材料成型技术基础复习提纲整理
- 格式:doc
- 大小:192.00 KB
- 文档页数:10
材料成型技术基础复习第一章金属的液态成型绝对考点:一.金属的凝固1.凝固的三个区域:固相区凝固区液相区2.铸件的凝固方式:逐层凝固糊状凝固中间凝固(了解各种方式的图)3.影响凝固方式的因素:(1)合金的温度范围合金的结晶温度范围愈小,凝固区愈窄,愈倾向于逐层凝固合金的性质合金的凝固温度越低,热导率越高,接近潜热越大,铸件内部温度均匀化能力越大,而冷镦的激冷作用变小,故温度梯度小。
(2)铸件的温度梯度铸型的蓄热能力铸型蓄热能力越强,激冷能力越强,铸件温度(影响因素)梯度越大浇注温度浇注温度越高,因带入铸型中热量增多,铸件温度梯度越小二.液态合金的工艺性能1.合金的充型能力熔融合金充满铸型型腔,获得形状完整,轮廓清晰铸件的能力。
影响合金充型能力的主要因素:(1)合金的流动性:1)合金种类合金的流动性与合金的熔点,导热率,合金液的粘度等物理性能有关。
2)合金的成分同种合金中,成分不同的铸造合金具有不同的结晶特点,对流动性的影响也不同。
3)杂质与含气量熔融合金中出现的固态夹杂物,将使合金液的粘度增加,合金的流动性下降。
(2)浇注条件:(判断)1)浇注温度浇注温度越高,液态合金所含热量越多,在同样冷却条件下,保持液态时间长,流动性好。
2)充型压力熔融合金在流动方向上受压力越大,充型越好3)铸型条件铸型阻力及铸型对合金的冷却作用,都有影响。
(3)铸型条件1)铸型的蓄热能力2)铸型温度3)铸型中的气体4)铸件结构2.合金的收缩影响收缩的因素:(1)化学成分(2)浇注温度:浇注温度越高,过热度越大,合金的也太收缩增加。
(注意!)(3)铸件结构和铸型条件三.铸造性能对铸件质量的影响1.缩孔与缩松1)缩孔与缩松的防止措施:按照定向凝固原则进行凝固合理的确定内浇道位置及浇注工艺(考点)合理的应用冒口,冷铁和补贴等工艺措施:P9图1-112.铸造应力(判断)定义:铸件在凝固,冷却过程中,由于各部分体积变化不一致,彼此制约而使其固态收缩收到阻碍引起的内应力。
二、铸造1.零件结构分析:筒壁过厚;圆角过渡,易产生应力集中。
2.铸造方法:砂型铸造(手工造型)及两箱造型。
3.选择浇注位置和分型面4.确定工艺参数(1) 铸件尺寸公差:因精度要求不高,故取CT15(2) 要求的机械加工余量(RMA ):余量等级取H 级。
参考表2-6,余量值取5mm ,标注为GB/T 6414-CT15-RMA5(H)(3) 铸件线收缩率:因是灰铸铁件及受阻收缩,取0.8%(4) 起模斜度:因铸件凸缘端为机加工面,增加壁厚式,斜度值1°(5) 不铸出的孔:该铸件6个φ18孔均不铸出(6) 芯头形式:参考图2-39,采用水平芯头零件结构的铸造工艺性:1、基本原则:1) 铸件的结构形状应便于造型、制芯和清理2) 铸件的结构形状应利于减少铸造缺陷3) 对铸造性能差的合金其铸件结构应从严要求2、铸造性能要求:1) 铸件壁厚应均匀、合理(外壁>内壁>肋(筋))2) 铸件壁的连接(圆角过渡、避免交叉和锐角、避免壁厚突变 )3) 防止铸件变形(结构尽量对称)4) 避免较大而薄的水平面5) 减少轮形铸件的内应力 (避免受阻收缩)3、铸造工艺要求:1)外形铸件外形分型面应尽量少而平;避免局部凸起或凹下侧凹和凸台不应妨碍起模;垂直于分型面的非加工面应具有结构斜度2)内腔尽量采用开放式、半开放式结构;应利于型芯的固定、排气和清理3)大件和形状复杂件可采用组合结构三、塑性成形金属塑性成形的方法:锻造、冲压、挤压、轧制、拉拔自由锻1、零件结构分析2、绘制锻件图 (余块、余量、公差)3、确定变形工序(镦粗、冲孔、芯轴、拔长、弯曲、切肩、锻台阶)4、计算坯料质量(mo= (md+mc+mq) (1+δ))和尺寸 (首工序镦粗:D0≥0.8 拔长:D0≥ 