轴对称作图大全含答案
- 格式:doc
- 大小:91.32 KB
- 文档页数:4
尺规作图题--模型1:轴对称模型学习或讲解思路:1、问题定位:所选题目的依据:①学生考过②学生用心做过③学生印象深刻④较难题2、先简单题分析,推理、总结得出“轴对称模型”3、运用“轴对称模型”返回求解问题定位的题目4、运用“轴对称模型”解答一系列类型题(尺规作图、轴对称图形)尺规作图题--模型1:轴对称模型大前提:尺规作图题,图形为轴对称图形小前提:让画对称点、画相等线段、画平行线段方法:轴对称模型:①一定要与对称轴构造交点②与对称轴形成交点的另外两个点一定要关于对称轴对称一、问题定位问题定位:所选题目的依据:①学生考过②学生用心做过③学生印象深刻④较难题题目来源:2021年江西省初中“名校联盟”九年级阶段性测试卷1、如图:已知二次函数y=x2+4x−5的图像及对称轴,请仅用无刻度的直尺按下列要求作图(保留作图痕迹,不写作法)(1)在图1中作点A(-4,-5)(2)已知点A(-4,-5),在图2中的对称轴上作点P,使得CP-AP的值最大解答:(1)二次函数为轴对称图形,点A是(0,-5)关于对称轴对称的点,做法如图1所示(2)可知:三角形CAP的性质:CP-AP < AC (两边之差小于第三边),所以点C、P、A三点共线时:CP-AP = AC ,此时AC最大。
二、方法分析1、先简单题分析,推理、总结得出“轴对称模型”2、建议该步骤用A4纸直接讲解,先不要在教案上做,之后返回来做;讲好该部分,与问题定位之间的联系、相似之处。
3、联系:都是轴对称图形4、证明三角形APC全等三角形AP'B , 即可总结出:轴对称模型5、轴对称模型:①一定要与对称轴构造交点②与对称轴形成交点的另外两个点一定要关于对称轴对称三、简单题分析1、如图,在△ABC中,已知AB=AC,AD⊥BC于点D.(1)如图①,点P为AB上任意一点,请你用无刻度的直尺在AC上找出一点P′,使得AP=AP′;(2)如图②,点P为BD上任意一点,请你用无刻度的直尺在CD上找出一点P′,使得BP=CP′.解答:(1)满足轴对称模型:①一定要与对称轴构造交点②与对称轴形成交点的另外两个点一定要关于对称轴对称(2)使用两次轴对称模型,即可求出P′2、如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图①中作线段BC的中点P;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC.解答:(1)求对称轴,满足轴对称模型的逆向使用(2)先画出对称轴,再使用一次轴对称模型四、题型训练1、在等腰Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于O,点P是BC的中点.请仅用无刻度直尺按要求画图.(1)在图①中,画出△ABC的边AB上的中线;(2)在图②中,画出正方形ABCD.解答:(1)以BO为对称轴,使用一次轴对称模型(2)以BO为对称轴,使用一次轴对称模型;再以OP为对称轴使用一次轴对称模型,求出Q点关于OP的对称点M;最后连接CM2、如图,已知四边形ABCD为菱形,对角线AC与BD相交于点O,E为AO上一点,过点E 作EF⊥AC,请仅用无刻度的直尺,分别按下列要求画图.(保留画图痕迹)(1)在图①中,EF交AD于点F,画出线段EF关于BD的对称线段E′F′;(2)在图②中,点F在AD外时,画出线段EF关于BD的对称线段E′F′.图①图②解答:(1)解法一:对称轴BD,画点F关于BD的对称点,使用一次轴对称模型;再画点E关于BD的对称点,使用一次轴对称模型解法二:使用两次中心对称模型(2)解法一:延长对角线,重新构造等腰三角形(轴对称图形)对称轴BD,画点F关于BD的对称点,使用一次轴对称模型;再画点E关于BD的对称点,使用一次轴对称模型解法二、延长对角线,重新构造等腰三角形使用两次中心对称模型3、如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺,分别在图①,图②中按要求作图(保留作图痕迹,不写作法).(1)在图①中,在AB边上求作一点N,连接CN,使得CN=AM;(2)在图②中,在AD边上求作一点Q,连接CQ,使得CQ∥AM.解答:(1)以BD为对称轴,作点M关于BD的对称点,使用一次轴对称模型(2)求出对称中心,作点M关于对称中心的对称点,使用一次中心对称模型4、如图,在菱形ABCD中,∠B=60°,AE⊥BC,垂足为E,请仅用无刻度的直尺按要求作图.(1)在图①中,作菱形ABCD的高CF,使得点F在AB上;(2)在图②中,作出以AE为边的等边△AEG.解答:(1)三线合一(三角形的三条高相交于一点)(2)以AC为对称轴,作点E关于AC的对称点,使用一次轴对称模型五、类型题更新。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )A. cmB. cmC. cmD. cm2、下列各图经过折叠不能围成一个正方体的是()A. B. C. D.3、以下国产新能源电动车的车标图案不是轴对称图形的是()A. B. C. D.4、如图,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW.若OA+OB +OC=1,则OC=()A.2-B. -1C.6-D. -35、如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为()A. B. C. D.6、如图,有一块Rt△ABC的纸片,∠ABC= ,AB=6,BC=8,将△ABC沿AD折叠,使点B落在AC上的E处,则BD的长为( )A.3B.4C.5D.67、在螳螂的示意图中,AB//DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠BCD=()A.16°B.28°C.44°D.45°8、如图,已知中,DE、FG分别是AB,AC边上的垂直平分线,,,则的度数是()A.10°B.20°C.30°D.40°9、将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,BE=1,折叠后,点C落在AD边上的C处,并且点B落在EC1边上的B1处.则1EC的长为()A. B.2 C.3 D.210、已知实数满足,则以的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对11、如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.若∠BAC=45°,AM=4,DM=3,则BC 的长度为()A.8B.7C.6D.512、如图,AB是⊙O的直径,点E是AB上一点,过点E作CD⊥AB,交⊙O于点C,D,以下结论正确的是()A.若⊙O的半径是2,点E是OB的中点,则CD=B.若CD=,则⊙O的半径是1 C.若∠CAB=30°,则四边形OCBD是菱形 D.若四边形OCBD是平行四边形,则∠CAB=60°13、如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为()A.2B.6C.3或6D.2或3或614、如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是()A.△ADC∽△CFBB.AD=DFC. =D. =15、如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C,D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形二、填空题(共10题,共计30分)16、如图,把一张上下两边平行的纸条沿EF折叠,若∠2=132°,则∠1=________.17、如图,等腰三角形中,,是底边上的高,则AD=________.18、若等腰三角形的底角等于15°,腰长为4cm,则等腰三角形的面积为________.19、如图,在△ABC中,,,AD是BC边上的中线,将△ACD沿AD折叠,使点C落在点F处,DF交AB于点E,则∠DEB=________.20、如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为________.21、如图,在△ABC中,AB=AC=3cm,AB的垂直平分线交AC于点N,△BCN的周长是5cm,则BC的长等于________ cm.22、如图,∠A=15°,∠C=90°,DE垂直平分AB交AC于E,若BC=4cm,则AC=________cm.23、如图,在△ABC中,∠ACB=90°,CD是△ABC的中线,若∠DCB=40°,则∠A的度数为________ °.24、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△=3.其中正确结论的是________.AFG;②BG=GC;③AG∥CF;④S△FGC25、如图,将一张长方形的纸片ABCD沿AF折叠,点B到达点B′的位置.已知AB′∥BD,∠ADB=20°,则∠BAF=________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,且∠BAD:∠BAC=1:3,求∠B的度数.28、如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.29、如图,在等腰△ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH,求证:四边形EBFC是菱形.30、(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,求△BCD的周长为;(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF 的周长等于AD的长.①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);②在图3中补全图形,求∠EOF的度数;③若,求的值参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、B5、B6、A7、A8、B9、B10、A11、B12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
