浙江省2011年初中毕业生学业考试(义乌市卷)
- 格式:doc
- 大小:427.00 KB
- 文档页数:9
第6题图2011浙江省金华市中考数学真题及答案卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1.下列各组数中,互为相反数的是( ▲ )A .2和-2B .-2和12 C .-2和12- D .12和2 2.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( ▲ )A .6 B.5 C.4 D.33.下列各式能用完全平方公式进行分解因式的是( ▲ )A .x 2+ 1B .x 2+2x -1C .x 2+x +1D .x 2+4x +44.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ▲ )A.+2B.-3C.+3D.+45.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( ▲ )A.30oB.25oC.20oD.15o6.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( ▲ ) A .0.1 B .0.15 C .0.25 D .0.37.计算111aa a ---的结果为( ▲ ) A .11a a +- B .1a a -- C .-1 D .28.不等式组211420x x ->⎧⎨-⎩,≤的解在数轴上表示为( ▲ )9.如图,西安路与南京路平行,并且与八一街垂直,曙 光路与环城路垂直.如果小明站在南京路与八一街的交 叉口,准备去书店,按图中的街道行走,最近的路程约 为( ▲ )A.600mB.500mC.400mD.300m 第2题图1 02 C 1 02D1 02 A 1 0 2 B 第5题图10.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是 ( ▲ )A.点(0,3)B. 点(2,3)C.点(5,1)D. 点(6,1)卷 Ⅱ 说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上. 二、填空题 (本题有6小题,每小题4分,共24分) 11.“x 与y 的差”用代数式可以表示为 ▲ .12.已知三角形的两边长为4,8,则第三边的长度可以是 ▲ (写出一个即可). 13.在中国旅游日(5月19日),我市旅游部门对2011年第一季度游客在金华的旅游时间作旅游时间 当天往返 2~3天 4~7天 8~14天 半月以上合计 人数(人)7612080195 300若将统计情况制成扇形统计图,则表示旅游时间为“2~3天”的扇形圆心角的度数为 ▲ .14.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 ▲ .15.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 ▲ .16.如图,将一块直角三角板OAB 放在平面直角坐标系中, B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线 为ky x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l , 以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´. (1)当点O ´与点A 重合时,点P 的坐标是 ▲ ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:()0185cos45π----1+42.18.(本题6分)已知213x -=,求代数式2(3)2(3+)7x x x -+-的值. O 1 A CB1x y第10题图OlB ´xy A B PO ´ 第16题图第15题图C DEHA BF19.(本题6分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬. 现在有一长为6米的梯子AB , 试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)20.(本题8分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均 数,并估算出甲、乙两山杨梅的产量 总和; (2)试通过计算说明,哪个山上的杨 梅产量较稳定?21.(本题8分)如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 的两边相交于A 、B 和C 、D ,连结OA ,此时有OA//PE . (1)求证:AP =AO ; (2)若tan ∠OPB =12,求弦AB 的长; (3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形, 则能构成菱形的四个点为 ▲ ,能构成等腰梯形的四个点为▲ 或 ▲ 或 ▲ .22.(本题10分)某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s 与时间t 之间的图象.请回答下列问题: P A B CO DE F G 第21题图第19题图 A Bα梯子 C 产量(千克)杨梅树编号 050 40 4048 36 36 34 36 甲山:乙山: 第20题图(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s 与时间t 之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到....学校,往返平均速度分别为每时10km 、8km.现有A 、B 、C 、D 四个植树点与学校的路程分别是13km 、15km 、17km 、19km ,试通过计算说明哪几个植树点符合要求.23.(本题10分)在平面直角坐标系中,如图1,将n 个边长为1的正方形并排组成矩形OABC, 相邻两边OA 和OC 分别落在x 轴和y 轴的正半轴上, 设抛物线2y ax bx c =++(a <0)过矩形第22题图 )图1 图2顶点B 、C .(1)当n =1时,如果a =-1,试求b 的值;(2)当n =2时,如图2,在矩形OABC 上方作一边长为1的正方形EFMN ,使EF 在线段CB 上,如果M ,N 两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC 绕点O 顺时针旋转,使得点B 落到x 轴的正半轴上,如果该抛物线同时经过原点O .①试求当n =3时a 的值;②直接写出a 关于n 的关系式.24.(本题12分)如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆C ,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.浙江省2011年初中毕业生学业考试(金华卷)数学试卷参考答案及评分标准一、11.x -y 12.答案不惟一,在4<x <12之间的数都可 13. 144° 14. 1315. 32 16. (1)(4,0);(2)4≤t ≤-t ≤-4(各2分) 三、解答题(本题有8小题,共66分) 17.(本题6分)()015cos45π--+4=111422-⨯+⨯(写对一个2分,两个3分,三个4分,四个5分). ……1分 18.(本题6分)由2x -1=3得x =2, ……2分又2(3)2(3+)7x x x -+-=2269627x x x x -+++-=232x +,……2分∴当x =2时,原式=14. …2分 19.