零件结构的自由锻工艺性1)应避免锥形或楔形,尽量采用圆柱面和平行面,以利于锻造2)各表面交接处应避免弧线和曲线,尽量采用直线或圆,以利于锻制3)应避免肋板或凸台,以利于减少余块和简化锻造工艺4)大件和形状复杂的锻件,可采用锻—焊,锻—螺纹联接等组合结构模锻1、零件结构分析(分模面、结构斜度、圆角过渡、腹板厚度)2、绘制锻件图(余块、机械加工余量、锻件公差、模锻斜度、模锻圆角)3、确定变形工步(镦粗、拔长、滚压、弯曲、预锻、终锻)4、修整工序选择(切边、冲连皮、校正、热处理(正火或退火)、清理) 30V max Dy零件结构的模锻工艺性1)应有合理的分模面,以保证锻件从模膛中取出又利于金属填充、减少余块和易于制模2)与分模面垂直的非加工面应有结构斜度,以利于从模膛中取出锻件(圆角过渡,利金属流动,防应力集中)3)应避免肋的设置过密或高宽比过大,利于金属充填模膛4)应避免腹板过薄,以减小变形抗力以及利于金属填充模膛5)应尽量避免深孔或多孔结构,以利于制模和减少余块6)形状复杂性件宜采用锻—焊、锻—螺纹联接等组合结构,以利于模具和减少余块冲压(冲裁、弯曲、拉深、缩口、起伏和翻孔)冲裁:落料模:D凹≈(Dmin)D凸≈(D凹-Zmin)冲孔模:d凸≈(dmax)d凹≈(d凸+Zmin)弯曲:工件内侧圆角半径≥凸模圆角半径、弯曲件毛坯长度拉伸:拉深间隙、拉伸模尺寸、毛坯直径、拉深次数冲压工序:1)带孔平板件:单工序:先落料后冲孔,连续模:先冲孔后落料2)带孔的弯曲件或拉深件:热处理、拉深/弯曲、冲孔3)形状复杂的弯曲件:先弯两端、两侧,后弯中间模具:单工序模、复合模、连续模1、零件结构分析:孔边距过小,宜加大2、冲裁间隙:取大间隙Z/2=(10%~12.5%)δ故Z=0.30~0.38mm模具刃口尺寸:落料模:D凹≈(Dmin)=33.2 D凸≈(D凹-Zmin)=32.9冲孔模:d凸≈(dmax)=26.7 d凹≈(d凸+Zmin)=273、冲压工序选择工序类型:平板件,冲孔和落料工序工序顺序:大批量,先冲孔后落料4、模具类型:精度要求不高且为大批量生产,采用连续模零件结构的冲压工艺性1)材料:尽量选用价格较低的材料2)精度和表面质量:3)冲压件的形状和尺寸1)冲裁件:①形状尽可能简单、对称②圆弧过渡、避免锐角③注意孔形、孔径、孔位2)弯曲件:①形状②h、a、c≥2δ、l≥r+(1~2)δ、R/r≥0.5δ③冲孔槽防止孔变形④位置3)拉深件:①形状②转角l≥R/r+0.5δ、R≥2~4δ、r≥2δ③位置④组合工艺、切口工艺四、连接成形焊接头力学性能:相变重结晶区、焊缝金属区、母材、不完全重结晶区、熔合区、过热区焊接残余应力:调节1)设:减少焊缝的数量和尺寸并避免焊缝密集和交叉;采用刚性较小的接头2)工:合理的焊接顺序(先内后外、先短后长、交叉处不起头收尾)、降低焊接接头的刚性、加热减应区、锤击焊缝、预热和后热2、消除:1)去应力退火2)机械拉伸法3)温差拉伸法4)振动法3、焊接残余变形控制和矫正:(收缩变形、角变形、弯曲变形、扭曲变形、失稳变形)1)设:尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状2、合理安排焊缝位置2)工:反变形法、刚性固定法、合理选用焊接方法和焊接规范、选用合理的装配焊接顺序材料的焊接性:(材料的化学成分、焊接方法、焊接材料、焊件结构类型、服役要求)焊接性评价:碳当量、冷裂纹敏感系数公式金属材料的焊接:1、碳钢:(①淬硬组织、裂纹;②预热和后热;③低氢型焊条、碱度较高的焊剂;④去应力退火或高温回火)1)低碳钢、强度低的低合金结构钢:各种方法,无需采用任何工艺措施方便施焊2)中碳钢:①易②③④小电流、低焊速和多层焊。
材料成形复习提纲
一、引言
1.材料成形的定义和重要性
2.材料成形的分类和应用领域
二、材料成形的基本原理
1.材料变形与本构关系
2.材料变形的影响因素
3.材料成形的力学行为
三、塑性成形
1.压力与应力
2.塑性变形的基本形式
3.塑性成形的分类和工艺
4.塑性成形的优点和局限性
四、焊接成形
1.焊接工艺的分类和原理