八(上)数学第2章《轴对称图形》教案(含答案)一.轴对称图形二.镜面对称三.轴对称的性质四.作图-轴对称变换五.翻折变换(折叠问题)六.利用轴对称设计图案七.角平分线的性质八.线段垂直平分线的性质九.等腰三角形的性质十.等腰三角形的判定十一.等腰三角形的判定与性质十二.等边三角形的性质十三.等边三角形的判定十四.等边三角形的判定与性质十五.含30度角的直角三角形十六.直角三角形斜边上的中线一.轴对称图形(共6小题)(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列银行的标识中,是轴对称图形的是()A.中国建设银行B.招商银行C.交通银行D.中国农业银行3.下列四个图形中,是轴对称图形的有()A.4个B.3个C.2个D.1个4.线段、正三角形,平行四边形、菱形中,只是轴对称图形的是.5.平行四边形,长方形,等边三角形,半圆这几个几何图形中,对称轴最多的是.6.如图,3×3方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形共有个.二.镜面对称(共4小题)1、镜面实质上是无数对对应点的对称,连接对应点的线段与镜面垂直并且被镜面平分,即镜面上有每一对对应点的对称轴.2、关于镜面问题动手实验是最好的办法:写在透明纸上,从反面看到的结果就是镜面反射的结果.1.如图,课间休息时,小新将镜子放在桌面上,无意间看到镜子中有一串数字,原来是桌旁墙面上张贴的同学手机号码中的几个数字,请问镜子中的数字对应的实际数字是.2.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是.3.开车时,从后视镜中看到后面一辆汽车车牌号的后四位数是“”,则该车号牌的后四位应该是.4.室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是()A.3:20B.3:40C.4:40D.8:20三.轴对称的性质(共10小题)(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.1.下列说法错误的是()A.关于某直线成轴对称的两个图形一定能完全重合B.线段是轴对称图形C.全等的两个三角形一定关于某直线成轴对称D.轴对称图形的对称轴至少有一条2.如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G 在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.3.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°4.如图,△ABC和△ADE关于直线l对称,已知AB=15,DE=10,∠D=70°.求∠B的度数及BC、AD的长度.5.如图,△ABC与△DEF关于直线l对称,BE交l于点O,则下列说法不一定正确的是()A.AC=DF B.BO=EO C.AD⊥l D.AB∥EF第5题第6题第7题第8题6.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个7.如图,P为∠AOB内一点,分别画出点P关于OA,OB的对称点P1,P2,连接P1P2.交OA于点M,交OB于点N.若P1P2=5cm,则△PMN的周长为.8.如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点(不与B,C重合),点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.9.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD=°;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则△PMN的周长为.10.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA,有如下结论:①∠EAD=90°;②∠BOE=60°;③OA 平分∠BOC;其中正确的结论个数是()A.0个B.3个C.2个D.1个四.作图-轴对称变换(共6小题)几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.1.如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.2.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.3.如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).(1)作出三角形ABC关于直线MN对称的三角形A1B1C1.(2)说明三角形A2B2C2可以由三角形A1B1C1经过怎样的变换而得到?(要说明变换过程)4.已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.5.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1.6.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点的坐标A'(,),顶点C先向右平移3个单位,再向下平移2个单位后的坐标C'(,);(2)将△ABC的纵坐标保持不变,横坐标分别乘﹣1得△DEF,请你直接画出图形;(3)在平面直角坐标系xOy中有一点P,使得△ABC与△PBC全等,这样的P点有个.(A点除外)五.翻折变换(折叠问题)(共8小题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.1.将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于.2.如图,E是AB边上的中点,将△ABC沿过E的直线折叠,使点A落在BC上F处,折痕交边AC于点D,若△ABC的周长为8,则△DEF的周长等于()A.4+B.8C.4D.6第2题第3题第4题3.将一张长方形纸条折成如图所示的形状,BC为折痕,若∠DBA=80°,则∠ABC等于()A.40°B.50°C.60°D.70°4.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°5.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且ED′在∠A′EF内部,如图2,设∠A′ED'=n°,则∠FEG的度数为(用含n的代数式表示).32.如图,图①是一个四边形纸条ABCD,其中AB∥CD,E,F分别为边AB,CD上的两点,且∠BEF=27°,将纸条ABCD沿EF所在的直线折叠得到图②,再将图②中的四边形BCFM沿DF所在直线折叠得到图③,则图③中∠EFC的度数为.6.如图已知,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上.有下列结论:①EF平分∠MED;②∠2=2∠3;③∠1+∠3=90°;④∠1+2∠3=180°其中一定正确的结论有.(填序号)7.如图,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.六.利用轴对称设计图案(共6小题)利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.1.如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.2.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有种不同的涂法.3.如图所示,在4×4的正方形网格中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.