(本题6分)当α=70°时,梯子顶端达到最大高度, ……1分 ∵sin α=ABAC, ……2分 ∴ AC = sin70°×6=0.94×6=5.64 ……2分≈5.6(米)答:人安全攀爬梯子时,梯子的顶端达到的最大高度约5.6米.……1分 20.(本题8分)(1)40=甲x (千克), ……1分40=乙x (千克), ……1分总产量为78402%9810040=⨯⨯⨯(千克);……2分(2)()()()()[]3840344040403640504122222=-+-+-+-=甲S (千克2 ), (1)分()()()()[]2440364048404040364122222=-+-+-+-=乙S (千克2), ……1分∴22S S 乙甲>. ……1分答:乙山上的杨梅产量较稳定. ……1分 21.(本题8分)(1)∵PG 平分∠EPF , ∴∠DPO =∠BPO , ∵OA//PE ,∴∠DPO =∠POA , ∴∠BPO =∠POA ,∴PA =OA ; ……2分 (2)过点O 作OH ⊥AB 于点H ,则AH =HB =12AB ,……1分 ∵ tan ∠OPB =12OH PH =,∴PH =2OH , ……1分 设OH =x ,则PH =2x ,由(1)可知PA =OA = 10 ,∴AH =PH -PA =2x -10,∵222AH OH OA +=, ∴222(210)10x x -+=, ……1分 解得10x =(不合题意,舍去),28x =,∴AH =6, ∴AB=2AH=12; ……1分(3)P 、A 、O 、C ;A 、B 、D 、C 或 P 、A 、O 、D 或P 、C 、O 、B .……2分(写对1个、2个、3个得1分,写对4个得2分) 22.(本题10分)(1)设师生返校时的函数解析式为b kt s +=,把(12,8)、(13,3)代入得,⎩⎨⎧+=+=b k b k 133,128 解得:⎩⎨⎧=-=68,5b k ∴685+-=t s ,当0=s 时,t =13.6 , ∴师生在13.6时回到学校;……3分 (2)图象正确2分.由图象得,当三轮车追上师生时,离学校4km ; ……2分 (3)设符合学校要求的植树点与学校的路程为x (km ),由题意得:88210+++x x <14, 解得:x <9717,答:A 、B 、C 植树点符合学校的要求.……3分23.(本题10分)(1)由题意可知,抛物线对称轴为直线x =12, ∴122b a -=,得b = 1; ……2分 (2)设所求抛物线解析式为21y ax bx =++,由对称性可知抛物线经过点B (2,1)和点M (12,2)∴1421112 1.42a b a b =++⎧⎪⎨=++⎪⎩, 解得4,38.3a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线解析式为248133y x x =-++;……4分(3)①当n =3时,OC=1,BC =3,P 8.5 9.5)设所求抛物线解析式为2y ax bx=+,过C作CD⊥OB于点D,则Rt△OCD∽Rt△CBD,∴13OD OCCD BC==,设OD=t,则CD=3t,∵222OD CD OC+=,∴222(3)1t t+=,∴10t==,∴C), 又B0),∴把B 、C坐标代入抛物线解析式,得0101.1010aa⎧=+⎪=+,解得:a=;……2分②an=-. ……2分24.(本题12分)(1)连结BC,∵A(10,0), ∴OA=10 ,CA=5,∵∠AOB=30°,∴∠ACB=2∠AOB=60°,∴弧AB的长=35180560ππ=⨯⨯; ……4分(2)连结OD,∵OA是⊙C直径, ∴∠OBA=90°,又∵AB=BD,∴OB是AD的垂直平分线,∴OD=OA=10,在Rt△ODE中,OE==-22DEOD681022=-,∴AE=AO-OE=10-6=4,由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,得△OEF∽△DEA,∴OEEFDEAE=,即684EF=,∴EF=3;……4分∴E 1(25,0); 当∠ECF =∠OAB 时,有CE =5-x , AE =10-x ,∴CF ∥AB ,有CF =12AB , ∵△ECF ∽△EAD,∴AD CF AE CE =,即51104x x -=-,解得:310=x ,∴E 2(310,0);②当交点E 在点C 的右侧时,∵∠ECF >∠BOA ,∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO , 连结BE ,∵BE 为Rt △ADE 斜边上的中线, ∴BE =AB =BD, ∴∠BEA =∠BAO, ∴∠BEA =∠ECF,∴CF ∥BE, ∴OEOCBE CF =, ∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴CF CEAD AE =, 而AD =2BE , ∴2OC CEOE AE=, 即55210x x x-=-, 解得417551+=x , 417552-=x <0(舍去), ∴E 3(41755+,0); ③当交点E 在点O 的左侧时,∵∠BOA =∠EOF >∠ECF .∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO连结BE ,得BE =AD 21=AB ,∠BEA =∠BAO ∴∠ECF =∠BEA, ∴CF ∥BE,∴OEOCBE CF =, 又∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴ADCFAE CE =,而AD =2BE , ∴2OC CE OE AE=, ∴5+5210+x x x=, 解得417551+-=x , 417552--=x <0(舍去), ∵点E 在x 轴负半轴上, ∴E 4(41755-,0), 综上所述:存在以点E 、C 、F 为顶点的三角形与△AOB 相似,此时点E 坐标为: 1E (25,0)、2E (310,0)、3E (41755+,0)、4E (41755-,0).……4分。
- 新世纪教育网 天量课件、教案、试卷、学案免费下载1 科学答题纸姓 名准考证号请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效学校___________考场__________座位号______姓名______________班级__________三.填空题(本大题共35分) 23.(4分)① ② ③ ④24.(3分)①②③25.① ② ③ ④26.(4分)① ______________________________________② __________③____________④ ____________⑤ __________27.① ______________________②_________________________.贴条形码区(中考需填,本次考试请勿填) 考生禁填 缺考考生,由 监考员用2B 铅笔填 涂右面的缺考标记 1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真核准条形码上的准考证号、姓名。
2.选择题部分必须使用2B 铅笔填涂:非选择题部分必 须使用0.5毫米及以上书写黑色字迹的钢笔或签字笔作答,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答 题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.保持卡面清洁,不折叠,不破损。