2.焊接接头的设计和准备
3.焊接材料和设备的选择
4.焊接质量控制和检验
五、热处理技术
1.热处理的目的和作用
2.热处理的分类和工艺
3.热处理对材料性能的影响
4.热处理过程控制和参数选择
六、表面处理技术
1.表面处理的目的和作用
2.表面处理的分类和工艺
3.表面处理对材料性能的影响
4.表面处理过程控制和参数选择
七、材料成形的质量控制与检验
1.质量控制的重要性和原则
2.常用的成形质量检验方法
3.质量缺陷的分析和处理
八、新型材料成形技术
1.新型材料与成形技术的关系
2.新型材料成形技术的研究进展
3.新型材料成形技术的应用前景
九、结语
1.材料成形的发展趋势和挑战
2.对材料成形的思考和展望。
复习思考题《材料成形技术基础》复习要点第一章绪论1.材料成形的方法有、、、等。
第二章材料凝固理论1.概念:凝固。
2.凝固是将固体材料加热到态,然后使其按预定的尺寸、形状及组织形态,再次冷却至态的过程。
3.是将固体材料加热到液态,然后使其按预定的尺寸、形状及组织形态,再次冷却至固态的过程。
4.函数与过程经历的历程无关,只与研究体系所处的状态有关。
5.状态函数与过程经历的历程无关,只与研究体系所处的有关。
6.内能U是状态函数。
7.焓H是状态函数。
8.熵S是状态函数。
9.吉布斯自由能G是状态函数。
10.亥姆霍兹自由能A是状态函数。
11.功W是状态函数。
12.自发过程是指系统从态自发移向态的过程。
13.在没有外界影响下,自发过程不可逆转。
14.在没有外界影响下,自发过程可以逆转。
15.即使有外界影响,自发过程也不可逆转。
16. 有外界影响时,自发过程可以逆转。
17. 自发过程两个判据是 和 。
18. 自由能最低原理指 条件下,体系的自由能永不增大,自发过程的方向力图 体系的自由能,平衡的标志是体系的自由能 。
19. 吉布斯自由能判据(自由焓判据)指 条件下,一个只做体积功的体系,其自由焓永不 ,自发过程的方向是使体系自由焓 ,当自由焓减到 时,体系达到平衡。
20. 概念:自发过程;自由能最低原理。
21. 如图示,a )-d)分别处于什么润湿状态?22. 根据杨氏方程LGLS SG σσσθ-=cos ,说明当LG LS SG σσσ、、满足什么条件时,接触界面表现为润湿(不润湿)。
23. 由于自发形核是自行发生的形核,因此比非自发形核容易。
24. 非自发形核依靠外来质点形核,比自发形核容易。
25. 由于非自发形核依靠外来质点形核,因此没有自发形核容易进行。
26. 形核剂应具备的基本条件是 、 、 、 。
27. 凝固时,形核剂应具备的基本条件是什么?28. 粗糙界面的晶体生长要比光滑界面容易。
29. 光滑界面的晶体生长要比粗糙界面容易。
题型与比例:选择题20%,填空题30% ,是非题20%,其他30%第一章1.铸件的凝固方式有:逐层凝固、糊状凝固、中间凝固2.合金的结晶温度范围越小,凝固区域越窄,越倾向于逐层凝固。
3.液态金属本身的流动性能力称为流动性。
4.液态合金充满型腔,获得形状完整,轮廓清晰的铸件的能力,称为充型能力。
5.影响合金流动性的因素:1.合金的种类2.合金的成分3.浇注的条件4.铸型的充填条件6.灰铸铁、硅黄铜的流动性最好,铝合金次之,铸钢最差。
7.收缩是铸造合金从浇注、凝固直至冷却到室温的过程中,其体积或尺寸缩减的现象。
收缩是合金的物理本性,在铸造过程中,因收缩可能会导致铸件产生缩孔、缩松、应力、变形和裂纹等缺陷。
8.缩孔是在铸件最后凝固的部分形成容积较大而且集中的空洞。
9.缩松是细小而分散的空洞。
10.定向凝固(顺序凝固)在铸件上可能出现缩孔的厚大部位安放冒口,在远离冒口的部分安放冷铁,使铸件上远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。
11.铸造内应力按产生的原因不同,分为热应力、收缩应力、相变应力。
热应力主要是铸件冷却中,由于冷却速度不同而引起不均衡收缩所产生的应力。