△ABC是一个格点三角形,请你在图1,图2,图3中分别画出一个与△ABC成轴对称的格点三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)4.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.5.如图,是由4×4个大小完在一样的小正方形组成的方格纸,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使图中涂黑的部分成为轴对称图形.并画出它的一条对称轴(如图例.画对一个得1分)6.如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个七.角平分线的性质(共11小题)角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE1.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是()A.P点B.Q点C.M点D.N点第1题第2题第3题第4题2.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC3.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=2.5,则两平行线AD与BC间的距离为()A.3B.4C.5D.64.已知:DA平分∠CAB,DB平分∠ABC,DE⊥AB于点E,△ABC的周长是12,面积是6,则DE的长是.5.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度向点C运动,设运动时间为t秒(t>0).(1)若点P恰好在∠ABC的角平分线上,求出此时t的值;(2)若点P使得PB+PC=AC时,求出此时t的值.6.已知:如图,BP、CP分别是△ABC的外角平分线,PM⊥AB于点M,PN⊥AC于点N.求证:P A平分∠MAN.7.如图,△ABC中,AB=2.5cm,AC=6cm,BC=6.5cm,∠ABC与∠ACB的角平分线相交于点P,过点P作PD ⊥BC,垂足为点D,则线段PD的长为cm.8.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个9.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=3,BC=4,则S△ABD:S△ACD为()A.5:4B.5:3C.4:3D.3:410.如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为()A.8B.6C.5D.411.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC=α,则∠A=;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC外角∠MBC、∠NCB的角平分线交于点Q,试探究∠Q与∠BPC之间的数量关系,并说明理由;(3)如图③,延长线段CP、QB交于点E,△CQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.八.线段垂直平分线的性质(共12小题)(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.1.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线2.若P是△ABC所在平面内的点,且P A=PB=PC,则下列说法正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条角平分线的交点C.点P是△ABC三边上高的交点D.点P是△ABC三边中线的交点3.在正方形网格中,△ABC的位置如图所示,且顶点在格点上,在△ABC内部有E、F、G、H四个格点,到△ABC 三个顶点距离相等的点是()A.点E B.点F C.点G D.点H第3题第4题第5题4.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.105.如图,在△ABC中,DE是边AB的垂直平分线,垂足为E,交BC边于D点,若AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm6.如图,在△ABC中,∠BAC=80°,AB边的垂直平分线交AB于点D,交BC于点E,AC边的垂直平分线交AC 于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.15°B.20°C.25°D.30°7.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BD于点E,连接CE,若∠A=60°,∠ACE=24°,则∠ABE的度数为()A.24°B.30°C.32°D.48°8.如图,在直角△ABC中,已知∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠BAD=15°,BD=18cm,则AC的长是cm.9.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.10.已知如图,点A、点B在直线l异侧,以点A为圆心,AB长为半径作弧交直线l于C、D两点.分别以C、D 为圆心,AB长为半径作弧,两弧在l下方交于点E,连结AE.(1)根据题意,利用直尺和圆规补全图形;(2)证明:l垂直平分AE.11.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.12.如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=.九.等腰三角形的性质(共6小题)(1)等腰三角形的概念:有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.1.如果等腰三角形两边长是4cm和8cm,那么它的周长是()A.16 cm B.20cm C.21 cm D.16或20cm2.如图,为了让电线杆垂直于地面,工程人员的操作方法通常是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC,当固定点B,C到杆脚E的距离相等,且B,E,C在同一直线上时,电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.垂线段最短C.等腰三角形“三线合一”D.线段垂直平分线上的点到这条线段两端点的距离相等3.等腰三角形的两边长分别为a、b,且a、b满足|2a﹣3b﹣7|+(2a+3b﹣13)2=0,等腰三角形的周长为()A.7B.11或7C.11D.7或104.如图,△ABC是等腰三角形,点O是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为6,面积为15,则OE+OF的值为()A.5B.7.5C.9D.105.已知,等腰三角形的一边是3,另一边是方程+=1的解,则这个三角形的周长是()A.10B.11C.10或11D.7或86.如果等腰三角形的一个内角为50°,那么其它两个内角为()A.50°,80°B.65°,65°C.50°,65°D.50°,80°或65°,65°十.等腰三角形的判定(共11小题)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.1.如图所示的方格纸中,每个方格均为边长为1的小正方形,我们把每个小正方形的顶点称为格点,现已知A、B、C、D都是格点,则下列结论中正确的是()A.△ABC、△ABD都是等腰三角形B.△ABC、△ABD都不是等腰三角形C.△ABC是等腰三角形,△ABD不是等腰三角形D.△ABC不是等腰三角形,△ABD是等腰三角形2.如图,在△ABC中,∠BAC=120°,∠B=40°,边AB的垂直平分线与边AB交于点E,与边BC交于点D.(1)求∠ADC的度数;(2)求证:△ACD为等腰三角形.3.如图,在△ABC中,AB=AC=8,AB的垂直平分线交AB于点D,交AC于点E.(1)若BE﹣EC=2,求CE的长;(2)若∠A=36o,求证:△BEC是等腰三角形.4.下面叙述不可能是等腰三角形的是()A.有两个内角分别为75°,75°的三角形B.有两个内角分别为110°和40°的三角形C.有一个外角为100°,一个内角为50°的三角形D.有一个外角为140°,一个内角为100°的三角形5.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数不可能为()A.120°B.75°C.60°D.30°35.在证明等腰三角形的判定定理“等角对等边”,即“如图,已知:∠B=∠C,求证:AB=AC”时,小明作了如下的辅助线,下列对辅助线的描述正确的有()①作∠BAC的平分线AD交BC于点D②取BC边的中点D,连接AD③过点A作AD⊥BC,垂足为点D④作BC边的垂直平分线AD,交BC于点DA.1个B.2个C.3个D.4个36.Rt△ABC中,∠ACB=90°,∠A=60°,在直线BC上取一点P使得△P AB是等腰三角形,则符合条件的点P 有个.37.