填涂样例注意事项 正确填涂D B A C C A B D C A B D C A B D D B A C 61098723451C A B D D B A C D B A C D B A C C A B D 1213141511C A B D D B A C D B A C DBACC A BD D B A C C A B D C A B D C A B D D B A C 16201918172221CA B DC A B D - 新世纪教育网 天量课件、教案、试卷、学案免费下载2请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效③实验装置的接口连接顺序是________接_________,______接________,________接_________(气流的方向从左往右)34.(7分)⑴可以判断出:房间甲的气温 (填“高于”、“低于”或“等于”)房间乙的气温,判断理由:请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 - 新世纪教育网 天量课件、教案、试卷、学案免费下载3请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效本资料来自于资源最齐全的21世纪教育网21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。
2010学年第二学期金衢十一校九年级适应性练习(二)科学答题卷相对原子质量: H:1 C:12 N:14 O:16 Ca:40 Na:23)二、简答题(本题有10小题,,每空格2分,共40分)21.22.23. _______ ;24.; 。
25.;。
26.,27 28. ________ ; __ __。
29.;30. ________ ; __ __。
三、实验探究题(本题有4小题15空格,每空格2分,共30分)31. ⑴⑵(3);32. (1)__ ____(2)__(3)初步结论:____33. :⑴;⑵;34. (1)如右图(2),(3),(4)四、分析计算题(本题有4小题,35题6分,36题8分,37题8分,38题8分,共30分)35.(1),(2)。
(3)。
36.(1)(2)(3)37.(1)(2)(3)。
38.(1)(2)(3)2010学年第二学期金衢十一校九年级适应性练习(二)科学参考答案相对原子质量: H:1 C:12 N:14 O:16 Ca:40 Na :23) 二、简答题(本题有8小题,,每空格2分,共40分) 21.非生物物质和能量; 群落 22.平衡 变大23. 物理性质________ ; 蒸发结晶24. O ; 碰撞或张裂 。
25. 压强减少 ; 增大电磁铁的磁性 。
26. -1 , 2CL+2CA(OH)2=CACL2+CA(CLO)2+2H20 27光照强度、CO2的浓度 _在一定温度范围内,温度升高,光合作用的速率先增大后减少 28. +2 ________ ; __变小__。
29. 将甲、乙装置内的CO2全部排入丙内,减少实验误差; 53(M1-M2)/22M30. 小________ ; 乙 ________。
三、实验探究题(本题有6小题15空格,每空格2分,共30分)31. ⑴ 新陈代谢旺盛,实验现象明显(其它合理也可)⑵ 大于 (3) O 2 ; 32. (1)__迎风面的面积大小(或风速或风向)_ ____(2)___降落伞下落时,伞面打开,增大阻力,减慢加速度(或同样大小的二张纸,一张揉成团,一张展开,同时从同一高度落下,展开的降落速度慢;或汽车设计成流线形等) _ (3)初步结论:____ 当风速相同时,受力面积越大,空气阻力越大 33. :⑴氢氧化钙溶液C 瓶内的水流入D 中,使C 瓶内压强小于大气压,A 处气体被吸入B 中 ⑵含有酚酞的碱性溶液A 中挥发出来的酸性物质进入B 中,与B 中碱性物质发生反应,使溶液红色褪去学校 班级 姓名 考号 ……………………………………………………………………………………………………………………………………………………34. (1)如右图(其它合理答案均可) (2) 2.2 , (3) B , (4) 0.5四、分析计算题(本题有4小题,35题6分,36题8分,37题8分,38题8分,共30分) 35.(1) 保护易感人群 ,(2) 对照 。
浙江省2011年初中毕业生学业考试(金华卷)数学试卷参考答案及评分标准一、 选择题(本题共10小题,每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案A B D A B D C C BC评分标准 选对一题给3分,不选,多选,错选均不给分二、填空题(本题有6小题,每小题4分,共24分)11.x -y 12.答案不惟一,在4<x <12之间的数都可 13. 144° 14. 13 15. 32 16. (1)(4,0);(2)4≤t ≤25或25-≤t ≤-4(各2分) 三、解答题(本题有8小题,共66分) 17.(本题6分)()185cos45π----1+42=121221422-⨯-+⨯(写对一个2分,两个3分,三个4分,四个5分)=2. ……1分 18.(本题6分)由2x-1=3得x=2, ……2分又2(3)2(3+)7x x x -+-=2269627x x x x -+++-=232x +,……2分 ∴当x=2时,原式=14. …2分 19.(本题6分)当α=70°时,梯子顶端达到最大高度, ……1分∵s inα=AB AC, ……2分∴ AC= si n70°×6=0.94×6=5.64 ……2分 ≈5.6(米)答:人安全攀爬梯子时,梯子的顶端达到的最大高度约5.6米.……1分 20.(本题8分) (1)40=甲x (千克), ……1分40=乙x (千克), ……1分总产量为78402%9810040=⨯⨯⨯(千克);……2分(2)()()()()[]3840344040403640504122222=-+-+-+-=甲S(千克2 ), (1)分()()()()[]2440364048404040364122222=-+-+-+-=乙S(千克2), ……1分∴22S S乙甲>. ……1分答:乙山上的杨梅产量较稳定. ……1分 21.(本题8分)(1)∵PG 平分∠EPF , ∴∠DPO=∠BPO , ∵OA//PE ,∴∠DPO=∠POA , ∴∠BPO=∠POA ,∴PA=OA ; ……2分(2)过点O 作OH ⊥AB 于点H ,则AH=HB=12AB ,……1分∵ tan ∠OPB=12O HP H=,∴PH=2OH , ……1分设OH=x ,则PH=2x ,由(1)可知PA=OA= 10 ,∴AH=PH -PA=2x -10,∵222AH OH OA +=, ∴222(210)10x x -+=, ……1分解得10x =(不合题意,舍去),28x =, ∴AH=6, ∴AB=2AH=12; ……1分(3)P 、A 、O 、C ;A 、B 、D 、C 或 P 、A 、O 、D 或P 、C 、O 、B.……2分(写对1个、2个、3个得1分,写对4个得2分) 22.(本题10分)(1)设师生返校时的函数解析式为b kt s +=, 把(12,8)、(13,3)代入得,⎩⎨⎧+=+=b k b k 133,128 解得:⎩⎨⎧=-=68,5b k ∴685+-=t s ,当0=s 时,t=13.6 , ∴师生在13.6时回到学校;……3分 (2)图象正确2分.由图象得,当三轮车追上师生时,离学校4km ; ……2分 (3)设符合学校要求的植树点与学校的路程为x (km ),由题意得:88210+++xx <14, 解得:x <9717,答:A 、B 、C 植树点符合学校的要求.……3分 23.