产催化剂的进步,副产蒸汽压力已经有较大提高,产品质量有明显提高。
气相苯加氢法典型工艺有:贝克森法(Bexane)、美国阿科(ARCO)、UOP、霍德赖法(Houdry)和海德拉法(Hytoray)法等。
3.1.2液相法苯加氢制备环己烷氢气经甲烷化和干燥之后与苯分别进入装有镍催化剂的主反应塔中,借助于泵的循环作用,使固体催化剂保持悬浮状态,并用换热器除去反应热,同时生成低压蒸汽,苯几乎可完全加氢。
从主反应塔出来的反应产物再通入装有镍催化剂的固定床补充反应塔,补充反应塔流出物经冷凝后在高压分离塔进行闪蒸,闪蒸气体可循环回主反应塔,闪蒸液送稳定塔,从稳定塔塔顶除去氢气和其他的溶解气体,塔底产物即为产品环己烷。
液相苯加氢工艺特点是,液相苯加氢工艺相比气相而言,反应稳定、缓和,转化率和收率也很高,副产蒸汽压力相对较高,但液相反应必须有后反应,能耗也较高,液相反应的氢气利用率仅为85%。
四、苯加氢制环己烷环己烷主要(占总产量90%以上)用来生产环己醇、环己酮及己二酸,后三者是制造尼龙-6和尼龙-66的重要原料。
环己烷还用作树脂、油脂、橡胶和增塑剂等的溶剂。
用作尼龙原料的高纯度的环己烷主要由苯加氢制得。
工业上苯加氢生产环己烷有气相法和液相法两种。
虽然美国杜邦公司早已开发成功气相加氢工艺,但大多数工厂仍采用液相加氢工艺,例如美国的Uop公司,法国石油研究所(IFP)等。
气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,投资费用比液相法高。
1.反应原理(1)化学反应在反应条件下,苯与氢可能发生下面各种反应:+nH2→C+CH4(4)反应(1)若为气相法固定床,用还原Ni 作催化剂,反应温度为65~250℃,压力0.5~3.5MPa;若为液相加氢,采用骨架镍或还原Ni为催化剂,反应温度为160~220℃,压力2.7MPa左右,环己烷收率在99%以上。
反应(2)和(4)在250℃左右的低温下不显著,它们可能是由第Ⅷ族金属催化的氢解型机理引起的,也可能是由双功能催化剂的加氢裂解型机理引起的。
双功能催化剂为具有加氢催化活性的某些金属(如Pt,Pd或Ni)负载在酸性载体(SiO2或SiO2/Al2O3)上构成,在载体上往往存在强酸中心,它对反应(2)和(4)有明显促进作用。
因此,选择非酸性载体可以避免这种加氢裂解作用。
反应(3)是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构化反应的催化剂。
在镍催化剂上,250℃时才开始产生甲基环戊烷。
(2)热力学平衡由反应(1)可知,苯加氢生成环己烷的反应是一个放热的体积(摩尔数)缩小的可逆反应。
在127℃时的平衡常数为7×107,在227℃时为1.86×102。
氢压和温度对环己烷中苯的平衡浓度的影响示于图3-2-18。
工艺流程本装置包括加氢精制、预蒸馏、萃取蒸馏、二甲苯蒸馏和罐区五个部分,其中前四部分为主装置部分,简称加氢蒸馏部分。
加氢蒸馏部分概述粗苯在加氢精制单元中经过多级蒸发后,进行两级加氢处理(预加氢、加氢净化),反应所需的补充氢气由外界提供。
粗苯加氢所产生的轻质组分及H2S从产品中分离出来是利用稳定塔来实现的,将其送往煤气精制厂集中处理。
经加氢处理后的产品三苯馏份(BTXS)送往预蒸馏单元。