如图,在△ABC中,AB=AC,点D是BC边上的中点,G是AC边上一点,过G作EF⊥BC,交BC于点E,交BA的延长线于点F.(1)求证:AD∥EF;(2)求证:△AFG是等腰三角形.38.如图是5×5的正方形方格图,点A,B在小方格的顶点上,要在小方格的项点确定一点C,连接AC和BC,使△ABC是等腰三角形,则方格图中满足条件的点C的个数是()A.4B.5C.6D.739.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组40.如图,已知∠MON,在边ON上顺次取点P1,P3,P5…,在边OM上顺次取点P2,P4,P6…,使得OP1=P1P2=P2P3=P3P4=P4P5…,得到等腰△OP1P2,△P1P2P3,△P2P3P4,△P3P4P5…(1)若∠MON=30°,可以得到的最后一个等腰三角形是;(2)若按照上述方式操作,得到的最后一个等腰三角形是△P3P4P5,则∠MON的度数α的取值范围是.十一.等腰三角形的判定与性质(共15小题)1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线【“三线合一”】,3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.1.用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.2.在Rt△ABC中,∠ACB=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?()A.9个B.7个C.6个D.5个3.如图,△ABC是等腰三角形,AB=AC,∠A=20°,BP平分∠ABC;点D是射线BP上一点,如果点D满足△BCD是等腰三角形,那么∠BDC的度数是.4.如图,点G在CA的延长线上,AF=AG,AD⊥BC,GE⊥BC.求证:AD平分∠BAC.证明:∵AF=AG(已知),∴∠AGF=∠AFG().∵AD⊥BC,GE⊥BC(已知),∴∠ADC=∠GEC=90°().∴AD∥GE().∴∠CAD=(两直线平行,同位角相等).∠BAD=∠AFG().∴∠CAD=∠BAD(等量代换).∴AD平分∠BAC().5.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.6.如图,在△ABC中,AB=AC,BO、CO分别平分∠ABC、∠ACB,DE经过点O,且DE∥BC,DE分别交AB、AC于D、E,则图中等腰三角形的个数为()A.2B.3C.4D.57.如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论,其中正确的有()①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.A.1个B.2个C.3个D.4个8.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,BE⊥BD,DE∥BC,BE与DE交于点E,DE交AB于点F.(1)若∠A=56°,求∠E的度数;(2)求证:BF=EF.10.(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF 之间的关系.11.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.12.如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.13.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE=∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.14.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.15.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?十二.等边三角形的性质(共7小题)(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.1.如图,在△ABC中,点D,E在边上,DE∥BC,若△ADE是等边三角形,AD=2,BD=3,则△ABC的周长为()A.6B.9C.15D.182.如图,已知等边△ABC的周长是12,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,则PD+PE+PF 的值是()A.12B.8C.4D.33.如图,直线l1∥l2,等边△ABC的顶点C在直线l2上,若边AB与直线l1的夹角∠1=40°,则边AC与直线l2的夹角∠2=°.第3题第4题第5题4.如图,在四边形ABCD中,AB=BC=CD,∠ABC=160°,∠BCD=80°,△PDC为等边三角形,则∠ADC的度数为()A.70°B.75°C.80°D.85°5.如图,在Rt△ABC中,∠ACB=90°,AB=4,以AC为边在△ABC外作等边三角形△ACD,连接BD.则BD 的最大值是.6.如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°7.如图,在等边△ABC中,BD=2DC,DE⊥BE,CE,AD相交于点P,则()A.AP>AE>EP B.AE>AP>EP C.AP>EP>AE D.EP>AE>AP十三.等边三角形的判定(共9小题)(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.说明:若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.1.如图,在△ABC中,∠A=120°,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,求证:△DEF是等边三角形.2.如图,△ABC中,∠A=60°,分别以A,B为圆心,大于AB长的一半为半径画弧交于两点,过两点的直线交AC于点D,连结BD,则△ABD是三角形.3.已知,在△ABC中,AB=AC,如图,(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.根据以上作图过程及所作图形,下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD•BC4.下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有(填序号).5.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.6.如果三角形的三边a、b、c适合(a2﹣2ac)(b﹣a)=c2(a﹣b),则a、b、c之间满足的关系是;有同学分析后判断△ABC是等边三角形,你的判断是.7.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④8.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.9.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C顺时针旋转60°得△ADC,。
苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.62、如图,在菱形ABCD中,∠A=60°,AB=2,点M为边AD的中点,连接BD 交CM于点N,则BN的长是()A.1B.C.D.3、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A,B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为()A.m+2n=1B.m-2n=1C.2n-m=1D.n-2m=15、如图,在中,,BD是的平分线,若CD=4,AB=14,则=()A.56B.28C.14D.126、下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A. B. C. D.7、如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)8、下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9、等腰梯形一底角60°,它的两底长分别为8和20,则它的周长是()A.36B.44C.48D.5210、已知等腰三角形中的一边长为5㎝,另一边长为9㎝,则它的周长为()A.14 cmB.23 cmC.19 cmD.19 cm或23cm11、如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠A的度数为()A.45°B.50°C.60°D.80°12、下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.13、在△ABC中,∠A=30°,∠B=75°,则△ABC是()A.