(本题10分)(1)由题意可知,抛物线对称轴为直线x=12,∴122b a-=,得b= 1; ……2分(2)设所求抛物线解析式为21y ax bx =++,由对称性可知抛物线经过点B (2,1)和点M (12,2)∴1421112 1.42a b a b =++⎧⎪⎨=++⎪⎩, 解得4,38.3a b ⎧=-⎪⎪⎨⎪=⎪⎩H PABCO DEFG8.5 9.5 O t(时) s (千米) 4 8 3 6 28 10 9 11 12 13 14 xyOC EAB M N Fy xO C AB∴所求抛物线解析式为248133y x x =-++;……4分(3)①当n=3时,OC=1,BC=3,设所求抛物线解析式为2y ax bx =+, 过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD ,∴13O DO C C DB C==, 设OD=t ,则CD=3t , ∵222OD CD OC +=, ∴222(3)1t t +=, ∴1101010t ==,∴C (1010,31010), 又 B (10,0),∴把B 、C 坐标代入抛物线解析式,得 01010311010.101010a b a b ⎧=+⎪⎨=+⎪⎩, 解得:a=103-; ……2分②21n a n +=-. ……2分24.(本题12分) (1)连结BC, ∵A (10,0), ∴OA=10 ,CA=5, ∵∠AOB=30°, ∴∠ACB=2∠AOB=60°,∴弧AB 的长=35180560ππ=⨯⨯; ……4分(2)连结OD, ∵OA 是⊙C 直径, ∴∠OBA=90°, 又∵AB=BD, ∴OB 是AD 的垂直平分线, ∴OD=OA=10, 在Rt △ODE 中,OE==-22DE OD 681022=-, ∴AE=AO -OE=10-6=4, 由 ∠AOB=∠ADE=90°-∠OAB ,∠OEF=∠DEA , 得△OEF ∽△DEA,∴OE EFDEAE=,即684EF=,∴EF=3;……4分 (3)设OE=x ,①当交点E 在O ,C 之间时,由以点E 、C 、F 为顶点的三角 形与△AOB 相似,有∠ECF=∠BOA 或∠ECF=∠OAB , 当∠ECF=∠BOA 时,此时△OCF 为等腰三角形,点E 为OCOB DE C FxyABDyxyO ABCD中点,即OE=25,∴E1(25,0); 当∠ECF=∠OAB 时,有CE=5-x, AE=10-x ,∴CF ∥AB,有CF=12A B,∵△ECF ∽△EAD,∴AD CFAECE=,即51104xx-=-,解得:310=x ,∴E2(310,0);②当交点E 在点C 的右侧时, ∵∠ECF >∠BOA ,∴要使△ECF 与△BAO 相似,只能使∠ECF=∠BAO , 连结BE , ∵BE 为Rt △ADE 斜边上的中线, ∴BE=AB=BD, ∴∠BEA=∠BAO, ∴∠BEA=∠ECF,∴CF ∥BE, ∴OE OCBE CF=, ∵∠ECF=∠BAO, ∠FEC=∠DEA=Rt ∠,∴△CEF ∽△AED, ∴C F C E A DA E =,而AD=2BE, ∴2O CC E O EA E =,即55210x xx -=-, 解得417551+=x ,417552-=x <0(舍去),∴E3(41755+,0);③当交点E 在点O 的左侧时, ∵∠BOA=∠EOF >∠ECF .∴要使△ECF 与△BAO 相似,只能使∠ECF=∠BAO连结BE ,得BE=AD21=AB ,∠BEA=∠BAO∴∠ECF=∠BEA, ∴CF ∥BE,∴OE OCBECF=, 又∵∠ECF=∠BAO, ∠FEC=∠DEA=Rt ∠,∴△CEF ∽△AED, ∴AD CF AECE=,O BDF CEA xyOB DFC EA xyOBDFCE A xy而AD=2BE, ∴2O CC E O EA E =,∴5+5210+x xx =, 解得417551+-=x ,417552--=x <0(舍去),∵点E 在x 轴负半轴上, ∴E4(41755-,0),综上所述:存在以点E 、C 、F 为顶点的三角形与△AOB 相似,此时点E 坐标为:1E (25,0)、2E (310,0)、3E (41755+,0)、4E (41755-,0).……4分。
浙江省2011年初中毕业生学业考试(金华市卷)科学试题卷考生须知:1、全卷共8页,有4大题,38小题。
满分为160分。
考试时间120分钟。
2、本卷答案必须做在答题纸的对应位置上,做在试题卷上无效。
3、请考生将姓名、准考证号填写在答题纸的对应位置上,并认真核准条形码上的姓名、准考证号。
4、本卷可能用到的相对原子质量:H:1 C:12 O:16 Na:23S:32 Cl: 35.5 Cu:64温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!试卷I说明:本卷有1大题,20小题,共60分。
请用2B铅笔在“答题纸”上将你认为正确的选项在对应的小方框涂黑、涂满。
一、选择题(本题有20小题,每小题3分,共60分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.我国的“嫦娥工程”将按“绕月、落月和驻月”三步进行,计划2012年实施落月探测。
已知月球上无大气、无磁场、弱重力。
下列各项中,在月球上不能..实现的是()A.刻度尺测长度 B.电子停表测时间 C.指南针指示南北方向 D.手电筒照明2.世界万物都在变化。
下列各图所示的变化属于化学变化的是()A.湿衣服晾干B.带火星木条复燃C.食盐水的蒸发D.灯泡通电发光3.正常的人体血液成分中不含有的是()A.红细胞B.卵细胞C.血小板D.白细胞4.“但愿人长久,千里共婵娟”表达了人们在中秋佳节对家人的思念之情。
农历八月十五中秋节这一天的月相是()5.用所学科学知识判断,下列说法正确的是()A.DNA分子中起遗传作用的片段称为基因B.传染病只有免疫性、流行性两个特点C.基因由染色体和DNA组成D.传染病具有细菌、传播途径、易感人群三个环节6.如图所示的光现象中,属于光的直线传播的是()7.日常生活中,下列做法合理的是()A.住房装修好后立即入住B.用食醋清除热水瓶胆内壁的水垢C.日常饮食只按自己的喜好选择食品D.厨房有液体石油气泄漏,先打开排风机排气8.如图的实验操作错误的是()9.魔术师把手伸进一锅沸腾的“油”,1分钟、2分钟……再把手拿出来――没事!对这一现象分析正确的是()A.魔术师有特异功能B.是因为“油”的沸点低C.“油”在沸腾时的温度不断升高D.是因为手上沾有水吸收了“油”中的热10.小朱在学习液体压强时,用压强计做了如图实验,获得下表数据:根据表中信息,判断小朱研究的问题是()A.液体压强与液体温度的关系B.液体压强与液体体积的关系C.液体压强与液体深度的关系D.液体压强与液体密度的关系11.下列关于太阳的说法正确的是()A.太阳活动对地球没有影响B.太阳体积比地球小C.太阳是由固体组成的D.太阳表面温度很高12.制作洋葱表皮装片时,盖上盖玻片的操作方法如图所示,其中正确的是(图中撕下的洋葱表皮已经展平在清水中,箭头表示盖上盖玻片的方向,椭圆表示载玻片中央的清水)()13.概念之间具有并列、包含、交叉等关系。
