管壳式换热器中换热管与管板连接的工艺
- 格式:wps
- 大小:21.50 KB
- 文档页数:6
张家港化工机械股份有限公司Q/ZHJ05.03-2010 管壳式换热器通用工艺守则编制:校对:审批:日期:管壳式换热器通用工艺守则本守则若与图样及工艺文件有矛盾时,应按图样及工艺文件为准,低于国家有关标准时以国家标准为准,反之以本守则为准。
1、材料1.1制造换热容器的主要受压元件(如壳体、封头、换热管等)的材料,质量及规格应符合国标、部标和有关技术条件要求。
材料证明上的内容按有关规定必须填写齐全。
采用国外材料时,应按《固定式压力容器安全技术监察规程》的第2.9条要求进行检验、验收及复验。
1.2 含碳量大于0.25%的材料不得用于焊制换热容器。
1.3制造换热容器的材料标准,热处理状态及许用应力值按GB150及GB151的规定。
1.4钢板的表面应光滑平整,不得有裂纹、分层、气泡、夹杂、结疤等缺陷。
钢板表面存在的深度缺陷不得超过钢板厚度公差1/2的下限,个别损伤,允许用细砂轮清除,但不得低于钢板厚度名义尺寸的下偏差。
1.5钢板的低倍组织不得有肉眼可见的缩孔、裂纹和夹杂。
1.6换热管的内外表面不得裂纹、折迭、轧折、离层、发纹和结疤缺陷存在,上述个别缺陷其深度未超过管壁厚负偏差时允许清除,并进行压力试验合格。
1.7 对于双管板换热器,换热管和管板材料还应符合以下要求:1.7.1换热管应采用较高级精度的管子,换热管外径的许用偏差控制在±0.10mm,管子壁厚偏差为±7%。
1.7.2换热管应按材料的不同规定材料的硬度。
1.7.3根据换热管材料的力学性能要求对管板的屈服强度和硬度提出采购要求。
通常将硬度差控制在管板比换热管硬度高HB30~HB60。
1.8 所有材料都必须有接货检验记录,并按公司相关规定进行标识。
1.9 材料在切割前应将标记进行移植。
2、筒体制造2.1施工者根据施工图,要求画下料展开图。
2.1.1焊缝布置:a、立式换热器左右对称布置。
b、卧式换热器,水平线以上部位对称布置(并不被鞍座覆盖)。
换热器管子与管板的5种连接结构形式管子与管板的连接,在管壳式换热器的设计中,是一个比较重要的结构部分。
它不仅加工工作量大,而且必须使每一个连接处在设备的运行中,保证介质无泄漏及承受介质压力能力。
对于管子与管板的连接结构形式,主要有以下三种,(1)胀接, (2)焊接,(3)胀焊结合。
这几种形式除本身结构所固有的特点外, 在加工中,对生产条件,操作技术都有一定的关系。
Ol胀接用于管壳之间介质渗漏不会引起不良后果的情况下,胀接结构简单,管子修补容易。
由于胀接管端处在胀接时产生塑性变形,存在着残余应力,随着温度的上升,残余应力逐渐消失,这样使管端处降低密封和结合力的作用。
所以此胀接结构,受到压力和温度的一定限制。
一般适用压力P0≤4MPa,管端处残余应力消失的极限温度,随材料不同而异,对碳钢、低合金钢当操作压力不高时,其操作温度可用到300°Co为了提高胀管质量,管板材料的硬度要求高于管子端的硬度, 这样才能保证胀接强度和紧密性。
对于结合面的粗糙度,管孔与管子间的孔隙大小,对胀管质量也有一定的影响,如结合面粗糙,可以产生较大的摩擦力,胀接后不易拉脱,若太光滑则易拉脱,但不易产生泄漏,一般粗糙度要求为Ral2.5o为了保证结合面不产生泄漏现象,在结合面上不允许存在纵向的槽痕。
期炸既接管孔有光孔和带环形槽孔两种,管孔的形式和胀接强度有关,在胀口所受拉脱力较小时,可采用光孔,在拉脱力较大时可采用带环形槽的结构。
光孔结构用于物料性质较好的换热器,胀管深度为管板厚度减3mm,当管板厚度大于50m∏b胀接深度e一般取50 mm,管端伸出长度2~3 mmo 当胀接时,将管端胀成圆锥形,由于翻边的作用,可使管子与管板结合得更为牢固,抗拉脱力的能力更高。
当管束承受压应力时,则不采用翻边的结构形式。
管孔开槽的目的,与管口翻边相似,主要是提高抗拉脱力及增强密封性。
其结构形式是在管孔中开一环形小槽,槽深一般为0.4~0∙5 mm,当胀管时,管子材料被挤入槽内,所以介质不易外泄。
管壳式换热器的胀接工艺管板和换热管都是换热器的主要受压元件,两者之间的连接处是换热器的关键部位.胀接是实现换热管与管板连接的一种方法,胀接质量的好坏对换热器的正常运行起着关键的作用.因此,换热管与管板之间的胀接工艺技术就显得非常重要。