直角三角形B.钝角三角形C.等边三角形D.等腰三角形14、如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③△ABD是等腰三角形④点D到直线AB的距离等于CD的长度.A.1B.2C.3D.415、如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论不一定正确是()A.∠BDO=60°B.∠BOC=25°C. OC=4D. CD∥OA二、填空题(共10题,共计30分)16、如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是________.17、已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数________.18、如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果,那么tan∠DCF的值是________.19、等腰三角形一腰上的高与另一腰的夹角为30°,则底角为________.20、如图,点C是线段AB上的动点,分别以AC、BC为边在AB的同侧作等边△ACD、等边△BCE,BD、AE交于点P.若AB=6,则PC的最大值为________.21、如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是________.22、如图,∠A=100°,∠E=25°,△ABC与△DEF关于直线l对称,则△ABC 中的∠C=________°.23、如图∠AOP=∠BOP=15°,PC∥OA , PD⊥OA ,若PC=6,则PD等于________.24、已知△ABC中,AC=BC,∠A=80°,则∠B=________°.25、如图,在等边△ABC中,点D、E分别在BC、AC边上,且∠ADE=60°,AB=3,BD=1,则EC=________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.28、证明:如图所示,已知在△ABC中,BE⊥AC于点E,CF⊥AB于点F,BE=CF,求证:AB=AC.29、如图,点C、D在线段AB上,△PCD是等边三角形,若∠APB=120°,求证:△ACP∽△PDB.30、如图,四边形ABCD中,BE、CF分别是∠B、∠D的平分线.且∠A=∠C=90°,试猜想BE与DF有何位置关系?请说明理由。
七下7.2简单的轴对称图形KO含30度角的直角三角形解答七下7.2简单的轴对称图形KO含30度角的直角三角形解答一.解答题(共15小题)1.如图,在等边△ABC中,AB=4,点P是AB上任意一点,过P作PE⊥BC于E;过E作EF⊥AC于F;过F作FQ⊥AB 于Q.设BP=x,AQ=y,用含x的式子填空,并解答有关问题.(1)根据题意可得,BE=BP,∴BE=,∴EC=又FC=EC,∴FC=_________,∴AF=4﹣FC=_________又AQ=AF,∴AQ=_________,∴y与x之间的函数关系式为_________(2)当AQ=1.2时,求BP的长度;(3)当BP的长度等于多少时,点P与点Q重合?2.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.3.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.求证:CD⊥AB.4.已知:如图,在Rt△ABC中,∠C=90°,∠A=30°,E是边BC的中点,BF∥AC,EF∥AB,EF=4cm.求(1)∠F的度数;(2)AB的长.5.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=_________;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=_________.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=_________.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD 于Q,猜想PB与PQ的数量关系,并说明理由.6.如图,△ABC中,,CD是高,S表示三角形的面积.求证:S△ACD=3S△BCD.7.已知:如图,∠AOB=30°,P是∠AOB的平分线上一点,PC∥OA,交OB于点C,PD⊥OA,垂足为D,如果PC=4,求PD的长.8.如图:△ABC中,∠B=60°,AB=10,BC=6,D为BC上一点,且BD=2DC,连接AD.求证:AD=AC.9.已知,△ABC中,AB=AC,∠B=30°,过点A作AD⊥AB,交BC边于点D.求证:BD=2DC.10.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=_________;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.11.如图,△ABC中∠C=90°,∠B=15°,AB的垂直平分线与BC交于点D,交AB于E,DB=8,求AC的长.12.如图,∠BAC=30°,点P是∠BAC的平分线上的一点,PD⊥AC于D,PE∥AC交AB于E,已知AE=10cm,求PD的长度.13.已知如图,△ABC中,AB=AC,∠A=120°,DE垂直平分AB于D,交BC于E点,求证:CE=2BE.14.将一副直角三角尺BAC和BDE如图放置,其中∠BCA=30°,∠BED=45°,(1)若∠BFD=75°,试判断AC与BE的位置关系,并说明理由;(2)连接EC,如果AC∥BE,AB∥EC,求∠CED的度数.15.如图,在△ABC中,AB=AC,∠B=30°.(1)在BC边上求作一点N,使得AN=BN;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,求证:CN=2BN.七下7.2简单的轴对称图形KO含30度角的直角三角形解答参考答案与试题解析一.解答题(共15小题)1.如图,在等边△ABC中,AB=4,点P是AB上任意一点,过P作PE⊥BC于E;过E作EF⊥AC于F;过F作FQ⊥AB 于Q.设BP=x,AQ=y,用含x的式子填空,并解答有关问题.(1)根据题意可得,BE=BP,∴BE=,∴EC=又FC=EC,∴FC=2﹣,∴AF=4﹣FC=2+又AQ=AF,∴AQ=1+,∴y与x之间的函数关系式为y=1+(2)当AQ=1.2时,求BP的长度;(3)当BP的长度等于多少时,点P与点Q重合?EC,AF AQ=1+y=1+1.2=1+x+1+=4x=时,点2.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.BC=AB=BD=BC=BC=AB=BD=BC=×3.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.求证:CD⊥AB.CM=AB=BMAB=BMCM=AB=BMCB=4.已知:如图,在Rt△ABC中,∠C=90°,∠A=30°,E是边BC的中点,BF∥AC,EF∥AB,EF=4cm.求(1)∠F的度数;(2)AB的长.BE=5.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=:1.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD 于Q,猜想PB与PQ的数量关系,并说明理由.BC=AB=;AC=ABBE=::中,6.如图,△ABC中,,CD是高,S表示三角形的面积.求证:S△ACD=3S△BCD.证明:∵∴∴7.已知:如图,∠AOB=30°,P是∠AOB的平分线上一点,PC∥OA,交OB于点C,PD⊥OA,垂足为D,如果PC=4,求PD的长.8.如图:△ABC中,∠B=60°,AB=10,BC=6,D为BC上一点,且BD=2DC,连接AD.求证:AD=AC.×=59.已知,△ABC中,AB=AC,∠B=30°,过点A作AD⊥AB,交BC边于点D.求证:BD=2DC.10.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=2;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.11.如图,△ABC中∠C=90°,∠B=15°,AB的垂直平分线与BC交于点D,交AB于E,DB=8,求AC的长.AC=AD=412.如图,∠BAC=30°,点P是∠BAC的平分线上的一点,PD⊥AC于D,PE∥AC交AB于E,已知AE=10cm,求PD的长度.PF=PEPE=513.已知如图,△ABC中,AB=AC,∠A=120°,DE垂直平分AB于D,交BC于E点,求证:CE=2BE.14.将一副直角三角尺BAC和BDE如图放置,其中∠BCA=30°,∠BED=45°,(1)若∠BFD=75°,试判断AC与BE的位置关系,并说明理由;(2)连接EC,如果AC∥BE,AB∥EC,求∠CED的度数.15.如图,在△ABC中,AB=AC,∠B=30°.(1)在BC边上求作一点N,使得AN=BN;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,求证:CN=2BN.。