热应力使冷却较慢的厚壁处或心部受拉伸,冷却较快的薄壁处或表面受压缩。
12.一般铸件冷却到弹性状态后,收缩受阻才会产生收缩应力,而且收缩应力表现为拉应力或切应力。
13.同时凝固:采取措施使铸件各部分无温差或温差尽量小,几乎同时进行凝固。
自然时效:将铸件置于露天场地半年以上,让其缓慢地发生变形,内应力消除。
热时效(人工时效)又称去应力退火,将铸件加热到550~650°C,保温2~4h,随炉慢冷至150~220°C,然后出炉。
14.热裂一般是在凝固末期,金属处于固相线附近的高温时形成的。
热裂纹的特征是裂纹短,缝隙较宽,形状曲折,裂口表面氧化较严重15.冷裂的特征是裂纹细小,呈连续直线状,具有金属光泽或微氧化色。
材料成型技术基础复习题--新版《材料成型技术基础复习题(涵盖常见成型方法与要点)》。
材料成型技术基础这门课的复习题来啦。
这部分知识可是很重要的哦,不管是考试还是以后实际应用,都用得上。
下面咱就一起来看看吧。
一、铸造部分复习题。
题目1:什么是铸造?举个生活中的例子说说。
答案:铸造就是把熔化的金属液倒进预先做好的模具里,等它冷却凝固后,就得到咱们想要的零件啦。
比如说家里炒菜用的铁锅,很多就是通过铸造做出来的。
把铁熔化后,倒进特定的模具,冷却后就成了铁锅的形状啦。
原因:铸造是一种很古老也很常用的材料成型方法,适合做各种形状复杂的零件。
像铁锅这种形状不太规则的器具,用铸造的方法就比较方便。
题目2:砂型铸造有哪些优缺点呢?答案:优点啊,那可不少。
它能做各种形状复杂的零件,不管多奇怪的形状,基本都能做出来;成本也比较低,适合大量生产。
比如说汽车发动机的缸体,很多就是用砂型铸造做的,因为发动机缸体形状复杂,砂型铸造就能很好地完成任务。
不过呢,它也有缺点。
精度不太高,做出来的零件表面可能比较粗糙,还得再加工一下;而且生产效率相对低一些。
原因:砂型铸造的工艺特点决定了它的优缺点。
因为砂型可以根据需要做成各种形状,所以能做复杂零件。
但砂型本身的精度有限,所以零件精度不高,表面也会粗糙些。
二、锻造部分复习题。
题目1:锻造是怎么回事呀?给个例子讲讲。
答案:锻造就是通过外力,比如用锤子敲或者用机器压,让金属材料发生变形,变成咱们想要的形状。
就好比打铁,铁匠师傅把烧红的铁块放在铁砧上,用锤子不停地敲,把铁块敲成各种工具的形状,这就是锻造啦。
原因:锻造能让金属的内部结构变得更紧密,提高金属的性能。
像一些重要的机械零件,比如汽车的半轴,就经常用锻造的方法来做,这样零件会更结实、耐用。
题目2:锻造和铸造有啥不一样呢?答案:锻造和铸造的区别可大啦。
铸造是把金属熔化后倒进模具成型,就像前面说的铁锅;而锻造是通过外力让金属变形。
比如说做一把菜刀,铸造出来的菜刀可能内部结构比较疏松,不够结实;但如果是锻造的菜刀,经过反复敲打变形,内部结构紧密,就会更锋利、更耐用。
西南交通大学——材料成型技术基础复习纲要第一篇金属铸造成形工艺一.掌握铸造定义与实质及其合金的铸造性能。
A铸造:将熔融金属浇入铸型型腔,经冷却凝固后获得所需铸件的方法。
B铸造实质:液态成形。
C合金:两种或两种以上的金属元素、或金属与非金属元素(碳)熔和在一起,所构成具有金属特性的物质。
D合金的铸造性能:是指合金在铸造过程中获得尺寸精确、结构完整的铸件的能力,流动性和收缩性是合金的主要铸造工艺特性。
二.掌握合金的充型能力及影响合金充型能力的因素。
A合金的充型能力:液态合金充满铸型,获得轮廓清晰、形状准确的铸件的能力。
B影响合金充型能力的因素:(1)铸型填充条件a. 铸型材料;b. 铸型温度;c. 铸型中的气体(2)浇注条件a. 浇注温度(T)T 越高(有界限),充型能力越好。
b. 充型压力流动方向上所受压力越大,充型能力越好。
(3)铸件结构结构越复杂,充型越困难。
三.掌握合金收缩经历的三个阶段及其铸造缺陷的产生。
A合金的收缩:合金从浇注、凝固、冷却到室温,体积和尺寸缩小的现象。