1胀接形式及胀接方法胀接形式按胀紧度可分为贴胀和强度胀。
贴胀是为消除换热管与管板孔之间缝隙的轻度胀接,其作用是可以消除缝隙腐蚀和提高焊缝的抗疲劳性能。
强度胀是为保证换热管与管板连接的密封性能及抗拉脱强度的胀接。
贴胀后胀接接头的抗拉脱力应达到1MPa以上,强度胀后胀接接头的抗拉脱力应达到4MPa以上.胀接方法按胀接工艺的不同可分为机械胀、爆炸胀、液压胀和脉冲胀等.机械胀是用滚珠进行胀管的,具有操作简单方便、制造成本低等优点,因而得到了广泛应用。
2胀管器的选用胀管器的种类,有三槽直筒式、五槽直筒式、轴承式、调节式、翻边式。
它的选用主要根据换热管的内径、管板厚度、胀接长度及胀接特点而确定。
3换热管与管板硬度的测定换热管与管板材料应有适当的硬度差,管板硬度应当大于换热管的硬度,其差值最好达到HB30以上,否则胀接后管子的回弹量接近或大于管板的回弹量而造成胀接接头不紧.胀接的原理是胀接时硬度较低的管子产生塑性变形,而硬度较高的管板产生弹性变形,胀接后塑性变形的管子受到弹性回复的管板孔壁的挤压而使管子和管板紧密地结合在一起。
因此在胀管之前应首先测定管子与管板的硬度差是否匹配。
如果两者硬度值相差很小时应对管子端部进行退火热处理。
管子端部退火热处理长度一般为管板厚度加100mm.4试胀正式胀接之前应进行试胀.试胀的目的是验证胀管器质量的好坏,验证预定的管子与管板孔的结构是否合理,检验胀接部位的外观质量及接头的紧密性能,测试胀接接头的抗拉脱力,寻找合适的胀管率,以便制定出合理的产品胀接工艺.试胀应在试胀工艺试板上进行。
试板应与产品管板的材料、厚度、管孔大小一致,试板上孔的数量应不少于5个,其管孔的排列形式见图1所示。
1 胀管工艺规程编制审核2管子与管板“焊、胀”连接工艺一、原理及适用条件本工艺的实施步骤是焊-胀。
它巧妙地运用胀接过程的超压过载技术通过对管与管板的环形焊缝进行复胀造成应变递增而应力不增加即让该区域处于屈服状态在焊缝的拉伸残余应力场中留下一个压缩残余应力体系。
两种残余应力相互叠加的结果使其拉伸残余应力的峰值大减二次应变又引起应力的重新分布结果起到调整和均化应力场的效果最终将残余应力的峰值削弱到预定限度以下。
本工艺适用于管子与管板的胀、焊并用连接型列管式换热器的工厂或现场加工。
管板厚度范围为16100mm材质为碳钢者就符合GB150-98第二章2.2条的规定若采用16Mn时就分别符合GB3247—88和GBI51—99中的有关规定换热管束应符合GB8163、GB9948-88、GB6479-86、GB5310-85的规定。
二、焊、胀工艺一准备工作1、对换热管和管板的质量检查1管子内外表面不允许有重皮、裂纹、砂眼及凹痕。
管端头处不得有纵向沟纹横向沟纹深度不允许大于壁厚的1/10。
管子端面应与管子轴线垂直其不垂直度不大于外径的2。
2换热管的允许偏差应符合表1-1要求。
3管孔表面粗糙度Ra不大于12.5μm表面不允许纵向或螺旋状刻痕。
管孔壁面不得有毛刺、铁屑、油污。
4管孔的直径允许偏差应符合表1-2规定。
3 换热管的允许偏差表1-1 Ⅰ级换热器Ⅱ级换热器材料标准外径×厚度mm 外径偏差mm ?诤衿 頼m 外径偏差mm 壁厚偏差mm19×2 25×2 25×2.5 ±0.2 ±0.4 32×3 38×3 45×3 ±0.3 12 10 ±0.45 15 10 碳钢GB8163-87 57×3.5 ±0.8 ±10 ±1 12 10 抽查区域应不小于管板中心角60。
铆工理论试题一、填空题1、封头的冲压过程经常出现的缺陷有(折皱)和(鼓包)。
2、解决对称式三辊卷板机直边的措施有(液压机预弯)、(卷板机预弯)、(逐一压弯)和(预留直边)。
3、钢制管壳式换热器管子与管板的连接方式有(胀接)、(焊接)和(胀焊连接)。
4、封头的成形方法主要有(冲压)成形、(旋压)成形和(爆炸)成形。
5、管壳式换热器,为了保证相邻两管间有足够的强度和刚度以及为了便于管间的清洗,换热管的中心距不小于管子外径的(1.25 )倍。
6、对于温差稍大而壳体受压不太高的固定管板式换热器,可在壳体上设置热补偿结构-(膨胀节)7、火焰矫正通常加热金属纤维较(长)的部位。
8、工程上把零件展开图画在板料上的过程称为(号料(放样))。
9、工作压力Pw是指在正常工作情况下,(容器顶部)可能达到的最高压力10、法兰分为(压力容器法兰)和(管法兰),法兰连接是由一对(法兰)、(一个垫片)、(数个螺栓、螺母)组成。