13.1 轴对称1.轴对称图形(1)概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线叫做这个图形的对称轴.(2)理解:轴对称图形是对一个图形而言,是一种具有特殊性质的图形,它能被一条直线分割成两部分,沿这条直线折叠时,其中一部分能与这个图形的另一部分重合.(3)对称轴:对称轴是一条直线,有的轴对称图形只有一条对称轴,而有些轴对称图形有几条甚至无数条对称轴.“圆的对称轴是圆的一条直径”为什么不对呢?对称轴是一条直线,而直径是线段,所以圆的对称轴是直径所在的直线.并且圆有无数条对称轴.一定要注意哦!解技巧轴对称图形的识别判断一个图形是否是轴对称图形可以根据定义,把图形沿某一条直线折叠,看直线两旁的部分是否能够重合.另外还可以观察是否有对称轴,能找到对称轴也说明是轴对称图形.【例1】下列图形中,是轴对称图形的是().A.①②B.③④C.②③D.①④解析:观察图形,①④的图形都能找到一条直线,沿这条直线对折,图形两边能够重合,而②③的图形中找不出这样的直线,因此只有①④是轴对称图形.答案:D2.轴对称(1)概念:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称.这条直线叫做对称轴.(2)含义:轴对称图形是两个图形之间的关系,这两个图形沿一条直线折叠后能够互相重合,即全等.(3)对称点:折叠后重合的对应点叫对称点,两个图形正是由无数个对称点组合而成的,也正是无数个对称点的重合构成了图形的重合.(4)与轴对称图形的异同:a.区别:轴对称图形指的是一个图形本身的特点,而轴对称指的是两个图形之间的关系.b.联系:都关于某条直线对称,如果把成轴对称的两个图形看成一个整体图形,那么它就是一个轴对称图形,如果把一个轴对称图形沿着对称轴分成两个图形,那么这两个图形关于这条轴对称.析规律轴对称的特点图形的轴对称和平移一样,都是图形位置的变换,共同的特点是变化后图形的大小、形状都没有改变,不同点是变换的方式不同,所以性质也不尽相同,判断的方法关键看变换方式.【例2】如图所示,下列每组中两个图形成轴对称的是().解析:图A、B、C沿某一条直线折叠,左右两个图形不能重合,所以它们不构成轴对称.如图,D 沿右图所画直线折叠,左右两个图形能够重合,所以成轴对称.答案:D3.线段的垂直平分线(1)概念:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)性质:线段垂直平分线上的点与这条线段两个端点的距离相等.(3)判定:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(4)线段的垂直平分线可以看作是到线段两端点距离相等的所有点的集合.这是线段垂直平分线的集合定义.谈重点 线段垂直平分线及性质与判定的理解和应用 ①线段的垂直平分线必须同时具备两个条件:过线段的中点和垂直于这条线段.②线段是轴对称图形,线段的垂直平分线是线段其中的一条对称轴.③线段垂直平分线的性质是证明线段相等的一种方法,运用过程中可以省去证明三角形全等,使得过程更简便.【例3】 已知线段AB ,直线CD 是AB 的垂线,垂足为O ,且OA =OB ,若点M 在直线CD 上,则MA =__________;若NA =NB ,则点N 在__________.解析:本题是线段垂直平分线性质和判定的最基本的应用,根据CD ⊥AB ,又经过线段AB 的中点O ,所以CD 为线段AB 的垂直平分线,所以有MA =MB ,因为NA =NB ,由线段垂直平分线的判定定理可知点N 在直线CD 上,即线段AB 的垂直平分线上.答案:MB 线段AB 的垂直平分线CD 上4.线段垂直平分线的画法(1)折叠法:将线段两端点对齐,沿线段折叠重合,折痕就是线段的垂直平分线.(2)尺规作图法:如图,①分别以A 、B 为圆心,以大于12AB 长为半径画弧,两弧相交于C 、D 两点;②作直线CD ;CD 即为所求作的直线.【例4】 如图,在某条公路的同旁有两座城市A 、B ,为了方便市民就医治疗,政府决定在公路边建一所医院,这所医院建在什么位置,能使两座城市到这个医院的路程一样长?分析:两座城市A 、B 到这个医院的路程一样长,说明这所医院要建在AB 的垂直平分线上,又要在公路边,所以应是AB 垂直平分线与公路的交点处.解:如图所示,(1)连接AB ,分别以A ,B 为圆心,以大于12AB 长为半径画弧,两弧相交于C ,D 两点;(2)作直线CD ,交公路所在直线于P ,则点P 即为所建医院的位置.5.轴对称(轴对称图形)的性质(1)关于某条直线轴对称的两个图形全等,对应线段、对应角相等,只要是对应的部分就全等.(2)对称轴是任何一对对应点所连线段的垂直平分线.(3)对应线段所在的直线的交点在对称轴上.谈重点 成轴对称的两个图形的性质特征 (1)成轴对称的两个图形沿对称轴折叠能够相互重合,所以它们一定是全等的,但全等的两个图形不一定是轴对称图形.(2)成轴对称的两个图形能够重合,所以它们的周长、面积也相等,正如全等的两个三角形对应边上的高、中线也相等一样.【例5】如图,△ABC 和△A ′B ′C ′关于直线l 对称,下列结论中:①△ABC ≌△A ′B ′C ′;②∠BAC ′=∠B ′AC ;③l 垂直平分CC ′;④直线BC 和B ′C ′的交点不一定在l 上.正确的有( ).A.4个B.3个C.2个D.1个解析:①由轴对称性质可知,关于某条直线对称的两图形重合,所以△ABC≌△A′B′C′;②由轴对称性质可知对应角∠BAC=∠B′A′C′,等号两边同时都加上∠CAC′,可得∠BAC′=∠B′AC;③点C与点C′为对称点.对称轴垂直平分对称点连线,所以也正确;④BC和B′C′为对应线段,由性质可知,所在直线的交点一定在对称轴上.由以上分析可知①②③都正确,只有④错误,所以选B.答案:B6.轴对称(轴对称图形)对称轴的画法如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.(1)两个图形成轴对称或轴对称图形的对称轴是对应点连线的垂直平分线,这是画图形的对称轴的依据.(2)作已知图形的对称轴的步骤:找特殊对称点→作对称的两点的垂直平分线.【例6】如图,试作出下列图形中的一条对称轴.分析:作图的关键在于找到对称点,等边三角形ABC中B、C是一对对称点,所以作BC的垂直平分线即可得到△ABC的一条对称轴;同样在正五边形ABCDE中,B与E、C与D是对称点,所以作BE 或CD的对称点都能得到正五边形ABCDE的对称轴.解:如图.7.线段垂直平分线性质的应用线段垂直平分线上的点到线段两端点的距离相等,在这个性质中,它的条件是“一条直线垂直平分一条线段”,结论是“这条直线上的任意一点到线段两端点的距离相等”,它是证明线段相等常用的一种方法.析规律利用线段垂直平分线的性质证明线段相等用线段垂直平分线性质解决问题,一般需要连接直线上某一点与线段两端点的线段(常用的添加辅助线的方法),从而由性质可以直接得到相等的两条线段,因为它省去了证明三角形全等,所以较为简便,它通常和三角形周长,等腰三角形知识相结合运用.8.线段垂直平分线判定的应用与一条线段两端点距离相等的点,在这条线段的垂直平分线上,它的题设是“一个点到一条线段的两个端点的距离相等”,结论是“这个点在这条线段的垂直平分线上”,这与线段垂直平分线性质的题设和结论正好相反;线段垂直平分线的判定是为数不多的证明点在线上的定理,很多时候用在作图中,用来确定到两固定点距离相等的点.破疑点判定线段垂直平分线的方法判断一条直线是线段的垂直平分线时,必须证明该直线上有两个点到线段两端点的距离相等,因为只有两点才能确定一条直线.【例7】如图1,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC 的关系如何?请用一句话表示:________________________________.图1图2 解析:如图2,连接OA 、OB 、OC ,因为EF 垂直平分AB ,所以OA =OB .因为GH 垂直平分AC ,所以OA =OC . 所以OB =OC ,即点O 到边BC 两端点的距离相等.答案:点O 到边BC 两端点的距离相等(答案不唯一,也可以说成点O 在BC 的垂直平分线上)【例8】 (综合应用题)如图,AD 为△ABC 的角平分线,AE =AF ,请判断AD 是否是EF 的垂直平分线?如果不是请说明理由,如果是,请给予证明.解:AD 是EF 的垂直平分线.证明:因为AD 平分∠BAC ,所以∠BAD =∠CAD .在△AED 和△AFD 中,⎩⎪⎨⎪⎧ AE =AF ,∠BAD =∠CAD ,AD =AD ,所以△AED ≌△AFD .所以DE =DF ,所以D 在EF 的垂直平分线上.同样AE =AF ,A 也在EF 的垂直平分线上.所以AD 是EF 的垂直平分线.9.