B合金收缩的三个阶段:(1)液态收缩合金从 T浇注→ T凝固开始间的收缩。
(2)凝固收缩合金从 T凝固开始→T凝固终止间的收缩。
液态收缩和凝固收缩是形成铸件缩孔和缩松缺陷的基本原因。
(3)固态收缩(易产生铸造应力、变形、裂纹等。
)合金从 T凝固终止→T室间的收缩。
四.了解形成铸造缺陷(缩孔,缩松)的主要原因及其防止措施。
A产生缩孔和缩松的主要原因:液态收缩和凝固收缩导致。
B缩孔形成原因:收缩得不到及时补充;缩松形成原因:糊状凝固,被树枝晶体分隔区域难以实现补缩。
C缩孔与缩松的预防:(1)定向凝固,控制铸件的凝固顺序;(2)合理确定铸件的浇注工艺五.掌握铸件产生变形和裂纹的根本原因。
铸件产生变形和裂纹的根本原因:铸造内应力(残余内应力)六.掌握预防热应力的基本途径。
预防热应力的基本途径:缩小铸件各部分的温差,使其均匀冷却。
借助于冷铁使铸件实现同时凝固。
《材料成型技术》复习第一篇,金属液态成型何为合金的铸造性能?流动性、收缩性、吸气性、偏析性。
影响流动性的因素?合金种类及化学成分、铸型特点、浇注条件。
注意:凝固类型,层状凝固、糊状凝固。
纯金属和共晶成分合金属于层状凝固,其他属于糊状凝固。
收缩:液态收缩、凝固收缩、固态收缩。
一般层状凝固合金易产生缩孔,糊状凝固合金易产生缩松。
铸造应力及变形和裂纹。
铸造应力分热应力和机械应力2种,机械应力是铸件在固态收缩时受铸型、型芯阻碍而形成,一般可以在推出、清砂后消失。
变形是由于铸件壁厚不同冷却收缩时产生应力不同,故产生变形。
一般壁厚部分冷却慢产生拉应力,恢复变形时向内凸;壁薄部分收缩快产生压应力,恢复变形时向外凸。
裂纹分冷裂和热裂。
冷裂是在较低温度下形成,铸件处于高弹态时铸造应力超过合金在该温度下的强度极限而产生的。
磷使冷裂倾向增大。
热裂是铸件在凝固过程中和固相线温度附近产生的,是收缩时受铸型、型芯阻碍而产生的,一般与铸造应力有关,硫元素能使热裂倾向增大。
气孔缺陷。
一般分侵入气孔、析出气孔、反应气孔。
灰铸铁、球墨铸铁、蠕墨铸铁、可锻铸铁、铸钢件的生产。
要知道何为孕育处理、球化处理。
知道一些典型构件的材料选择,如机器底座是灰铸铁、阀门管道配件(水龙头)是可锻铸铁等。
有色金属铸件生产。
铝合金的熔炼,变质处理。
一般铝合金和铜合金的使用。
铸造成型方法。
砂型铸造、金属型铸造、压力铸造、低压铸造、离心铸造、溶模铸造、壳型铸造方法比较;尤其砂型铸造的工艺过程,造型分类及方法。
铸件的结构工艺特点,如何避免不合理的结构等。
铸造工艺的方案确定。
铸造位置选择、分型面选择、砂芯的安置、公差及拔模斜度选择。
如:1.为什么铸件上重要的加工面在确定浇注位置时应尽量朝下或处于侧面?铸件的厚大部分应放在顶部或在分型面的侧面?(1)下面不易出现气孔、砂眼、缩孔、缩松等。
2)下面和侧面组织致密。
3)便于设置冒口和补缩。
)2. 防止铸件产生缩孔、缩松的常用措施有哪些?为什么能防止?(1)合金的化学成份2)顺序凝固。
1.塑性成形是利用金属的塑性,在外力作用下使金属发生塑性变形,从而获得所需要形状和性能产品的一种加工方法2.单晶体:晶格位向相同的一群同类型晶胞聚合在一起,组成单晶体。
3.各向异性:单晶体由于不同晶面和晶向上原子排列不同,使原子的密度和原子间的结合力强弱不同,因而在不同方向上其机械、物理和化学性能不同。
4.多晶体:工业用金属是由许多尺寸很小,位向不同的小的单晶体组成。
5.滑移:在剪应力的作用下,晶体的一部分相对于另一部分,沿着一定的晶面和晶向产生移动。
产生滑移的晶面和晶向,分别称为滑移面和滑移方向。
6.滑移系:通常每一种晶格有几个可能产生滑移的晶面,即同时存在几个滑移面;而每一个滑移面,又同时存在几个滑移方向。
一个滑移面和其上一个滑移方向,构成一个滑移系。
7.单晶体塑性变形的另一种方式叫双晶,又叫孪晶。
8.孪生:单晶体在剪应力作用下,晶体一部分对应一定的晶面(双晶面),沿一定的方向,进行相对移动。