加氢精制单元的重组分分离是利用一残油蒸馏塔实现的,其重组分送往古马隆生产装置。
三苯馏份(BTXS)在预蒸馏单元进行蒸馏分离,被分成含有苯和甲苯的BT馏份和含有二甲苯的XS馏份,BT馏份送入萃取蒸馏单元,而XS馏份送入二甲苯蒸馏单元。
BT馏份中的非芳香烃是在萃取蒸馏单元中从BT馏份中分离出来的,随后作为非芳馏份产品送往罐区单元,蒸馏中分离出的纯苯、硝化级甲苯送往槽区单元。
在二甲苯蒸馏单元里,轻组分、重组分从XS组分中分离出来,以获得纯二甲苯,轻组分与重组分一起和二甲苯送往罐区单元,作为产品出厂。
工艺流程见加氢及蒸馏部分工艺流程图。
工艺流程叙述加氢反应从槽区来的原料(COLO)经过粗苯过滤器(2F-6101A/B)和粗苯中间槽(2T-6101)到粗苯原料泵(2P-6101A/B),将原料升压至操作压力,开始运转时(SOR)约3030KPa,后期运转时(EOR)约3420KPa。
原料在预蒸发器(2E-6101A~E)内通过与主反应器反应物进行热交换,被预加热和部分汽化,通过混合喷嘴(2J-6101A~E)原料和循环氢压缩机(2K-6102A/B)来的循环氢混合,从预蒸发器来的混合物经过混合喷嘴后温度约177/183℃(SOR/EOR),进入蒸发器底部。
蒸发器塔底压力约2960/3320KPa(SOR/EOR),温度约为184/190℃(SOR/EOR),由蒸发器再沸器(2E-6102A/B)提供蒸发所需的热量,一部分高沸点组分作为残油从底部抽到残油塔。
苯加氢制环己烷工艺流程苯加氢制环己烷是一种常用的工业化合物制备方法,它能够将苯转化为环己烷。
以下是苯加氢制环己烷的工艺流程。
首先,苯加氢制环己烷的反应需要使用催化剂。
常用的催化剂是钼、钨或铂等金属催化剂。
催化剂可以提高反应速率和选择性,促进苯的加氢反应。
工艺流程的第一步是给催化剂进行预处理。
将催化剂与还原剂一起加入反应器中,通入氢气,以去除催化剂上的氧化物,并使其活性恢复到最佳状态。
预处理通常在高温和高压条件下进行。
第二步是将预处理后的催化剂与苯加入反应器。
工艺中最常用的反应器是固定床反应器,由多个催化剂床层组成。
苯和氢气在反应器中流动,与催化剂接触反应。
第三步是给反应器中通入氢气。
氢气是加氢反应的必需品,它促进了苯与催化剂的接触,提高了反应速度。
通入的氢气压力取决于反应条件和催化剂的要求。
一般来说,较高的氢气压力有助于提高反应速率。
第四步是控制反应条件。
反应温度通常在200到250摄氏度之间,这是苯加氢反应的最佳温度范围。
反应压力通常在2到10兆帕之间。
此外,还可以添加少量的溶剂,以改变反应速率和选择性。
第五步是对反应产物进行分离和纯化。
在加氢反应中,除了环己烷,还会产生少量的甲苯等副产物。
通过分离和纯化过程,可以从反应产物中获取纯度较高的环己烷。
最后一步是对副产物的处理。
由于加氢反应常常产生一些有害或不必要的副产物,需要进行适当的处理。
这可以通过蒸馏、气相吸附或其他方法来处理。
总的来说,苯加氢制环己烷是一种较常用的化学工艺方法。
通过催化剂的作用,在适当的反应条件下,能够高效地将苯转化为环己烷。
这个工艺流程在化工工业中得到了广泛的应用,为环己烷的生产提供了可靠的技术支持。
粗苯低温催化加氢和萃取精馏精制Ξ王建华 周 晓 耿瑞增(石家庄焦化厂,石家庄050031)摘要 介绍了焦化粗苯加氢精制和萃取精馏原理及生产工艺流程。