浙江省2011年初中毕业生学业考试(金华卷) 数 学 试 题 卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 参考公式:方差公式()()()[]2222121x x x x x x nS n -++-+-=. 卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1.下列各组数中,互为相反数的是( ▲ )A .2和-2B .-2和12 C .-2和12- D .12和2 2.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( ▲ )A .6B .5C .4D .33.下列各式能用完全平方公式进行分解因式的是( ▲ )A .x 2+ 1B .x 2+2x -1C .x 2+x +1D .x 2+4x +44.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ▲ )A .+2B .-3C .+3D .+45.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( ▲ )A .30oB .25oC .20oD .15o6.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( ▲ ) A .0.1 B .0.15 C .0.25 D .0.37.计算111aa a ---的结果为( ▲ ) A .11a a +- B .1a a -- C .-1 D .2第2题图第6题图第5题图8.不等式组211420x x ->⎧⎨-⎩,≤的解在数轴上表示为( ▲ )9.如图,西安路与南京路平行,并且与八一街垂直,曙 光路与环城路垂直.如果小明站在南京路与八一街的交 叉口,准备去书店,按图中的街道行走,最近的路程约 为( ▲ )A .600mB .500mC .400mD .300m10.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是 ( ▲ )A .点(0,3)B . 点(2,3)C .点(5,1)D . 点(6,1)卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分) 11.“x 与y 的差”用代数式可以表示为 ▲ .12.已知三角形的两边长为4,8,则第三边的长度可以是 ▲ (写出一个即可). 13.在中国旅游日(5月19日),我市旅游部门对2011年第一季度游客在金华的旅游时间作旅游时间 当天往返 2~3天 4~7天 8~14天 半月以上合计 人数(人)7612080195300天”的扇形圆心角的度数为 ▲ . 14.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 ▲ .15.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 ▲ .16.如图,将一块直角三角板OAB 放在平面直角坐标系中, B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线 为ky x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l , 以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´. (1)当点O ´与点A 重合时,点P 的坐标是 ▲ ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)O 1ACB 1xy 第10题图1 0 2C 1 02D1 02 A 1 0 2 B OlB ´xy A B P O ´ 第16题图第15题图C D E H A B F17.(本题6分)计算:()0185cos45π----1+42. 18.(本题6分)已知213x -=,求代数式2(3)2(3+)7x x x -+-的值.19.(本题6分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬. 现在有一长为6米的梯子AB , 试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)20.(本题8分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均 数,并估算出甲、乙两山杨梅的产量 总和; (2)试通过计算说明,哪个山上的杨梅产量较稳定?21.(本题8分)如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 的两边相交于A 、B 和C 、D ,连结OA ,此时有OA//PE . (1)求证:AP =AO ;(2)若tan ∠OPB =12,求弦AB 的长; (3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为 ▲ ,能构成等腰梯形的四个点为 ▲ 或 ▲ 或 ▲ .22.(本题10分)PABC ODE FG 第21题图第19题图 A Bα梯子 C C 产量(千克)杨梅树编号 050 40 4048 3636 34 36 甲山:乙山: 第20题图图2 某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s 与时间t 之间的图象.请回答下列问题: (1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s 与时间t 之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到....学校,往返平均速度分别为每时10km 、8km .现有A 、B 、C 、D 四个植树点与学校的路程分别是13km 、15km 、17km 、19km ,试通过计算说明哪几个植树点符合要求.23.(本题10分)在平面直角坐标系中,如图1,将n 个边长为1的正方形并排组成矩形OABC, 相邻两边OA 和OC 分别落在x 轴和y 轴的正半轴上, 设抛物线2y ax bx c =++(a <0)过矩形顶点B 、C .(1)当n =1时,如果a =-1,试求b 的值;(2)当n =2时,如图2,在矩形OABC 上方作一边长为1的正方形EFMN ,使EF 在线段CB 上,如果M ,N 两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC 绕点O 顺时针旋转,使得点B 落到x 轴的正半轴上,如果该抛物线同时经过原点O .①试求当n =3时a 的值;②直接写出a 关于n 的关系式.24.(本题12分)如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆C ,点B 是该半圆周上一动点,连结OB 、AB ,并延长AB 至点D ,使DB=AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E(1)当∠AOB =30°时,求弧AB 的长度;(2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此 时点E 的坐标;若不存在,请说明理由.第22题图)浙江省2011年初中毕业生学业考试(金华卷)数学试卷参考答案及评分标准一、二、11.x -y 12.答案不惟一,在4<x <12之间的数都可 13. 144° 14. 1315. 32 16. (1)(4,0);(2)4≤t ≤-t ≤-4(各2分) 三、解答题(本题有8小题,共66分) 17.(本题6分)()015cos45π--+4=111422-⨯+⨯(写对一个2分,两个3分,三个4分,四个5分). ……1分 18.(本题6分)由2x -1=3得x =2, ……2分又2(3)2(3+)7x x x -+-=2269627x x x x -+++-=232x +,……2分∴当x =2时,原式=14. …2分 19.(本题6分)当α=70°时,梯子顶端达到最大高度, ……1分 ∵sin α=ABAC, ……2分 ∴ AC = s in70°×6=0.94×6=5.64 ……2分≈5.6(米)答:人安全攀爬梯子时,梯子的顶端达到的最大高度约5.6米.……1分 20.(本题8分)(1)40=甲x (千克), ……1分40=乙x (千克), ……1分总产量为78402%9810040=⨯⨯⨯(千克);……2分(2)()()()()[]3840344040403640504122222=-+-+-+-=甲S (千克2 ), ……1分()()()()[]2440364048404040364122222=-+-+-+-=乙S (千克2), ……1分∴22S S 乙甲>. ……1分答:乙山上的杨梅产量较稳定. ……1分 21.