11、压力容器法兰常用的密封面结构有(平面)、(凹凸面)、(榫槽面)三种形式;12、直线在它(平行)的投影面上的投影反映实长。
13、常温压力容器作水压试验,设计压力为2MPa,其试验压力选( 2.5MPa )。
14、卧式容器最常用的支座是(鞍式支座)。
15、塔式容器最常用的支座是(裙式支座)。
16、固定式鞍座底板孔是(圆形)的,活动式鞍座底板孔是(长圆形)的。
17、中低压容器常用的封头形式为(标准椭圆形封头)。
18、φ25×2.5的换热管,其中心距为(32 )mm。
19、换热器的折流板是通过(拉杆和定距管)固定的。
20、延伸率是指试样拉断后,标距长度的(伸长量)与标距原始长度之比的百分率。
21、中性层位置的改变与曲率半径和材料厚度的(比值大小)有关。
22、当弯管的弯曲半径大于管坯直径的( 1.5 )倍时,一般都采用无芯弯曲。
23、桥式起重机主梁的上拱度一般为( L/1000 )。
24、当零件表面的素线和棱线互相平行时,可用(平行线)展开法。
管壳式换热器胀焊并用时胀焊顺序分析了管壳式换热器管板胀焊并用时, 胀焊顺序对管板制造质量的影响。
0 前言换热器在化工设备中占很大比例。
作为化工生产过程中最基本的操作单元——换热器,其完好与否对化工生产的影响很大, 一旦泄漏,对化工产品的质量、工厂安全、环境和设备等将造成很大的损失。
在化工生产中换热器因其结构特殊、工况恶劣, 有时既要受压, 又要承受变载, 甚至还受到腐蚀的作用。
换热器受到的腐蚀一般有电化学腐蚀、应力腐蚀和冲刷腐蚀。
电化学腐蚀较为普遍存在。
产生应力腐蚀的应力有: 工作应力, 由进出口温差所产生; 材料残余应力, 在加工制作过程中产生; 结构应力, 由于结构在设计制造上的局限性等所产生。
冲刷腐蚀, 多发生在气体入口处或气液混合入口处。
管板上焊缝多, 一般换热器有几百至几千个焊口。
若焊接工艺掌握不好, 焊缝中极易产生气孔等缺陷。
一般厂家没有热处理条件, 也没有管板焊缝射线照相技术, 只能做一些焊缝表面检测, 无法消除残余应力和发现焊缝内部气孔。
而浅层的气孔极易在使用一段时间后显露出来, 造成泄漏。
所以, 焊缝质量有时难以从检测中得到有效控制。
要提高换热器管板的焊接质量, 必须通过改善和提高焊接、制造工艺来达到。
1 管板连接方法换热管与管板连接的适用范围和常用连接方式可分为以下几种:强度胀接: 适用于设计压力小于等于4M Pa, 设计温度小于等于300℃, 操作时无剧烈振动、无过大的温度变化及无明显的应力腐蚀的场合。
强度焊接: 适用于设计压力小于等于35M Pa, 无较大振动及无间隙腐蚀的场合。
胀焊并用: 适用于设计压力小于等于35M Pa, 密封性能要求较高, 承受振动或疲劳载荷, 有间隙腐蚀, 采用复合板的场合。
2 胀焊并用在实际生产中对换热器密封性能的要求往往较高, 有些使用场合有间隙腐蚀, 有时还伴有振动和疲劳载荷等, 所以要求换热器管板连接采用胀焊并用的结构形式。
2.1 胀焊并用结构2.1.1 强度胀加密封焊强度胀加密封焊主要适用于压力较低时,既要保证换热管与管板连接的密封性, 又要保证换热管与管板抗拉脱强度的场合, 其结构形式如图1 所示。
管壳式换热器中间管板胀接工艺技术作者:蓝景华来源:《科技创新与应用》2014年第01期摘要:文章旨在结合管壳式换热器中间管板胀接的相关工艺技术进行探讨。
在结合中间胀接技术的原理及特点的基础上,从工艺评定试验方案、样品焊接装配以及其工艺试验等方面进行详细阐述,希望能够提供人们一些意见参考。
关键词:中间管板胀接;中央空调;管壳式换热器1 中间胀接技术的原理及特点1.1 基本原理气动胀管机驱动深孔胀管器挤压中间管板处铜管,在胀管器的滚珠不断挤压下,铜管受挤压壁厚减薄,内径增大,外壁与管板孔内壁及密封槽达到牢固再紧密的接触,胀接后管板处于弹性状态,铜管发生塑性变形残留压应力,达到胀接密封效果。
1.2 中间胀接技术的特点包括:(1)能够应用于深度胀接的换热器,解决传统胀接带来的复杂设计问题。
(2)胀接稳定性好,可靠性高,相互系统窜气量少。
(3)在中央空调多系统螺杆机组上,可大幅降低生产成本。