关键词 粗苯 加氢精制 萃取精馏中图分类号 TU996.61 TQ523.6 我厂粗苯精制原来采用酸洗工艺。
该工艺具有生产流程短、操作简便、设备简单、对材质要求不高等优点。
但所制得的产品质量差、收率低,特别是对环境保护不利。
因此不得不寻求技术上先进,经济效益、社会效益和环境效益均好的精制方法。
经过调查研究、综合评比及同行专家论证,认为以粗苯低温催化加氢及以N-甲酰吗啉为溶剂萃取精馏分离芳烃和非芳烃为特色的精制工艺(简称为粗苯低温催化加氢-萃取精馏精制工艺)基本上符合上述要求。
此工艺以焦化粗(轻)苯和氢气为原料(氢气用变压吸附法由焦护煤气中提取),在较低的温度(350℃左右)和较低的压力(3.5MPa左右)下催化加氢,用N-甲酰吗啉作溶剂经萃取精馏与普通精馏的方法,即可制得高纯苯(>99.95%)、硝化级甲苯(> 99%)或高纯甲苯(>99.9%)、混合二甲苯,副产品为非芳烃和溶剂油。
低温催化加氢、萃取精馏制高纯苯、硝化级甲苯及非芳烃为连续生产,高纯甲苯短期连续生产。
二甲苯分离为间歇生产,设计能力为年处理粗苯5万吨。
l 粗苯催化加氢基本原理 粗苯催化加氢十分复杂。
其主要原因,一是粗苯组成十分复杂;二是催化加氢涉及到许多化学反应。
这些反应既有热力学上的问题,又有动力学上的问题,还有催化剂选择性、活性以及非均相催化反应工程学上的问题。
本文只对最基本的原理作一般性讨论。
l.l 粗苯组成色谱分析结果表明,粗苯中除苯、甲苯、二甲苯等主要组分外,可定量的组分有九十余种;其中含量在0.1%以上的有三十余种。
根据化验,粗苯中含量较多的组分有:苯族烃(如苯、甲苯、二甲苯、乙基苯、三甲苯、茚满等),萘系组分(如萘、甲基萘、四氢化萘等),C4-C9链烷烃,环烷烃(如环戊烷、带l~3个甲基的环戊烷、环己烷、甲基环己烷、二甲基环己烷等),不饱和化合物(如1一戊烯、环戊烯、环戊二烯、二环戊二烯、苯乙烯、α-甲基苯乙烯、茚等),含氮化合物(如吡啶、甲基吡啶等)、含硫化合物(如二硫化碳、噻吩、硫醇、甲基噻吩等),含氧化合物(如古马隆等)等。
粗苯加氢装置工艺粗苯加氢装置工艺是一种用于将粗苯中的芳烃成分转化为环烷烃的过程。
该装置工艺主要包括前处理、加氢反应和分离三个步骤。
首先,在前处理步骤中,粗苯首先经过预热器加热至适宜的反应温度,并进入反应器。
同时,加入适量的催化剂,一般选择铂/铝氧化物催化剂。
这样可将来自原料中的杂质、硫化物等物质去除,提高反应的纯净度和催化剂的使用寿命。
接下来是加氢反应步骤,加热后的粗苯流经反应器,在催化剂的作用下,进行加氢反应。
在反应器内,芳烃分子中的碳氢键被氢气断裂,形成饱和的环烷烃。
而芳烃中的硫化物、氮化物等杂质也会在加氢过程中被去除。
这个反应过程是一个放热反应,需要控制好反应温度和压力,以确保反应的高效进行。
一般来说,反应温度在250-300摄氏度,反应压力在2-5兆帕之间较为适宜。
最后是分离步骤,反应后的产物经过冷却后,进入分离装置。
在分离装置中,根据不同组分的沸点和相对挥发性,将产物分离开。
一般来说,环烷烃可以通过精馏得到,而未反应的芳烃则会被回流再次进入反应器进行反应。
在分离过程中,需要注意控制温度和压力,以确保产品的纯度和收率。
总的来说,粗苯加氢装置工艺通过前处理、加氢反应和分离三个步骤,将粗苯中的芳烃成分转化为环烷烃。