(本题8分)(1)∵PG 平分∠EPF , ∴∠DPO =∠BPO , ∵OA//PE ,∴∠DPO =∠POA , ∴∠BPO =∠POA ,∴PA =OA ; ……2分(2)过点O 作OH ⊥AB 于点H ,则AH =HB =12AB ,……1分∵ tan ∠OPB =12OH PH =,∴PH =2OH , ……1分 设OH =x ,则PH =2x ,由(1)可知PA =OA = 10 ,∴AH =PH -PA =2x -10, ∵222AH OH OA +=, ∴222(210)10x x -+=, ……1分解得10x =(不合题意,舍去),28x =,∴AH =6, ∴AB=2AH=12; ……1分(3)P 、A 、O 、C ;A 、B 、D 、C 或 P 、A 、O 、D 或P 、C 、O 、B .……2分(写对1个、2个、3个得1分,写对4个得2分) 22.(本题10分)(1)设师生返校时的函数解析式为b kt s +=, 把(12,8)、(13,3)代入得,⎩⎨⎧+=+=b k b k 133,128 解得:⎩⎨⎧=-=68,5b k ∴685+-=t s ,当0=s 时,t =13.6 , ∴师生在13.6时回到学校;……3分 (2)图象正确2分.由图象得,当三轮车追上师生时,离学校4 km ; ……2分 (3)设符合学校要求的植树点与学校的路程为x (km ),由题意得:88210+++x x <14, 解得:x <9717,答:A 、B 、C 植树点符合学校的要求.……3分23.(本题10分)(1)由题意可知,抛物线对称轴为直线x =12, ∴122b a -=,得b = 1; ……2分 (2)设所求抛物线解析式为21y ax bx =++,由对称性可知抛物线经过点B (2,1)和点M (12,2) ∴1421112 1.42a b a b =++⎧⎪⎨=++⎪⎩, 解得4,38.3a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线解析式为248133y x x =-++;……4分(3)①当n =3时,OC=1,BC =3,P8.5 9.5)设所求抛物线解析式为2y ax bx =+,过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD , ∴13OD OC CD BC ==, 设OD =t ,则CD =3t , ∵222OD CD OC +=, ∴222(3)1t t +=,∴10t ==, ∴C(,), 又 B(,0),∴把B 、C 坐标代入抛物线解析式,得0101.1010a a ⎧=+⎪=+,解得:a =; ……2分 ②a =. ……2分24.(本题12分)(1)连结BC ,∵A (10,0), ∴OA =10 ,CA =5, ∵∠AOB =30°,∴∠ACB =2∠AOB =60°,∴弧AB 的长=35180560ππ=⨯⨯; ……4分(2)连结OD,∵OA 是⊙C 直径, ∴∠OBA =90°, 又∵AB =BD,∴OB 是AD 的垂直平分线, ∴OD =OA =10, 在Rt △ODE 中,OE ==-22DE OD 681022=-,∴AE =AO -OE=10-6=4,由 ∠AOB =∠ADE =90°-∠OAB ,∠OEF =∠DEA , 得△OEF ∽△DEA, ∴OE EF DE AE =,即684EF=,∴EF =3;……4分 (3)设OE =x ,①当交点E 在O ,C 之间时,由以点E 、C 、F 为顶点的三角形与△AOB 相似,有∠ECF =∠BOA 或∠ECF =∠OAB , 当∠ECF =∠BOA 时,此时△OCF 为等腰三角形,点E 为OC中点,即OE =25,∴E 1(25,0); 当∠ECF =∠OAB 时,有CE =5-x , AE =10-x ,∴CF ∥AB ,有CF =12AB , ∵△ECF ∽△EAD,∴AD CF AE CE =,即51104x x -=-,解得:310=x , ∴E 2(310,0);②当交点E 在点C 的右侧时,∵∠ECF >∠BOA ,∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO , 连结BE ,∵BE 为Rt △ADE 斜边上的中线, ∴BE =AB =BD, ∴∠BEA =∠BAO, ∴∠BEA =∠ECF ,∴CF ∥BE, ∴OEOCBE CF =, ∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴CF CEAD AE =, 而AD =2BE , ∴2OC CEOE AE=, 即55210x x x-=-, 解得417551+=x , 417552-=x <0(舍去),∴E 3(41755+,0); ③当交点E 在点O 的左侧时,∵∠BOA =∠EOF >∠ECF .∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO连结BE ,得BE =AD 21=AB ,∠BEA =∠BAO ∴∠ECF =∠BEA, ∴CF ∥BE,∴OEOCBE CF =, 又∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴ADCFAE CE =,而AD =2BE , ∴2OC CEOE AE=, ∴5+5210+x x x=, 解得417551+-=x , 417552--=x <0(舍去),∵点E 在x 轴负半轴上, ∴E 4(41755-,0), 综上所述:存在以点E 、C 、F 为顶点的三角形与△AOB 相似,此时点E 坐标为:1E (25,0)、2E (310,0)、3E (41755+,0)、4E (41755-,0).……4分感谢您的阅读,祝您生活愉快。
学业考试综合练习卷(一)历史与社会一、选择题:(共40分,每小题2分)1.要确定松阳县在丽水市中的位置,下列地图中最为合适的是:()A 世界政区图B 中国政区图C 丽水市政区图D 松阳县政区图2.上题中提到的4幅地图,如果地图的大小相同,同为A4纸的大小,那么比例尺最大的应该是:()A 世界政区图B 中国政区图C 丽水市政区图D 松阳县政区图3.2008年5月12日,我国四川省汶川县发生里氏8.0级大地震,下列关于四川省的简称及所处的地理区域,全部正确的是:()A 川、东部地区B 黔、西部地区C 渝、东部地区D 蜀、西部地区4.我国的大都数河流为自西向东流,造成这一现象的最主要原因是:()A 我国降水西部地区少,东部地区多。
B 我国人口分布东密西疏。
C 我国地势西高东低,呈阶梯状分布。
D 我国地形类型复杂多样。
5.我们市的气候类型是:()A 热带季风气候B 亚热带季风气候C 温带季风气候D 温带大陆性气候6.七大洲中,有一个大洲赤道从中部穿过,并分布者世界上最大的沙漠,这个大洲是:()A 亚洲 B 非洲 C 大洋洲 D 南美洲7.在中国语言文化中,有许多成语蕴含着丰富的历史史实。
与成语“金榜题名”、“名落孙山”有联系的社会制度是:()A 郡县制度B 三省六部制C 科举制度D 行省制度8.京杭大运河开凿于隋朝,这条大运河的开凿,对于古代中国社会的发展所起的最主要作用是:()A 促进了南北经济的交流B 南水北调,解决北方缺水问题C 方便了帝王的出游D 沟通了东西方的交通9.在世界近代史上,最早进行资产阶级革命的国家是:()A 意大利B 英国C 美国D 法国10.下列各朝代中,中央政府与边疆少数民族关系最好的时期应该是:()A 汉代B 宋代C 明代D 清代11.2008年是北京大学成立110周年。
北京大学的前身以及与这所学校创办有直接关系的政治派别是:()A 同文馆、洋务派B 同文馆、资产阶级维新派C 京师大学堂、洋务派D 京师大学堂、资产阶级维新派12.下列历史事件中,由北京大学发起,并成人中国新民主主义革命开始的重要事件是:()A 公车上书B 新文化运动C五四运动 D 一二·九运动13.19世纪20年代,国共两党第一次合作的重要基础是:国民党的“新三民主义”与共产党的“反帝反封建”革命纲领基本一致。