2 工艺评定试验方案2.1 准备试验样件制造由壳体、管板、换热管等零件组成的换热器样件(如图1),样件用于模拟产品在正常生产状态下的中间胀接,其结构形状与产品完全一致,作为确定胀接参数、气密检验和解剖检验,及拉脱力检验的工艺评定使用。
图1 双系统换热器试验样件2.2 制定检验操作标准试验前要做好资料准备、工艺方案、编制实验记录表格,如胀接记录,试压报告等。
同时对胀接人员和质检人员进行培训,确保胀接人员熟悉胀接工艺操作过程,质检人员必须会使用测量工具,熟悉填写各项记录。
3 样品焊接装配根据设计及图纸要求,加工和焊接装配与产品相似管壳式换热器,对于组对换热器样件提出两种方案,一是组对中管板与两节筒体后,先穿铜管再组对左右管板;二是组对中管板、两节筒体和左右管板好后,再穿铜管,但必须保证3块管板孔同轴。
考虑现场生产条件不同,可以综合选择哪种方案更适合生产。
此外,还要求样件中间管板厚度不得少于产品的厚度,管孔加工技术要求参数与产品一致,且管板在组对焊接前,管板油污,杂质要清洗干净,尤其是中间管板要提前清洗,中间管板与两节壳体组对焊时,须有工装保护中间管板不受焊接飞溅污染。
换热管与管板连接通用工艺规程1主题内容与适应范围1.本1规程规定了钢制管壳式换热器换热管与管板连接的方法和要求。
1.本2规程适用于本公司制造的碳素钢、低合金钢、不锈钢等材料制管壳式换热器的换热管与管板的连接。
其它材料制造的换热器的换热管与管板的连接亦可参照执行。
2总则2.换1热管与管板连接接头的制造除符合本规程的规定外,还应遵守国家颁布的有关法令、法规、标准、本公司其它相应规程和图样及专用工艺文件的要求。
3.换2热管与管板连接的连接方式有胀接、焊接、胀焊并用等型式。
具体连接方式在图样或公司技术部门在制造专用工艺中规定。
3一般要求4.当1换热管与管板采用胀接连接时,换热管材料的硬度值一般须低于管板材料的硬度值〜除换热管材料为不锈钢或有应力腐蚀场合外,可采用管端局部退火的方式来降低换热管材料的硬度。
5.管2孔表面粗糙度当换热管与管板焊接连接时,管孔表面粗糙度值不大于M m且符合图样要求;当换热管与管板胀接连接时,管孔表面粗糙度值不大于M5且符合图样要求,同时管孔表面不得有影响胀接紧密性的缺陷,如贯通的纵向或螺旋状刻痕等。
3.连3接前,连接部位的换热管与管板表面应采用机械或化学方法清理干净,不应留有影响胀接或焊接连接质量的毛刺、铁屑、锈斑、油污等。
穿管前,应对换热管进行机加工平头,平管公差L+mrn。
穿管前,应采用钢丝刷、钢丝轮、砂纸将换热管管头(包括管口端部)毛刺、铁屑、锈斑、油污去除干净,至呈金属光泽。
用于焊接时,换热管刷管范围不小于换热管外径尺寸,且不小于2mm;用于胀接时,换热管应呈现金属光泽,其长度应不小于二倍的管板厚度。
刷管后,换热管应放置在干燥通风处,已经刷管处理的换热管必须在7天内与管板进行胀接或焊接连接,否则应重新进行刷管处理。
c)换热管的外伸长度,按产品焊接工艺规程执行。
对需打磨的管头要求打磨平整,不得有卷边现象,并用机械或化学方法清除管板、管端表面残留的砂轮灰等杂物。
d)当换热管与管板定位后实施焊接或胀接前(不超过4小时),应采用钢丝刷将连接部位的换热管与管板表面的锈斑、油污清理干净。
胀管通用工艺规程一、胀接说明1 胀接胀接是换热管与管板的主要联接形式之一,它是利用胀管器伸入换热管管头内,挤压管子端部,使管端直径扩大产生塑性变形,同时保持管板处在弹性变形范围内。
当取出胀管器后,管板孔弹性变形,管板对管子产生一定的挤紧压力,使管子与管板孔周边紧紧地贴合在一起,达到密封和固定连接的目的。
由于管板与管子的胀接消除了弹性板与塑性管头之间的间隙,可有效地防止壳程介质的进入而造成的缝隙腐蚀。
当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性难以保证。
因此,在这种工况下,或预计拉脱力较大时,可采用管板孔开槽的强度胀接。
胀接又分为贴胀和强度胀。
2 胀管率胀管率是换热管胀接后,管子直径扩大比率。
贴胀与强度胀的主要区别在于对管子胀管率 (管子直径扩大比率) 的控制不同,对冷换设备换热管来说,强度胀要求的胀管率H为1~2.1%,而贴胀要求的胀管率H为0.3~0.7%。
3 贴胀贴胀是轻度胀接的俗称,贴胀是为消除换热管与管板孔之间的缝隙,以防止壳程介质进入缝隙而造成的间隙腐蚀。
由于贴胀时胀管器给管子的胀紧力较小,管子径向变形量也就比较小。