该工艺具有高效、环保、经济等优点,被广泛应用于石化行业中。
粗苯加氢装置工艺是一种重要的石化工艺,用于将粗苯中的芳烃成分转化为环烷烃,从而提高其品质和价值。
粗苯是石油提炼过程中的副产物,主要由苯、甲苯、乙苯和二甲苯等芳烃组成。
然而,粗苯的芳烃成分对环境有害,并且在燃烧时会产生有毒气体。
因此,将粗苯中的芳烃成分转化为环烷烃是一项重要的任务。
粗苯加氢装置工艺主要包括前处理、加氢反应和分离三个步骤。
首先,在前处理步骤中,粗苯首先进入一个预热器,被加热至适宜的反应温度,一般为250-300摄氏度。
加热后的粗苯进入反应器中,同时加入适量的催化剂。
催化剂在粗苯加氢反应中起到了关键作用。
常用的催化剂是铂/铝氧化物催化剂,它具有良好的加氢活性和稳定性。
精心整理四、苯加氢制环己烷环己烷主要(占总产量90%以上)用来生产环己醇、环己酮及己二酸,后三者是制造尼大,投资费用比液相法高。
1.反应原理(1)化学反应在反应条件下,苯与氢可能发生下面各种反应:+nH2→C+CH4(4)2223上往往存在强酸中心,它对反应(2)和(4)有明显促进作用。
因此,选择非酸性载体可以避免这种加氢裂解作用。
反应(3)是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构对反应影响不大。
温度对反应(3)平衡的影响示于图3-2-19。
由图3-2-19可知,甲基环己烷的平衡浓度随温度的提高而上升。
为抑制这一副反应,也要求催化剂在较低温度下就有高的苯加氢活性,而且在催化剂上不存在酸性中心。
两种方法,对液相加氢而言,要求催化剂是细微颗粒(粉末,粒度为20~100μm),能悬浮在反应液中进行液-固相加氢反应。
考虑到反应要求低温高活性,而且苯环加氢比烯,炔加氢困难,工业上都选用骨架镍催化剂。
用这种催化剂在3.5MPa的压力和不产生副反应的温度(200℃)下,反应速率很容易达到每克镍每催化剂,要求载体有足够的强度承受工业条件下的机械应力,有足够的比表面积和适宜的孔径分布,能负载足够数量的镍盐(氧化镍)。
此外,还要求载体对副反应没有催化活性。
符合上述条件,工业上应用的载体有高纯度氧化铝球(Φ2~4mm),SiO2和硅藻土等,比表面积210m2/g,松密度0.91g/cm3,孔隙度0.4cm3/g。
现在,工业上应用较多的液相用物在催化剂表面是发生单位(独位)吸附还是多位吸附;③氢与吸附在催化剂表面的作用物分子是怎样反应的。
以苯加氢生成环己烷为例,就提出了两种不同的机理,一种认为苯分子在催化剂表面发生多位吸附,形成,然后发生加氢反应,生成环己烷。
近年来又提出了另一种观点,认为苯分子只与催化剂表面接近于1。
硝基苯加氢制苯胺工艺技术硝基苯加氢制苯胺工艺技术是一种用于合成苯胺的重要工艺技术。
苯胺是一种重要的有机化工原料,广泛用于染料、医药、塑料、橡胶等行业。
硝基苯加氢制苯胺是一种环保、高效的合成方法,下面将介绍其工艺流程和反应原理。
硝基苯加氢制苯胺工艺流程主要包括预处理、催化氢化反应和后处理三个步骤。
预处理主要是将硝基苯原料进行净化,去除杂质。
硝基苯主要存在于硝基苯的混合物中,其中常见的杂质有对硝基苯、间硝基苯等。
预处理的方法可以采用蒸馏、结晶、吸附等工艺,使得硝基苯的纯度达到要求。
催化氢化反应是整个工艺中的核心步骤。