生活中的镜面对称生活中的倒影,镜子中的影像是日常生活中最常见的轴对称,它们都具备轴对称的特点,如果沿某一条直线折叠一样能够重合.因而实物和图形大小形状也完全一样.只要注意观察,会有很多有趣的现象和规律.解技巧 镜面问题的解决方法①镜面对称问题可以看作是沿镜子的左右边沿轴对称,镜子的边沿所在的直线就是对称轴,判断标准是沿镜子左或右边沿折叠就会重合,如果是在透明纸上的图案,从反面看到的影像,就是原来的图案;②对于倒影问题,水面所在的直线是对称轴,沿这条直线折叠观察,就可得到原来图案.【例9-1】 小明从镜子里看到镜子对面电子钟的像如下图所示,则实际时间是( ).A .21:10B .10:21C .10:51D .12:01解析:镜面中的影像问题是以镜面的左边沿或右边沿所在的直线为对称轴的轴对称,假定最左侧或右侧有一条直线为对称轴,沿此直线折叠都会得到10:51,或将此图案从反面观察,也可得到10:51.答案:C【例9-2】 一个汽车车牌在水中的倒影为,则该车的牌照号码是__________.解析:只需将倒影沿图案上沿或下沿某一条直线翻折,即可得到该车牌的号码为W5236499.同样在纸上也可以从反面,倒看也能得到它的轴对称图形W5236499.答案:W5236499.10.折叠问题中的轴对称折叠问题是近几年中考的热点,它主要分为两类:(1)一类是图形的折叠问题,一般是将矩形、正方形、三角形沿某条线段所在的直线折叠,求角的度数.这类问题,条件隐蔽,要仔细观察图形,善于运用隐含条件解决问题.(2)另一类是折纸问题,大多是将一个正方形纸片,经过几次轴对称折叠,挖取其中的一小部分,观察展开后的图形,观察得到的是哪种图案.解决方法一般是将所给图案按逆顺序复原,看是否能得到折叠后的图案,另一种方法是折叠、观察、想象,最好的办法是动手按题目要求折叠、裁剪、展开观察.析规律利用轴对称性质解决折叠问题解决这类问题的关键是,折叠前后重合的部分全等,即折叠前和折叠后盖上的部分重合,所以对应角、对应线段相等.【例10-1】如图,把一个长方形沿EF折叠后,点D、C分别落在D1、C1的位置.若∠EFB=65°,则∠AED1=__________度.解析:因为AD∥BC,所以∠DEF=∠EFB=65°.又因为折叠前后重合的部分全等,所以∠AED1=∠DEF=65°.所以∠DED1=130°.所以∠AED1=180°-∠DED1=50°.答案:50【例10-2】如下图所示,把一个正方形纸片对折两次后沿虚线剪下,展开后所得的图形是().解析:解题关键是明确两条折痕都是对称轴,故本题可借助空间想象,将两次对折后的图形沿两条折痕展开,易知展开后的图形应是B.注意折叠方向和剪去的角度.答案:B。
第13章轴对称一、选择题1.下列由数字组成的图形中,是轴对称图形的是().2.下列语句中正确的个数是().①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.43.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中正确的有().①A、B关于x轴对称;②A、B关于y轴对称;③A、B不轴对称;④A、B之间的距离为4.A.1个B.2个C.3个D.4个4.如图所示,Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中一定不相等的线段有().A.AC=AE=BE B.AD=BDC.CD=DE D.AC=BD5.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是().6.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是().A.1号袋B.2号袋C.3号袋D.4号袋二、填空题(本大题共6小题,每小题5分,共30分.把正确答案填在题中横线上)7.点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.8.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ 的度数是__________.三、解答题9.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.10. 如图,已知AE=BE,DE是AB的垂直平分线,BF=12,CF=3,求AC.参考答案1.A 点拨:数字图案一般是沿中间竖直线或水平线折叠,看是否是轴对称图形,只有A 选项是轴对称图形.2.B 点拨:①③正确,②④不正确,其中④对应点还可能在对称轴上.3.B 点拨:①③不正确,②④正确.4.D 点拨:DE 垂直平分AB ,∠B =30°,所以AD 平分∠CAB ,由角平分线性质和线段垂直平分线性质可知A 、B 、C 都正确,且AC ≠AD =BD ,故D 错误.5.C 点拨:经过三次轴对称折叠,再剪切,得到的图案是C 图(也可将各选项图案按原步骤折叠复原).6.B 点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如图),该球最后将落入2号袋.7.2 -5 点拨:点E 、F 关于y 轴对称,横坐标互为相反数,纵坐标不变.8.40° 点拨:因为MP 、NQ 分别垂直平分AB 和AC ,所以PA =PB ,QA =QC ,∠PAB =∠B ,∠QAC =∠C ,∠PAB +∠QAC =∠C +∠B =180°-110°=70°,所以∠PAQ 的度数是40°9.分析:先根据等腰三角形的性质及三角形内角和定理求出∠ABC 及∠ACB 的度数,再根据线段垂直平分线的性质求出∠ABD 的度数即可进行解答.解答:解:∵AB=AC ,∴∠ABC=∠ACB702401802180=-=∠-=A ,∵MN 的垂直平分AB ,∴DA=DB , ∴∠A=∠ABD=40°,∴∠DBC=∠ABC-∠ABD=70°-40°=30°.故答案为:30°. 点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.10. 考点:线段垂直平分线的性质.分析:利用垂直平分线的性质得出AF=BF ,从而求出AC 的长.解答:解:∵DE 是AB 的垂直平分线,∴AF=BF∴AC=AF+CF=BF+CF=12+3=15.。
环球雅思教育学科教师讲义讲义编号:______________ 副校长/组长签字:签字日期:【考纲说明】1、掌握轴对称图形及图形轴对称的画法;2、能利用轴对称及垂直平分线的性质解决实际问题。
【趣味链接】图中是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入几号球袋呢?【知识梳理】1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别:轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:D'D C'B'A'K J I H(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。
【经典例题】【例1】(大连课改) 在直角坐标系中,A (1,2)点的横坐标乘以-1,纵坐标不变,得到A’点,则A 与A′的关系是( ) A 、关于x 轴对称 B 、关于y 轴对称C 、关于原点对称D 、将A 点向x 轴负方向平移一个单位【例2】(2011湖北天门)将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是( )mCAB【例3】(2012大连)如图,将矩形沿对称轴折叠,在对称轴处剪下一块,余下部分的展开图为( )【例4】已知点P1(a-1,5)与点P2(2,b+2)关于x轴对称,则a-b=________.【例5】(2010大连) 如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A″B″C″关于直线EF对称。
八年级数学:画轴对称图形练习(含答案)一、选择题1、作已知点关于某直线的对称点的第一步是()A. 过已知点作一条直线与已知直线相交B. 过已知点作一条:直线与已知直线垂直C. 过已知点作一条直线与已知直线平行D. 不确定【答案】B【解析】试题分析:根据对称轴是对称点所连的线段的垂直平分线进行解答.解:作已知点关于某直线的对称点的第一步是,过已知点作一条:直线与已知直线垂直。