因此换热管与管板孔之间的相对运动的摩擦力就比较小,所以它不能承受较大的拉脱力,且不能保证连接的可靠性,仅起密封作用。
贴胀时,管孔不需要开槽。
4 强度胀强度胀是指管板与换热管连接处的密封性和抗拉脱强度均由胀接接头来保证的连接方式。
强度胀接的管板孔要求开胀管槽,一般开两道胀管槽。
以使管子材料在胀接时嵌入胀管槽内,由此来增加其拉脱力。
特别是当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性下降,甚至发生管子与管板松脱,这时采用强度胀接,其抗拉脱力就比贴胀要大得多。
胀管前应用砂轮磨掉表面污物和锈皮,直至呈现金属光泽,清理锈蚀长度应不小于管板厚度的2倍。
管板硬度应比管子硬度高HB20~30,以免胀接时管板孔产生塑性变形,影响胀接的紧密性。
换热管与管板胀接技术浅谈摘要:本论文以某企业转化器为例,探讨了胀接方式的选择、胀管工艺的实施等,为相关工程的实际操作提供了参考。
关键词:换热管、管板、胀接前言钢制管壳式换热器在化工生产中应用十分普遍,不管是固定管板还是浮头管板、u形管壳式换热器,管子与管板的连接是换热器中十分重要的结构和环节。
由于换热管和管板是换热器管程和壳程之间的唯一屏障,因此换热管与管板连接接头质量的好环是管壳式换热器失效最主要的因素,本文以我公司制作的转化器(dn2800×16×5690)为例来进行说明。
该转化器为衡阳某公司20万吨/年pvc 扩改(四期)工程关键设备之一,该设备为立式固定管板式换热器。
设计压力:管程0.08mpa、壳程0.32mpa,工作压力:管程0.07mpa、壳程0.30mpa,设计温度:管程170℃、壳程99℃,工作温度:管程110~170℃、壳程95~99℃,工作物料:管程为氯化氢、乙炔、活性碳、氯乙烯;壳程为热水。
主要材料:管程为q345r(gb713-2008)、10(gb/t8163-2008),壳程为q235-b(gb/t3274-2007)。
管板为q345r材质,板厚70mm,换热管规格为φ45×3、长度为3000mm,材料为10#无缝钢管,每台数量为2031根,总换热面积为831m2。
该设备共制造10台。
一、胀接方法选择换热管与管板的连接方式主要有胀接、焊接、胀焊并用三种。
根据设备介质以及连接方式的适用范围,转化器换热管与管板之间的连接方式为强度焊加贴胀。
胀接目前主要有滚柱胀管、爆炸胀管及液压、液袋和橡胶胀管等工艺。
1.几种胀管工艺方法的比较液压胀管工艺又称软胀接,一次可以胀接较多的管接头。
液压胀管是一种新的胀接技术,它是通过对管子内表面施加高的液压力,使管子塑性变形而胀接于板孔内表面的。
液压胀接的胀管头是直径略小于管子内径的一段芯棒,芯棒两端的外圆表面上有多个密封件,在芯棒中部设有进油孔,在两段密封件之间的管段内施以高压,使管子发生塑性胀大变形而实现胀接。
管壳式换热器通用工艺规程适用范围1.根据国家质量监督局颁布的《TSG R0004-2009《固定式压力管道元件安全技术监察规程》和GB151-1999《管壳式换热器》的有关规定,特制订本规程。
2.本规程适用于固定管板式、浮头式、U型管式和填料函式换热器。
3.本规程是管壳式换热器的制造的基本要求,操作部门必须遵守本规程的有关规定,并满足其要求,操作部门对本规程负责贯彻执行,检验部门负责监督检查。
4.换热器的制造除遵守本规程外,还应符合GB150.1~150.4-2011《压力管道元件》的有关规定。
一、管箱、壳体、头盖1、圆筒内直径允许偏差1.1用板材卷制时,内直径允许偏差可通过外圆周长加以控制,其外圆周长允许上偏差为10mm,下偏差为零。
1.2用钢管作圆筒时,其尺寸允许偏差应符合GB/T8163和GB/T14976的规定。
2、圆筒同一断面上,最大直径与最小直径之差为e≤0.5%DN,且:当DN≤1200mm时,其值不大于5mm;DN>1200mm时,其值不大于7mm。
3、圆筒直线度允许偏差为L/1000(L为圆筒总长),且:当L≤6000mm时,其值不大于4.5mm;L>6000mm时,其值不大于8mm。
直线度检查按GB150-2011的有关规定。
4、壳体内壁凡有碍管束顺利装入或抽出的焊缝均应磨至母材表面齐平。
5、在壳体上设置接管或其它附件而导致壳体变形较大,影响管束顺利安装时,应采取防止变形措施。