反应的条件一般为高温高压下进行,催化剂一般选择贵金属催化剂。
在反应过程中,硝基苯首先与氢气发生加氢反应,生成亚硝基苯。
亚硝基苯继续与氢气发生加氢反应,生成苯胺。
整个加氢反应的过程具有较高的选择性,可以有效地将硝基苯转化为苯胺。
后处理主要是对反应产物进行分离和纯化。
由于反应产物中还包含有机溶剂、催化剂残留等杂质,需要通过蒸馏、结晶、洗涤等工艺对产物进行纯化,得到纯度较高的苯胺产品。
硝基苯加氢制苯胺的反应原理是通过氢气进行加氢反应,将硝基苯中的硝基基团还原为氨基基团,从而合成苯胺。
反应过程中需要使用催化剂来提高反应速率和选择性。
常用的催化剂有钯、镍等贵金属催化剂,它们具有较高的催化活性和稳定性。
催化剂活性的提高可以通过调整催化剂的结构和制备方法来实现。
此外,反应的条件(温度、压力、物质的摩尔比等)也会对反应的选择性和产率有一定的影响,需要通过合理地选择和控制反应条件来达到最优化的反应结果。
硝基苯加氢制苯胺工艺技术具有高效、环保等特点,能够实现较高的转化率和选择性。
随着环保要求的提高和技术水平的发展,硝基苯加氢制苯胺技术将会得到更广泛的应用和推广。
粗苯加氢及精制产品工艺技术的优化与研究【摘要】粗苯的加氢精制工艺主要分为原料预离解度单位、加氢精制单元、预馏法单位、萃取蒸馏法单位、芳香族化合物精炼设备和二甲苯精馏设备,其中加氢精制设备主要包含了反应部分和稳定部分,反应部分采用了三次加氢,第一段加氢阶段是预加氢的精制反应,二段和第三段加氢阶段加氢是最主要的加氢精制反应,而萃取单元精馏则包括了萃取精馏塔、汽提塔和液液分离罐。
采用粗苯的加氢精制工艺生成苯时,芳香族化合物具有损失小、芳烃保留率高、产品质量高等优点。
【关键词】粗苯加氢;工艺;加氢精制近年来,不少研究学者以及公司机构对于粗苯加氢技术进行了深入研究。
为了能够更好地转变发展方式,长期可持续的发展,本文通过对粗苯加氢精致工艺进行了探索研究。
加氢处理是现代炼制过程中的一个基本过程。
它可以去除碳氢化合物污染物,如硫、氮、氧、金属、饱和芳香环和烯烃,并将高分子量分子分解成较轻的化合物。
传统的加氢处理方法一般被用于预处理过程中,为转化过程(如重整、催化裂化和加氢裂化)提供了理想的优质原材料,也可用作加工过程,生产符合生态标准的运输燃料。
1加氢技术用过量氢气对馏出物和残渣进行催化、高温/高压处理以降低加工油的杂原子含量和芳香性,称为加氢处理。
可以说,先进的加氢处理技术是生产清洁运输燃料的最重要因素之一。
只有新的加氢处理概念和新的催化剂系统才能满足越来越严格的环境法规。
值得注意的是,加氢处理催化剂是全球催化剂市场中仅次于流化催化裂化和加氢裂化的第三大领域。
加氢技术应用最多的领域就是石油的提取分离。
原油馏分的加氢处理包括了同时进行的各种化学反应,如加氢脱磺酸基化(HDS)、氢化脱氮(HDN)、加氢去氧(HDO)以及芳烃的加氢。
其中,HDS一直是工业和学术界关注的加氢处理的主要问题。
这是由于高含硫量重质原油的使用增加,以及全球汽车燃料允许含硫量的减少。
HDN是另一个备受关注的问题,因为含氮化合物的存在会影响深部HDS过程。
10万t苯加氢技术说明中冶焦耐工程技术有限公司2011-5-241原料、辅助原料及产品1.1原料规格1.1.1粗苯装置设计能力为年处理粗苯100,000t,原料可处理粗苯或轻苯。