结果使晶体的变形部分与未变形部分以双晶面为对称面互相对称。
9.冷成形—冷塑性成形、冷变形:金属在回复、再结晶温度以下的一种成形方法,通常在变形过程中会出现位错密度上升、发生加工硬化的现象。
10.热成形—热塑性成形、热变形:金属在再结晶温度以上进行的成形方法,通常变形过程材料软化占优势。
11.加工硬化—应变硬化:金属在低于再结晶温度时,由于塑性应变而产生塑性降低、强度和硬度增加的现象。
12.静态回复:当加热温度不高时,晶体内只有间隙原子和空位的运动。
这时变形金属晶粒的外形无明显变化,仍呈纤维状,只消除了晶格畸变,其机械性能几乎无变化,物理化学性能则大部分恢复。
随着温度的升高,原子具有了较大的活动能力,位错开始运动。
实质上是原子从高能态的混乱排列向低能态的规则排列转变的过程,结果是晶体的内应力大大下降,强度稍有下降,塑性稍有提高。
13.静态再结晶:变形金属加热到较高温度时,由于原子获得了更大的活动能力,首先在变形晶粒的晶界或滑移带、峦晶带等变形剧烈的地区产生晶核,即为一些原子规则排列的小晶块,然后晶核逐渐长大,成为具有正常晶格的新晶粒,新晶粒长大到彼此边界相遇,过程结束,这一生核、长大的过程称为再结晶。
第一章绪论1、现代制造过程的分类(质量增加、质量不变、质量减少)。
2、那几种机械制造过程属于质量增加(不变、减少)过程。
(1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。
(2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。
(3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。
第二章液态金属材料铸造成形技术过程1、液态金属冲型能力和流动性的定义及其衡量方法液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。
液态金属的充型能力通常用铸件的最小壁厚来表示。
液态金属自身的流动能力称为“流动性”。
液态金属流动性用浇注流动性试样的方法来衡量。
在生产和科学研究中应用最多的是螺旋形试样。
2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。
流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。
(2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。
(3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。
浇注温度越高,充型能力越好。
在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。
液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。
但金属液的静压头过大或充型速度过高时,不仅发生喷射和飞溅现象,使金属氧化和产生”铁豆”缺陷,而且型腔中气体来不及排出,反压力增加,造成“浇不足”或“冷隔”缺陷。
浇注系统结构越复杂,流动阻力越大,液态金属充型能力越低。
(4)铸件结构:衡量铸件结构的因素是铸件的折算厚度R(R=铸件体积/铸件散热表面积=V/S)和复杂程度,它们决定着铸型型腔的结构特点。
R大的铸件,则充型能力较高。
R越小,则充型能力较弱。
铸件结构复杂,厚薄部分过渡面多,则型腔结构复杂,流动阻力大,充型能力弱。
铸件壁厚相同时,铸型中的垂直壁比水平壁更容易充满。
3、收缩的定义及铸造合金收缩过程(液态、凝固、固态)铸件在液态、凝固和固态冷却过程中所产生的体积减小现象称为收缩,是液态金属自身的物理性质。
液态收缩阶段(Ⅰ) 表现为型腔内液面的降低。
凝固收缩阶段(Ⅱ) 由状态改变和温度下降两部分产生。
一般用体收缩率表示。