2011年浙江省初中生学业考试数学I 试卷考生须知:1. 本试卷分试题卷和答题卷两部分.满分150分,时间120分钟. 2. 答题时,应该在答题卷指定位置内填写学校、班级、姓名和准考证号.3. 所有的答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应. 4. 考试结束后,上交试卷卷和答题卷.5. 参考公式:二次函数c bx ax y ++=2图象的顶点坐标是(ab 2-,a b ac 442-).试题卷I一、选择题(本大题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,将答题卡上相应的位置涂黑.不选、多选、错选均不给分) 1.(浙江省3分)如图,在数轴上点A 表示的数可能是A. 1.5B.-1.5C.-2.6D. 2.6 【答案】C 。
【考点】数轴上点表示的数。
【分析】由图知,点A 在-3和-2之间,其间只有-2.6。
故选C 。
2.(浙江省3分)下列图形中,既是轴对称图形又是中心对称图形的是【答案】D 。
【考点】轴对称图形,中心对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
A.是轴对称图形不是中心对称图形,选项错误;B.是中心对称图形不是轴对称图形,选项错误;C. 是中心对称图形不是轴对称图形,选项错误;D. 既是轴对称图形又是中心对称图形,选项正确。
故选D 。
3.(浙江省3分)中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水0.32L ,那么100万人每天浪费的水,用科学记数法表示为A.3.2×107LB. 3.2×106LC. 3.2×105LD. 3.2×104L 【答案】C 。
【考点】科学记数法【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
浙江省2011年初中毕业生学业考试(金华市卷科学试题卷考生须知:1、全卷共8页,有4大题,38小题。
满分为160分。
考试时间120分钟。
2、本卷答案必须做在答题纸的对应位置上,做在试题卷上无效。
3、请考生将姓名、准考证号填写在答题纸的对应位置上,并认真核准条形码上的姓名、准考证号。
4、本卷可能用到的相对原子质量:H:1 C:12 O:16 Na:23S:32 Cl: 35.5 Cu:64温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!试卷I说明:本卷有1大题,20小题,共60分。
请用2B铅笔在“答题纸”上将你认为正确的选项在对应的小方框涂黑、涂满。
一、选择题(本题有20小题,每小题3分,共60分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分1.我国的“嫦娥工程”将按“绕月、落月和驻月”三步进行,计划2012年实施落月探测。
已知月球上无大气、无磁场、弱重力。
下列各项中,在月球上不能..实现的是(A.刻度尺测长度B.电子停表测时间C.指南针指示南北方向D.手电筒照明2.世界万物都在变化。
下列各图所示的变化属于化学变化的是A.湿衣服晾干B.带火星木条复燃C.食盐水的蒸发D.灯泡通电发光(第2题图3.正常的人体血液成分中不含有的是(A.红细胞B.卵细胞C.血小板D.白细胞4.“但愿人长久,千里共婵娟”表达了人们在中秋佳节对家人的思念之情。
农历八月十五中秋节这一天的月相是(第4题图5.用所学科学知识判断,下列说法正确的是(A.DNA分子中起遗传作用的片段称为基因B.传染病只有免疫性、流行性两个特点C.基因由染色体和DNA组成D.传染病具有细菌、传播途径、易感人群三个环节A B C D6.如图所示的光现象中,属于光的直线传播现象的是(第6题图7.日常生活中,下列做法合理的是(A .住房装修好后立即入住B .用食醋清除热水瓶胆内壁的水垢C .日常饮食只按自己的喜好选择食品D .厨房有液体石油气泄漏,先打开排风机排气8.如图实验操作错误的是(第8题图 9.魔术师把手伸进一锅沸腾的“油”,1分钟、2分钟……再把手拿出来――没事!对这一现象分析正确的是(A .魔术师有特异功能B .是因为“油”的沸点低C .“油”在沸腾时的温度不断升高D .是因为手上沾有水吸收了“油”中的热10.小朱在学习液体压强时,用压强计做了如图实验,获得下表数据:根据表中信息,判断小朱研究的问题是(第10题图A .液体压强与液体温度的关系B .液体压强与液体体积的关系C .液体压强与液体深度的关系D .液体压强与液体密度的关系11.下列关于太阳的说法正确的是(A .太阳活动对地球没有影响B .太阳体积比地球小C .太阳是由固体组成的D .太阳表面温度很高12.制作洋葱表皮装片时,盖上盖玻片的操作方法如图所示,其中正确的是(图中撕下的洋葱表皮已经展平在清水中,箭头表示盖上盖玻片的方向,椭圆表示载玻片中央的清水(序号液体深度/厘米橡皮膜朝向压强计液面高度差/厘米 1 水 5 朝上 4.8 2 酒精 5 朝上 3.8 陶罐在镜中成像铅笔好像在水面断了 C 树荫下形成竹在水中的倒影 B A .加块状固体 B .倾倒液体 C .检查装置气密性 D .加热液体13.概念之间具有并列、包含、交叉等关系。
2011年浙江省初中生学业考试数学I试卷考生须知:1.本试卷分试题卷和答题卷两部分.满分150分,时间120分钟.2.答题时,应该在答题卷指定位置内填写学校、班级、姓名和准考证号.3.所有的答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应.4.考试结束后,上交试卷卷和答题卷.b4ac?b25.参考公式:二次函数y?ax?bx?c图象的顶点坐标是(?,). 2a4a2试题卷I一、选择题(本大题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,将答题卡上相应的位置涂黑.不选、多选、错选均不给分)1.(浙江省3分)如图,在数轴上点A表示的数可能是A. 1.5B.-1.5C.-2.6D. 2.6【答案】C。
【考点】数轴上点表示的数。
【分析】由图知,点A在-3和-2之间,其间只有-2.6。
故选C。
2.(浙江省3分)下列图形中,既是轴对称图形又是中心对称图形的是【答案】D。
【考点】轴对称图形,中心对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
A.是轴对称图形不是中心对称图形,选项错误;B.是中心对称图形不是轴对称图形,选项错误;C. 是中心对称图形不是轴对称图形,选项错误;D. 既是轴对称图形又是中心对称图形,选项正确。
故选D。
3.(浙江省3分)中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水0.32L,那么100万人每天浪费的水,- 1 -。
全面有效 学习载体 1 浙江省2011年初中毕业生学业考试(义乌市卷) 数学试题卷 考生须知: 1. 全卷共4页,有3大题,24小题. 满分为120分.考试时间120分钟. 2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效. 3. 请考生将姓名、准考证号填写在答题纸的对应位置上,并认真核准条形码的姓名、准考证号. 4. 作图时,可先使用2B铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑. 5. 本次考试不能使用计算器. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!