原料的质量应符合YB/T5022-93国家标准,其标准如下:1.1.2氢气本装置年消耗氢气量约3680×103 Nm3,以焦炉煤气为制氢原料,由PSA变压吸附装置制得,氢气质量指标要求如下:纯度≥99.9%(V/V)含甲烷量≤0.1%(V/V)含氮量<10PPM总硫≤2.0ppm(wt.)CO+CO2≤10.0 ppm(wt.)H2O ≤30.0 ppm(wt.)含氧量≤10.0 ppm(wt.)操作压力: 1.6 MPa (g)操作温度:常温焦炉煤气中约含58%的氢气,其质量大致如下:温度:常温提取氢气后,排放的的弛放气送煤气净化系统。
1.2原料、辅助原料及产品量表辅助原材料是指苯加氢装置在开工和正常生产时所需要的各种催化剂和化学试剂等。
1.3产品质量指标主要产品质量指标如下:a) 纯苯b)甲苯c)二甲苯d)非芳烃2建设规模及装置组成2.1确定原则本工程依据下列原则确定:a) 自产或外购的原料总量;b) 满足国内外一致公认的最小经济规模;c) 达到高起点、高水准、高附加值、深加工所必需的规模;d) 综合利用、降低能耗、提高环保水平所需的规模装配水平。
2.2生产规模及单元组成2.2.1生产规模本项目苯精制装置的建设规模为年处理粗苯10万t。
年操作时间:8000小时。
操作制度:四班三运转。
装置的操作弹性为设计处理能力的50~110 wt%。
2.2.2装置组成本工程由以下装置组成:a) 制氢装置:通过PSA变压吸附,由焦炉煤气制备氢气。
b) 加氢蒸馏装置:包括预分馏、蒸发汽化、加氢反应、加氢油稳定、萃取蒸馏及苯类产品蒸馏分离等生产装置。
包含导热油循环供热系统。
c) 生产油库装置:包括原料粗苯贮槽和各种产品贮槽的槽区及汽车装卸台。
粗苯加氢精制工艺设计
粗苯加氢精制工艺设计如下:
1. 原料准备:粗苯是原料,需要进行预处理,如离析、脱除杂质。
2. 加氢反应:将预处理后的粗苯与氢气在反应釜中进行加氢反应。
反应条件根据实验结果选择,通常温度为120-200℃,压力为1-10 MPa,反应时间为2-4 h。
3. 分离:反应结束后,将产物通过分离器进行分离。
分离器中的产物主要有苯、环己烷、环己烯、氢气等。
4. 脱气处理:对分离后的产物进行脱除残余氢气,通常使用脱气塔进行脱除。
5. 精制处理:对脱气后的产物进行净化处理,如脱除色度、酸度和杂质,以使之符合工业级苯的规格要求。
6. 最终产品:经过以上步骤处理后,产生的产品为精制苯。
需要注意的是,加氢反应中应选择适当的催化剂,以保证反应顺利进行。
同时,应在反应前对反应器和管道进行彻底的清洗和检查,以防止意外发生。
一、实习背景随着我国经济的快速发展和石油化工产业的崛起,苯加氢技术作为石油化工领域的重要工艺之一,在石油、化工、医药等多个行业中具有广泛的应用。
为了更好地了解苯加氢工艺的实际操作流程,提高自身的专业技能,我于2023年在某石油化工企业进行了为期一个月的苯加氢实习。
二、实习单位及部门实习单位:某石油化工企业实习部门:苯加氢车间三、实习目的1. 熟悉苯加氢工艺的基本原理和操作流程;2. 掌握苯加氢设备的使用和维护方法;3. 提高自身的安全意识和操作技能;4. 了解苯加氢行业的市场前景和发展趋势。
四、实习内容1. 苯加氢工艺原理及流程苯加氢是一种将苯与氢气在催化剂作用下进行加氢反应,生成环己烷的工艺。