固态收缩阶段(Ⅲ) 通常表现为铸件外形尺寸的减少,故一般用线收缩率表示。
4、缩孔、缩松的定义,形成条件、产生的基本原因,形成部位及防止方法。
液态金属在凝固过程中,由于液态收缩和凝固收缩,往往在铸件最后凝固的部位出现大而集中的孔洞,称缩孔;细小而分散的孔洞称为缩松。
1)金属的成分结晶温度范围越小的金属,产生缩孔的倾向越大;结晶温度范围越大的金属,产生缩松的倾向越大。
(2)浇注条件和铸型性质提高浇注温度时,金属的总体积收缩和缩孔倾向大,浇注速度很慢缩孔容积减少,铸型材料对铸件冷却速度影响很大。
缩松:金属型<湿型<干型。
(3)补缩压力和铸件结构在凝固过程中增加补缩压力,可增大缩孔而减小缩松的容积。
若金属在很高的压力下浇注和凝固,则可以得到无缩孔和缩松的致密铸件。
缩孔和缩松的防止方法(1)针对金属的收缩和凝固特点制定正确的技术方法控制铸件的凝固方向使之符合顺序凝固方式或同时凝固方式;(2)合理确定内浇口位置及浇注方法;(3)合理应用冒口、冷铁和补贴等技术措施。
5、铸造应力的定义及分类,产生的缺陷(热裂、冷裂、变形),防止和减少的措施。
铸件在凝固和随后的冷却过程中,收缩受到阻碍而引起的内应力,称为铸造应力。
分类按形成的原因不同铸造应力分为热应力、相变应力和机械阻碍应力。
按应力存在的状况可分为临时应力和残余应力临时应力是暂时的,当引起应力的原因消除以后,应力随之消失。
残余应力是长期存在的,当引起应力的原因消除后,仍存在铸件中。
当铸造应力的总合超过金属的强度极限时,铸件便产生裂纹。
按裂纹形成的温度范围可分为热裂和冷裂。
热裂是在凝固末期高温下形成的裂纹。
裂纹沿晶粒边界产生和发展,外观形状曲折而不规则,表面与空气接触而被氧化并呈氧化色。
冷裂是铸件在低温时形成的裂纹。
冷裂纹常穿过晶粒,外形规则,呈圆滑曲线或直线状,表面光滑而具有金属光泽或显微氧化色。
防止和减小铸造应力的措施:在零件能满足工作条件的前提下,选据弹性模量和收缩系数小的材料;采用同时凝固方式;合理设置浇冒口,缓慢冷却,以减小铸件各部分温差;采用退让性好的型、芯砂。
若铸件已存在残余应力,可采用人工时效、自然时效或振动时效等方法消除。
6、金属的吸气性及金属吸收气体的过程,主要气体(H2、N2、O2)金属在熔炼过程中溶解气体;在浇注过程中因浇包未烘干、铸型浇注系统设计不当、铸型透气性差以及浇注速度控制不当、或型腔内气体不能及时排出,都会使气体进入金属液,增加金属中气体的含量。
这就构成了金属的吸气性。
(氢、氮、氧)。
(1)气体分子撞击到金属液表面;(2)在高温金属液表面上气体分于离解为原子状态;(3)气体原子根据与金属元素之间的亲和力大小,以物理吸附方式或化学吸附方式吸附在金属表面;(4)气体原子扩散进入金属液内部。
7、偏析、宏观偏析、微观偏析、正偏析、逆偏析的定义及其消除方法。
铸件凝固后,截面上不同部位,以至晶粒内部,产生化学成分不均匀的现象,称为偏析。
微观偏析是指微小(晶粒)尺寸范围内各部分的化学成分不均匀现象。
在铸件较大尺寸范围内化学成分不均匀的现象叫宏观偏析。
主要包括正偏析和逆偏析。
正偏析:k>1,杂质的分布从外部到中心逐渐增多;逆偏析:k<1,易熔物质富集在铸件表面上。
8、铸件可能出现那几种气孔(析出性、反应性、侵入性)及其定义(1)析出性气孔当金属液冷却速度较快时,由于铸件凝固,气泡来不及排出而保留在铸件中形成的气孔,称为析出性气孔。
(2)反应性气孔金属液与铸型、熔渣之间相互作用或金属液内部某些组元发生化学反应产生的气体所形成的气孔,则称为反应性气孔。
(3)侵入性气孔砂型铸造时,由于砂型透气率低或排气通道不畅,砂型受热产生的气体,在界面上超过一定临界值时,气体就会侵入金属液而未上浮排出,则产生侵入性气孔。
9、熔炼的分类(按合金和熔炼特点)及熔炼的基本要求根据所熔炼合金的特点,熔炼大概可分为铸铁熔炼、铸钢熔炼和有色金属熔炼。
根据熔炉的特点又可分为冲天炉熔炼、电弧炉熔炼、感应电炉熔炼和坩锅熔炼等。