6、插入式接管、管接头等,除图样另有规定外,不应伸出管箱、壳体和头盖的内表面。
二、换热管1、碳素钢、低合金钢换热管管端外表面应除锈,换热管管端应清除表面附着物及氧化皮。
用于焊接时,管端清理长度应不小于管外径,且不小于25 mm;用于胀接时,管端应呈现金属光泽,其长度应不小于二倍的管板厚度。
2、换热管拼接时,应符合以下要求:2.1对接接头应作焊接工艺评定。
试件的数量、尺寸、试验方法按NB/T47014的规定;2.2同一根换热管的对接焊缝,直管不得超过一条;U形管不得超过二条;最短管长不应小于300 mm;包括至少50 mm 直管段的U形弯管段范围内不得有拼接焊缝;2.3管端坡口应采用机械方法加工,焊前应清洗干净;2.4对口错边量应不超过换热管壁厚的15%,且不大于0.5mm;直线度偏差以不影响顺利穿管为限;2.5 对接后,应按表1选取钢球直径对焊接接头进行通球检查,以钢球通过为合格;表1注:di—换热管内径2.6对接接头应进行射线检测,抽查数量应不少于接头总数的10%,且不少于一条,以JB/T4730的Ⅲ级为合格;如有一条不合格时,应加倍抽查;再出现不合格时,应100%检查;2.7对接后的换热管,应逐根进行液压试验,试验压力为设计压力的2倍。
在下列情况下管板与换热管之间的连接应胀焊并用:1.密封性能要求较高的场合;2.承受振动或疲劳载荷的场合。
3.有间隙腐蚀的场合; 4.采用复合管板的场合。
GBl5l—l999标准中规定,强度胀接适用于设计压力~<4MPa、设计温度≤300℃、无剧烈振动、无过大温度变化及无应力腐蚀的场合;强度焊接适用于振动较小和无间隙腐蚀的场合;胀、焊并用适用于密封性能较高、承受振动或疲劳载荷、有间隙腐蚀、采用复合管板的场合。
由此可见,单纯胀接或强度焊接的连接方式使用条件是有限制的。
胀、焊并用结构由于能有效地阻尼管束振动对焊口的损伤,避免间隙腐蚀,并且有比单纯胀接或强度焊具有更高的强度和密封性,因而得到广泛采用。
目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。
胀、焊并用结构按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。
1 先胀后焊管子与管板胀接后,在管端应留有15ram长的未胀管腔,以避免胀接应力与焊接应力的迭加,减少焊接应力对胀接的影响,15ram的未胀管段与管板孔之间存在一个间隙(见图1)。
在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀。
据国外资料介绍,间隙腔内压力在焊接收口时可达到200~300MPa的超高压状态。
间隙腔的高温高压气体在外泄时对强度胀的密封性能造成致命的损伤,且焊缝收口处亦将留下肉眼难以觉察的针孔。
目前通常采用的机械胀接,由于对焊接裂纹、气孔等敏感性很强的润滑油渗透进入了这些间隙,焊接时产生缺陷的现象就更加严重。
这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀的方式。
由于贴胀是不耐压的,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。
但是采用常规手工或机械控制的机械胀接无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀管机胀接时可方便、均匀地实现贴胀要求。
GB-151-1999-讲义-管壳式换热器管壳式换热器 GB151-1999一.适用范围 1.型式固定——P t 、P S 大,△t 小浮头、U 形——P t 大,△t 大*一般不用于MPa P D 5.2>,易燃爆,有毒,易挥发和贵重介质。
结构型式:外填料函式、滑动管板填料函、双填料函式(径向双道) 2.参数41075.1,35,2600X PN DN MPa P mm D N N ≤⨯≤≤。
参数超出时参照执行。
D N :板卷按内径,管制按外径。
3.管束精度等级——仅对CS ,LAS 冷拔换热管Ⅰ级——采用较高级,高级精度(通常用于无相变和易产生振动的场合) Ⅱ级——采用普通级精度 (通常用于再沸,冷凝和无振动场合) 不同精度等级管束在换热器设计中涉及管板管孔,折流板管孔的加工公差。
GB13296不锈钢换热管,一种精度,相当Ⅰ级;有色金属按相应标准。