故应选B考点:轴对称图形2、若在△ABC所在平面上求作一点P,使P到∠A的两边的距离相等,且PA=PB,那么下列确定P点的方法正确的是()A. P是∠A与∠B两角平分线的交点B. P为AC、AB两边上的高的交点C. P为∠A的角平分线与AB的垂直平分线的交点D. P为∠A的角平分线与AB边上的中线的交点【答案】C【解析】试题分析:点P到∠A的两边的距离相等,则点P在∠A的平分线上,PA=PB,则点P 在线段AB的垂直平分线上.所以点P是∠A的角平分线与AB的垂直平分线的交点.解:∵点P到∠A的两边的距离相等,∴点P在∠A的平分线上,∵PA=PB,∴点P在线段AB的垂直平分线上.∴点P是∠A的角平分线与AB的垂直平分线的交点.故应选C考点:1.轴对称的性质;2.角平分线的性质3、下列图形:其中所有轴对称图形的对称轴条数之和为()A.13B.11C.10D.8【答案】B【解析】试题分析:分别数出四个图形的对称轴的条数,然后再相加.解:第一个图形有1条对称轴,第二个图形有2条对称轴,第三个图形有2条对称轴,第四个图形有6条对称轴,∴共有11条对称轴.故应选B考点:轴对称4、小华将一张如图所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是轴对称图形的是()A. B. C. D.【答案】A【解析】试题分析:根据轴对称图形的定义进行判断.解:A选项中的图形不是轴对称图形;B、C、D选项中的图形都是轴对称图形.故应选A考点:轴对称图形5、如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC 的周长为()A.7B.14C.17D.20【答案】C【解析】试题分析:根据轴对称的性质求出AC、CB的长度之和,再根据AB的长度求出△ABC 的周长.解:∵MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长=10,∴AC+AD+CD=10,∴AC+CD+BD=AC+BC=10,∵AB=7,∴△ABC的周长=AC+BC+AB=17.故应选C。
一、选择题1.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A .13B .32C .40D .20 2.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③ 3.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75° B .90° C .105° D .120°或20° 4.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .115.下列命题中,假命题是( ) A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形6.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 7.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .48.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .59.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大 10.如图,长方形纸片ABCD (长方形的对边平行且相等,每个角都为直角),将纸片沿EF 折叠,使点C 与点A 重合,下列结论:①AF AE =,②ABE AGF ≌,③AF CE =,④60AEF ∠=︒,其中正确的( )A .①②B .②③C .①②③D .①②③④ 11.如图,在ABC 与A B C ''△中,,90AB AC A B A C B B ==''='∠+∠'=︒,ABC ,A B C '''的面积分别为1S 、2S ,则( )A .12S S >B .12S SC .12S S <D .无法比较1S 、2S 的大小关系 12.若a b c 、、是ABC 的边,且222()()()0,a b a c b c -+-+-=则ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 13.下列图案中,是轴对称图形的是( )A .B .C .D .14.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒15.如图,在Rt ABC 中,∠BAC =90°,以点A 为圆心,以AB 长为半径作弧交BC 于点D ,再分别以点B ,D 为圆心,以大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,如果AB =3,AC =4,那么线段AE 的长度是( )A .125B .95C .85D .75二、填空题16.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.17.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.18.如图,在ABC 和ADE 中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,其中点C ,D ,E 在同一条直线上,连接BD ,BE .以下四个结论:①ACE DBC ∠=∠;②45ACE DBC ∠+∠=︒;③BD CE ⊥;④BD CE =.一定正确的是______.19.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.20.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.21.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.22.如图,已知 O 为△ABC 三边垂直平分线的交点,且∠A =50°,则∠BOC 的度数为_____度.23.如图,在ABC 中,30EFD ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则B 的度数为______.24.如图,在△ABC 中,AB =AC ,∠BAC=36°,AD 、CE 是△ABC 的两条角平分线,BD=5,P 是AD 上的一个动点,则线段BP +EP 最小值的是____________.25.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________. 26.如图,在ABC 中,12 cm AB AC ==, 6 cm BC =,D 为AC 的中点,动点P 从点A 出发,以每秒1 cm 的速度沿A B C --的方向运动,设运动时间为t ,当过D ,P 两点的直线将ABC 的周长分成两部分,当其中一部分是另一部分的2倍时,t =_________.三、解答题27.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.28.已知,在四边形ABCD 中,AB AD =,CB CD =,连接,AC BD ,判断,AC BD 的位置关系,并加以证明.29.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.30.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.。
A
B A
B
《轴对称》画图专题训练
1、画出线段AB的中垂线。
2、画出∠AOB的角平分线。
3、如图,在直线AB上找一点P,使PC=PD.
4.(1)在AB上找一点P,使P到(2).在直线MN上找一点P点,使P
M、N两点的距离相等。
到射线OA和OB的距离相等。
5.如图,要在公路MN旁修建一个货物中转站,分别向A,B两个开发区运货.
(1)若要求货物中转站到A,B两个开发区的距离相等,那么货物中转站应建在哪里? (2)若要求货物中转站到A,B两个开发区的距离和最小,那么货物中转站应建在哪里?
A
B
B
O
A
A
B
M N
B
O
A
N
M
解:如图所示:
(1)要使货物中转站到A,B 两个开发区的距离相等,连接AB ,作AB 的中垂线与MN 的交点P 即为货物中转站的位置。
(2)由于两点之间线段最短,所以过点A 作A ’关于MN 对称,连接BA ’与MN 交于点P 即为货物中转站的位置。
6、如图,A 、B 、C 三点表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等。
解:如图所示:点P 即为所求
7.、如图,l 1、l 2交于A 点,P 、Q 的位置如图所示,试确定M 点,使它到l 1、l 2的距离相
等,且到P 、Q 两点的距离也相等。
A
C
l 2
解:作∠A 的角平分线l 3和PQ 的垂直平分线l 4,两线交 于点M ,M 即为所求点
8、在铁路a 的同侧有两个工厂A 和B ,要在铁路边建一货场C ,使A 、B 两厂到货场C 的距离和最小,试在图上作出C 。
解:作点A 关于直线a 的对称点A',连接A'B ,与直线工a 交于点C ,点C
即为所求点
9、如图所示,E 、F 分别是△ABC 的边AB 、AC 的两定点,在BC 上求一点M ,使△MEF
的周长最短。
解:如图,点M 是所求的点 A
a
C
10、△ABC 的顶点A 在∠EOD 的边OD 上, 11、直线l ,A ,B 两点在l 的两侧,
B 、
C 在∠EO
D 内部,分别以O
E 、OD 在l 上找一点C ,使C 到A ,B 为对称轴作关于△ABC 的对称图形。
的距离之差最大。
解:(1)作A 关于l 的对称点A1
; (2)连接A1B ,延长A1B 与直线l 相交于点C 。
点C 即为所求点
12.如图,已知△ABC 与△111A B C 是轴对称图形,画出它们的对称轴.
13.如图,画出△ABC 关于直线l 对称的△DEF.
B O A D
E
C A
l。