参考公式:二次函数y=ax2+bx+c图象的顶点坐标是)442(2abacab,. 试 卷 Ⅰ 说明:本卷共有1大题,10小题,每小题3分,共30分.请用2B铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满. 一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1. -3的绝对值是
A.3 B.-3 C.- D. 2.如图,DE是△ABC的中位线,若BC的长是3cm,则DE的长是 A.2cm B.1.5cm C.1.2cm D.1cm 3.下列计算正确的是 A.246xxx B.235xyxy C.632xxx D.326()xx 4.如图,下列水平放置的几何体中,主视图不是..长方形的是
5.我市市场交易持续繁荣,市场成交额连续20年居全国各大专业市场榜首. 2010年中国小商品城成交额首次突破450亿元关口.请将数据450亿元用科学记数法表示为(单位:元) A.4.50×102 B.0.45×103 C.4.50×1010 D.0.45×1011 6.下列图形中,中心对称图形有
A.4个 B.3个 C.2个 D.1个 7.不等式组125523xx的解在数轴上表示为
A. B. C. D. 3131
1 0 2 A. 1 0 2 B. 1 0 2 C. 1 0 2
D.
E A B C D 全面有效 学习载体
2 8.如图,已知AB∥CD,∠A=60°,∠C =25°,则∠E等于 A. 60° B. 25° C. 35° D. 45° 9.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋 活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘, 则小王与小菲同车的概率为 A. B. C. D. 10.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°, 四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交 CE于点G,连结BE. 下列结论中: ① CE=BD; ② △ADC是等腰直角三角形; ③ ∠ADB=∠AEB; ④ CD·AE=EF·CG; 一定正确的结论有 A.1个 B.2个 C.3个 D.4个
试 卷 Ⅱ
说明:本卷共有2大题,14小题,共90分. 答题请用0.5毫米及以上的黑色签字笔书写在“答题纸”的对应位置上.
二、填空题(本题有6小题,每小题4分,共24分) 11.一次函数y=2x-1的图象经过点(a,3),则a= ▲ . 12.如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是 ▲ . 13.已知⊙O1与⊙O2的半径分别为3和5,且⊙O1与⊙O2相切,则O1O2等于 ▲ .
14.某校为了选拔学生参加我市2011年无线电测向比赛中的装机比赛,教练对甲、乙两选手平时五次训练成绩进行统计,两选手五次训练的平均成绩均为30分钟,方差分别是251S
甲、212S乙. 则甲、乙两选手成绩比较稳定的是 ▲ .
15.右图是市民广场到解百地下通道的手扶电梯示意图.其 中AB、CD分别表示地下通道、市民广场电梯口处 地面的水平线,∠ABC=135°,BC的长约是25m, 则乘电梯从点B到点C上升的高度h是 ▲ m. 16.如图,一次函数y=-2x的图象与二次函数y=-x2+3x图象的对称轴 交于点B. (1)写出点B的坐标 ▲ ; (2)已知点P是二次函数y=-x2+3x图象在y轴右侧..部分上的一 个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于 C、D两点. 若以CD为直角边的△PCD与△OCD相似,则点 P的坐标为 ▲ . 三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17.(1)计算: 45sin2820110;
(2)解分式方程:2323xx .
A B C D E F
G
135° A B
C D h
9131
21
32
O B
C D
A B C D
E 60° 全面有效 学习载体
3 18.如图,已知E、F是□ABCD对角线AC上的两点, 且BE⊥AC,DF⊥AC. (1)求证:△ABE≌△CDF; (2)请写出图中除△ABE≌△CDF外其余两对全等 三角形(不再添加辅助线). 19.商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答: (1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x的代数式表示); (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元? 20 . 为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分 段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:
根据上面提供的信息,回答下列问题: (1)在统计表中,a的值为 ▲ ,b的值为 ▲ ,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑); (2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? ▲ (填相应分数段的字母) (3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?
21.如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E. ⊙O的切线BF与弦AD的 延长线相交于点F,且AD=3,cos∠BCD= . (1)求证:CD∥BF; (2)求⊙O的半径; (3)求弦CD的长. 22.如图,在直角坐标系中,O为坐标原点. 已知反比例函数 y= (k>0)的图象经过点A(2,m),过点A作AB⊥x轴 于点B,且△AOB的面积为 . (1)求k和m的值; (2)点C(x,y)在反比例函数y= 的图象上,求当 1≤x≤3时函数值y的取值范围; (3)过原点O的直线l与反比例函数y= 的图象交于P、 Q两点,试根据图象直接写出线段PQ长度的最小值.
分数段 A B C D E
学业考试体育成绩(分数段)统计表 学业考试体育成绩(分数段)统计图 12243648607284人数
分数段ABCDE0
F E A B C D
xk21
xk
xkB O A
43FA
DEO C B 全面有效 学习载体
4 23.如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP. 将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点E、F. (1) 如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在 ▲ 关系(填“相似”或“全等”),并说明理由; (2)如图2,设∠ABP=β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由; (3)如图3,当α=60°时,点E、F与点B重合. 已知AB=4,设DP=x,△A1BB1的面 积为S,求S关于x的函数关系式.
24.已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4. 设顶点为 点P,与x轴的另一交点为点B. (1)求二次函数的解析式及顶点P的坐标; (2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由; (3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O 运动,过点M作直线MN∥x轴,交PB于点N. 将△PMN沿直线MN对折,得到△P1MN. 在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒. 求S关于t的函数关系式.
浙江省2011年O P
C B A x
y
图1 图2
M O A x
P N
C B
y
图1 图2 图3 P B1 FA DEC B A1 P B1 FA DEC B A1 P B1
A DC
B A1