4.不适用范围受直接火焰加热、受核辐射、要求疲劳分析、已有其它行业标准(制冷、造纸等)P D <0.1MPa 或真空度<0.02MPa+二.引用标准1.压力容器安全技术监察规程——监察范围,类别划分*等*按管、壳程的各自条件划类,以其中类别高的为准,制造技术可分别要求。
*壳程容积不扣除换热管占据容积计,管程容积=管箱容积+换热管内部容积。
壳程容积=内径截面积X管板内侧间长度。
2. GB150-1998《钢制压力容器》——设计界限、载荷、材料及许用应力、各受压元件的结构和强度计算。
3.有关材料标准。
管材、板材、锻件等4.有关零部件标准。
封头、法兰(容器法兰、管法兰)紧固件、垫片、膨胀节、支座等三.设计参数1.有关定义同GB1502.设计压力Mpa分别按管、壳程设计压力,并取最苛刻的压力组合(一侧为零或真空)。
管板压差设计仅适用确能保证管、壳程同时升降压,如1)自换热 2)Pt 均较高,操作又能绝对保证同时升降压。
Ps3.设计温度℃0℃以上,设计温度≥最高金属温度。
浅析换热器管板与换热管胀焊胀工艺方法作者:万咏知来源:《环球市场》2018年第26期摘要:本论文阐述了在管壳式换热器的设计中换热管与管板的连接结构形式如何确定,确定了最佳的换热管连接方式为贴胀+密封焊+消除应力胀,防止换热器管板裂纹的产生,在生产中得到推广应用。
关键词:换热器;换热管;管板;强度胀;强度焊在管壳式换热器中,换热管与管板的连接是一个比较重要的结构部分。
根据管壳式换热器的使用条件不同,加工条件不同,管子与管板的连接通常采用:胀接或焊接的连接方式,胀接连接运行一段时间,随着冷热交替管板和管子间容易发生泄露,增加了维修频率;焊接连接的管子因过于密集,管孔桥间距较小,相邻焊缝的焊接热影响区叠加,容易产生焊接残余应力,焊后管板上易出现裂纹。
一、胀焊胀前准备(一)材料准备:Q345钢材,t=20,200×200(中间开φ32+0.74孔),一块;20#管子,φ32×2.5,L=150,一段;(二)设备、工具的准备:胀管器一个;WS-400氩弧焊一台;焊接辅助工具若干;(三)组对:将准备好的管子与管板组对起来,管子伸出长度4-5mm。
二、胀焊胀操作工艺要点(一)贴胀主要反映在管孔是否开槽和焊接坡口及管子伸出长度等方面,对一些比较苛刻的使用场合也有用强度焊+强度胀的管接头连接方式,如双管板换热器设计要求采取强度焊+强度胀。
我们在设计换热器时无论采取哪种方式,其要求满足的基本条件有两条:一是良好的气密性;二是足够的结合力。
(二)胀接胀接是一个连续的弹塑性力学过程,胀管时管子产生了严重的塑性变形,管板则主要处于弹性状态,卸载时由于回弹管孔将管子压紧而形成胀接接头。
强度胀是利用胀管器,使伸到管板中的管子端部直径扩大产生塑性变形而管板只达到弹性变形,因而胀管后管板与管子间就产生一定的挤压力,使管子能嵌入到管孔的环形槽内,达到密封紧固连接的目的。
(三)采用胀接时要求管板硬度较换热管硬度高,这样可免除在胀接时因管孔产生塑性变形而影响胀接的紧密性。
管壳式换热器中换热管与管板连接的工艺换热器作为将物料之间热流体的部分热量传递给冷流体的传热设备,在人们日常生活及石油、化工、动力、医药、原子能和核工业等行业中有着广泛的应用。
它可作为独立的设备,如加热器、凝汽器、冷却器等;也可作为某些工艺设备的组成部分,如一些化工设备中的热交换器等。
尤其在耗能用量较大的化工行业中,换热器在化工生产的热量交换和传递过程中是不可缺少的设备,在整个化工生产设备中也占有相当的比例。
换热器从其功能上来看,一方面是保证工业过程对介质所要求的特定温度,另一方面也是提高能源利用率的主要设备。
按其结构形式主要有板式换热器、浮头式换热器、固定管板式换热器和U形管式换热器等等。
其中除板式换热器外,其余几种属于管壳式换热器。
由于管壳式换热器具有单位体积上较大的换热面积,而且换热效果好,同时具有结构坚固、适应性强、制造工艺成熟等优点,已成为最为普遍使用的一种典型的换热器。
管壳式换热器中换热管与管板的连接
在管壳式换热器中换热管和管板是换热器管程和壳程之间的惟一屏障,换热管与管板之间的连接结构和连接质量决定了换热器的质量优劣和使用寿命,是换热器制造过程中至关重要的一个环节。
大多数换热器的破坏及失效都发生在换热管与管板的连接部位,其连接接头的质量也直接影响着化工设备及装置的安全可靠性,因此