依据炉衬的种类,熔化技术可分为酸性或碱性。
10、浇注系统的组成及主要功能浇口杯、直浇道、横浇道、内浇道浇注系统的主要功能连接铸型与浇包,导入液态金属;挡渣及排气;调节铸型与铸件各部分的温度分布,控制铸件的凝固顺序;保证液态金属在最合适的时间范围内充满铸型,不使金属过度氧化,有足够的压力头,并保证金属液面在铸型型腔内有必要的上升速度。
11、铸件冒口的定义、作用及设计必须满足的基本要求(P51)铸型中能储存一定金属液(同铸件相连接在一起的液态金属熔池)补偿铸件收缩,以防止产生缩孔和缩松缺陷的专门技术“空腔”,被称为冒口。
冒口的作用:主要是“补缩铸件”、集渣和通、排气。
设置冒口必须满足的基本条件:凝固时间应大于或等于铸件(或铸件上被补缩部分)的凝固时间;有足够的金属液补充铸件(或铸件上被补缩部分)的收缩;与铸件上被补缩部位之间必须存在补缩通道。
12、冷铁的作用放入铸型内,用以加快铸件某一部分的冷却速度,调节铸件的凝固顺序,与冒口相配合,可扩大冒口的有效补缩距离。
13、常用的机器造型和制芯方法有哪些?震实造型、微震实造型、高压造型、抛砂造型、气冲造型等。
14、液态金属的凝固过程,顺序凝固、同时凝固的定义15、砂型铸造和特种铸造的技术特点(P52)砂型铸造的特点是:适应性广,技术灵活性大,不受零件的形状、大小、复杂程度及金属合金种类的限制。
生产准备较简单。
生产的铸件其尺寸精度较差及表面粗极度高;铸件的内部品质也较低;在生产一些特殊零件(如管件、薄壁件)时,技术经济指标较低。
特种铸造的技术特点:铸件的尺寸精度较高,表面粗糙度低。
在生产一些结构特殊的铸件时,具有较高的技术经济指标,不用砂或少用砂,降低了材料消耗,改善了劳动条件;使生产过程易于实现机械化、自动化。
但特种铸造适应性差,生产准备工作量大,需要复杂的技术装备。
因此,特种铸造技术(陶瓷型铸造除外)一般适用于大批大量生产。
16、常用的特种铸造方法有哪些?其基本原理和特点是什么?熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造等。
17、何谓金属的铸造性能,铸造性能不好会引起哪些铸造缺陷?铸造部分复习题1、影响液态金属冲型能力的因素有哪些?2、简述砂型铸造和特种铸造的技术特点。
(15)3、简述铸件上冒口的作用和冒口设计必须满足的基本原则。
冒口的作用:主要是“补缩铸件”、集渣和通、排气。
设置冒口必须满足的基本条件:凝固时间应大于或等于铸件(或铸件上被补缩部分)的凝固时间;有足够的金属液补充铸件(或铸件上被补缩部分)的收缩;与铸件上被补缩部位之间必须存在补缩通道。
4、铸造成形的浇注系统由哪几部分组成,其功能是什么?(10)5、熔炼铸造合金应满足的主要要求有哪些?熔炼出符合材质性能要求的金属液,而且化学成分的波动范围应尽量小;熔化并过热金属所需的高温;有充足和适时的金属液供应;低的能耗和熔炼费用;噪声和排放的污染物严格控制在法定的范围内。
6、试比较灰铸铁、铸造碳钢和铸造铝合金的铸造性能特点,哪种金属的铸造性能好?哪种金属的铸造性能差?为什么?(P46)第三章复习及复习题一、名词解释:1、金属塑性变形、加工硬化金属塑性变形是利用金属材料塑性变形规律,施加外力使之产生塑性变形而获得所需形状、尺寸和力学性能的零件或毛坯的加工工艺。
塑性:材料在外力作用下,产生永久残余变形而不断裂的能力加工硬化:在塑型变形过程中,随着变形程度的增加,金属的强度、硬度提高,塑型、韧性下降,这一现象称为加工硬。
(工程材料)金属在室温下塑性变形,由于内部晶粒沿变形最大方向伸长并转动、晶格扭曲畸变以及晶内、晶间产生碎晶的综合影响,增加了进一步滑移变形的阻力,从而引起金属的强度、硬度上升,塑性、韧性下降的现象称为加工硬化。
亦称为冷作硬化。
2、自由锻: 自由锻造(又称自由锻)是利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件的成形过程。