其主要原理是在催化剂的作用下,苯分子中的不饱和键与氢气发生加成反应,生成饱和的环己烷。
苯加氢工艺流程主要包括:原料预处理、加氢反应、产品分离、尾气处理等环节。
2. 苯加氢设备的使用与维护在实习过程中,我学习了苯加氢车间的各种设备,如反应器、压缩机、冷却器、分离塔等。
掌握了这些设备的操作方法和维护技巧,例如:(1)反应器:熟悉反应器的操作规程,掌握反应器进料、升温、降温、催化剂装填、卸出等操作步骤;了解反应器的故障排除方法。
(2)压缩机:学习压缩机的操作规程,掌握压缩机的启动、运行、停车等操作步骤;了解压缩机的故障排除方法。
(3)冷却器:熟悉冷却器的操作规程,掌握冷却器的进料、出水、温度控制等操作步骤;了解冷却器的故障排除方法。
(4)分离塔:学习分离塔的操作规程,掌握分离塔的进料、出料、回流、温度控制等操作步骤;了解分离塔的故障排除方法。
3. 安全生产与应急预案在实习过程中,我深刻认识到安全生产的重要性。
苯加氢车间存在一定的安全隐患,如火灾、爆炸、中毒等。
因此,我学习了以下安全知识:(1)熟悉苯加氢车间的安全操作规程,如防火、防爆、防中毒等;(2)了解应急预案,掌握火灾、爆炸、中毒等事故的应急处理方法;(3)参加安全培训,提高自身的安全意识和应急处理能力。
加氢处理工艺与工程导语:加氢处理工艺是一种常见的化学工程技术,它在石油化工、化学工程等领域中得到了广泛应用。
本文将介绍加氢处理工艺的基本原理、应用领域以及工程设计中的注意事项。
一、加氢处理工艺的基本原理加氢处理工艺是通过向原料中加入氢气,采用催化剂促使原料与氢气发生化学反应,从而实现对原料的改性、升级或净化的一种工艺。
其基本原理可以归纳为以下几点:1. 氢气的作用:氢气能够与许多有机物发生加氢反应,通过与有机物中的不饱和键或官能团发生反应,使其饱和或转化为其他化合物。
这样可以改变原料的化学性质,提高其稳定性、可燃性、可溶性等。
2. 催化剂的作用:催化剂是加氢处理工艺中不可或缺的一部分,它能够降低化学反应的活化能,使反应速率加快。
常见的催化剂有铂、钯、镍等金属催化剂,它们能够吸附氢气并与原料发生反应,从而促进加氢反应的进行。
3. 反应条件的控制:在加氢处理工艺中,反应温度、压力和催化剂种类等条件都会对反应的效果产生影响。
合理选择反应条件,可以提高反应的选择性、收率和效率。
二、加氢处理工艺的应用领域加氢处理工艺在石油化工、化学工程等领域中有着广泛的应用。
下面介绍几个常见的应用领域:1. 石油加氢:石油加氢是指将原油或石油馏分与氢气在催化剂存在下进行反应,以提高产品的质量和性能。
通过石油加氢处理,可以降低产品的硫含量、减少重金属的含量、降低烯烃含量等,从而改善产品的稳定性、可燃性和可加工性。
2. 化学品加氢:在化学工程中,加氢处理工艺常用于化学品的合成和改性。
例如,将苯加氢可以得到环己烷,将烯烃加氢可以得到烷烃,将酮加氢可以得到醇等。
通过加氢处理,可以调节化学品的结构和性质,改善产品的性能。
3. 煤加氢:煤加氢是将煤与氢气在高温高压下进行反应,以转化为液体燃料或化学原料。
通过煤加氢处理,可以提高煤的能量利用率,减少煤燃烧产生的污染物排放,实现能源的清洁利用。
三、加氢处理工程的设计注意事项在进行加氢处理工程设计时,需要考虑以下几个方面的因素:1. 原料的选择:选择适合加氢处理的原料是工程设计的第一步。