对于管壳式换热器中换热管与管板的连接工艺就成为了换热器制造质量保证体系中最关键的控制环节。
目前在换热器制造过程中,换热管与管板的连接主要有:焊接、胀接、胀接加焊接以及胶接加胀接等方法。
1.焊接
换热管与管板采用焊接连接时,由于对管板加工要求较低,制造工艺简单,有较好的密封性,并且焊接、外观检查、维修都很方便,是目前管壳式换热器中换热管与管板连接应用最为广泛的一种连接方法。
在采用焊接连接时,有保证焊接接头密封性及抗拉脱强度的强度焊和仅保证换热管和管板连接密封性的密封焊。
对于强度焊其使用性能有所限制,仅适用于振动较小和无间隙腐蚀的场合。
采用焊接连接时,换热管间距离不能太近,否则受热影响,焊缝质量不易得到保证,同时管端应留有一定的距离,以利于减少相互之间的焊接应力。
换热管伸出管板的长度要满足规定的要求,以保证其有效的承载能力。
在焊接方法上,根据换热管和管板的材质可以采用焊条电弧焊、TIG焊、CO2焊等方法进行焊接。
对于换热管与管板间连接要求高的换热器,如设计压力大、设计温度高、温度变化大,以及承受交变载荷的换热器、薄管板换热器等宜采用TIG焊。
常规的焊接连接方法,由于管子与管板孔之间存在间隙,易产生间隙腐蚀和过热,并且焊接接头处产生的热应力也可能造成应力腐蚀和破坏,这些都会使换热器失效。
目前在国内核工业、电力工业等行业使用的换热器中,换热管与管板的连接已开始使用内孔焊接技术,
这种连接方法将换热管与管板的端部焊接改为管束内孔焊接,采用全熔透形式,消除了端部焊的缝隙,提高了抗间隙腐蚀和抗应力腐蚀的能力,
其抗振动疲劳强度高,能承受高温、高压,焊接接头的力学性能较好;对接头可进行内部无损探伤,焊缝内部质量可得到控制,提高了焊缝的可靠性。
但内孔焊接技术装配较难,对焊接技术要求高,制造和检验复杂,并且制造成本相对较高。
随着换热器向高温、高压和大型化发展,对其制造质量要求越来越高,内孔焊接技术将会得到更加广泛的应用。
2.胀接
胀接是一种传统的换热管与管板的连接方法,利用胀管器械使管板与管子产生弹塑性变形而紧密贴合,形成牢固连接,达到即密封又能抗拉脱的目的。
在换热器的制造过程中,胀接适用于无剧烈的振动,无过大的温度变化,无严重的应力腐蚀的场合。
目前采用的胀接工艺主要有机械滚胀和液压胀接。
机械滚胀胀接不匀,一旦管子与管板连接失效再用胀管来修复十分困难;采用液袋式液压胀接由电脑控制操作,精度较高,并能保证胀接紧密程度均匀一致,连接的可靠性比机械胀接要好。
但对加工精度要求严格,对密布的接头要保证胀接成功也有一定困难,如果失效再胀接修复也较为困难。
3.胀接加焊接
当温度和压力较高,且在热变形、热冲击、热腐蚀和流体压力的
作用下,换热管与管板连接处极易被破坏,采用胀接或焊接均难以保证连接强度和密封性的要求。
目前广泛采用的是胀焊并用的方法。
胀接加焊接结构能够有效地阻尼管束振动对焊缝的损伤,可以有效地消除应力腐蚀和间隙腐蚀,提高了接头的抗疲劳性能,
从而提高了换热器的使用寿命,比单纯胀接或强度焊具有更高的强度和密封性。
对普通的换热器通常采用“贴胀%强度焊”的形式;而使用条件苛刻的换热器则要求采用“强度胀%密封焊”的形式。
胀接加焊接按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。
(1)先胀后焊胀接时使用的润滑油会渗透进入接头间隙,而它们对焊接裂纹、气孔等有很强的敏感性,从而使焊接时产生缺陷的现象更加严重。
这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀接的方式。
采用贴胀虽不耐压,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。
但是采用常规手工或机械控制的胀接方法无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀接方法可方便、均匀地实现贴胀要求。
在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀,这些具有高温高压的气体在外泄时对强度胀的密封性能会造成一定的损伤。
(2)先焊后胀对于先焊后胀工艺,首要的问题是控制管子与管板孔的精度及其配合。
当管子与管板管孔的间隙小到一定值后,胀接。