水的结垢与防治
- 格式:doc
- 大小:41.50 KB
- 文档页数:13
结垢预测结垢机理研究1.1 理论分析水垢一般都是具有反常溶解度的难溶或微溶盐类,它具有固定晶格,单质水垢较坚硬致密。
水垢的生成主要决定于盐类是否过饱和以及盐类结晶的生长过程。
水是一种很强的溶剂,当水中溶解盐类的浓度低于离子的溶度积时,他将仍然以离子状态存在于水中,一旦水中溶解盐类的浓度达到饱和状态时,设备粗糙的表面和杂质对结晶过程的催化作用就促使这些饱和盐类溶液以水垢形态结晶析出。
水垢的种类有很多,但通常油田水中只含有其中少数几种水垢。
最常见的水垢有碳酸盐类水垢,组成为CaCO3、MgCO3,但易被酸化去除,危害相对较小;而硫酸盐垢,组成成分有CaSO4、BaSO4、SrSO4,常常采用防垢方法加以阻止;铁化物垢组成为FeCO3、FeS、Fe(OH)2、Fe2O3。
实际上一般的结垢都不是单一的组成,往往是混合垢,只不过是以某种垢为主而已。
表2-13 常见垢的溶度积垢溶度积垢溶度积BaSO4 1.1×10-10SrSO4 3.2×10-7CaCO3 2.8×10-9FeS 8.3×10-13CaSO49.1×10-8FeCO3 3.2×10-11MgCO3 3.5×10-8Fe(OH)28.0×10-13注:溶度积温度为18~25℃(1)不相容论两种化学不相容的液体(不同层位含有不相容的离子的地层水、地层水与地面水、清水与污水)相混,因为含有不同离子或不同浓度的离子,就会产生不稳定的、易于沉淀的固体。
如宝浪油田,两个不同层位的水一混合就结垢,主要是因为一层含有SO42-,另一层含有Ba2+、Sr2+较多,混合后就生成BaSO4、SrSO4。
(2) 热力学条件变化当井下热力学和动力学条件不变时,即使有不相容的离子,并且为过饱和溶液也会处于稳定的状态。
在油井生产的过程中,压力的下降,温度的上升或流速的变化,均会导致高矿化度水结垢。
水垢的形成、危害及清除文章出处:-本站会员发布时间:2006-03-10水垢的形成、危害及清除给水中杂质进入锅炉后 , 随着水温不断地升高或蒸发浓缩在锅内受热面水侧金属表面上生成的固体附着物称为水垢。
一、水垢的形成1. 受热分解含有暂时硬度的水进入锅炉后 , 在加热过程中 , 一些钙镁盐类受热分解 , 从溶于水的物质转变成难溶于水的物质 , 附着于锅炉金属表面上结为水垢 , 钙和镁盐类分解如下 :ca(HC03)2 →CaC03 ↓ +H2O+C02↑Mg(HC O)2→MgC03+H2O+C02↑MgC03+H2O → Mg(OH)2↓+c02↑2. 某些盐类超过了其溶解度由于锅水的不断蒸发和浓缩 , 水中的溶解盐类含量不断增加 , 当某些盐类达到过饱和时 , 盐类在蒸发面上析出固相 ,结生水垢。
3. 溶解度下降随着锅水温度的升高 , 锅水中某些盐类溶解度下降 , 如CaS04 和 CaSi03 等盐类。
4. 相互反应给水中原溶解度较大的盐类和锅水中其他盐类、碱反应后 , 生成难溶于水的化合物 , 从而结生水垢。
一些盐和碱相互反应如下 :/ Ca(HC03)2+2NaOH=CaC03 ↓ +N4C03+H20CaCl2+Na2C03=CaC03↓+2NaCl5. 水渣转化当锅内水渣过多时 , 而且又粘 , 如 Mg (OH)2 和 Mg3(P04)2 等 , 如果排污不及时 , 很容易由泥渣转化为水垢。
二、水垢的分类1. 碳酸盐水垢 :是以钙簇的碳酸盐为主要成分的水垢 , 包括氢氧化缕 , 其中CaC03>50 × 10-2.硫酸盐水垢 : 是以硫酸钙为主要成分的水垢 , 其中CaS04>50 × 10-2 。
3. 硅酸盐水垢 : 当水垢中的Si02>20 × 10-2 时 , 属于这类水垢。
4. 混合水垢 : 这种水垢有两种组成形式 : 一种是钙簇的碳酸盐、硫酸盐、硅酸盐以及氧化铁等组成的混合物 , 难以分出哪一种是主要成分 ; 另一种是各种水垢以夹层的形式组成为一体 , 所以也很难指出哪一种成分是主要的。
水垢的成因、定性分析、特性危害及预防措施总结一、水垢的成因工业锅炉以及家庭用的烧水壶,使用一段时间后在金属表面就会结成水垢,这是由于水中溶有一定数量的钙镁盐类,如碳酸氢盐、碳酸盐、硫酸盐、氯化物、硅酸盐、磷酸盐等同的还含有泥沙和有机物等。
这些盐类在受热过程中发生物理和化学变化而形成水垢。
水中含有的碳酸氢钙在水温升高过程中会分解生成难溶的碳酸钙:Ca(HCO3)2==△==CaCO3+CO2↑+H2O碳酸氢镁也会分解生成碳酸镁,它在水中不稳定会转化成溶解度更小的氢氧化镁沉淀,因此水垢中还含有少量氢氧化镁。
在碱性条件下,碳酸氢钙会发生如下反应生成碳酸钙:Ca(HCO3)2+2OH-====CaCO3+2H2O+CO3 2-此时,如水中含有较多的氯化钙时也会发生如下的生成碳酸钙的沉淀:CaCl2+C02-3====CaCO3↓+2C1-当水中溶有过量的磷酸盐时,氯化钙也会转化成溶解度很小的磷酸钙。
2PO43-+3CaCl2--Ca3(PO4)2↓+6Cl-通常水垢的主要成分是碳酸钙和磷酸钙。
水中还溶解有一定数量的硫酸钙;硅酸钙等其他无机盐类,随着水的蒸发,它们在水中浓度加大,当其浓度超过溶解度之后也会生成沉淀,并沉积在传热表面上.在工业锅炉中金属表面的铁锈和铜锈等锈垢也会转化成水垢的成分。
由于水垢大都由无机盐组成,故称为无机垢,而且这些水垢结晶致密,比较坚硬,所以又称为硬垢。
实际水垢的成分相当复杂而且成分随着水质情况的不同而变化,所以对不同地区的水垢应作具体分析。
通常根据水垢的主要成分将它分为碳酸盐水垢;硫酸盐水垢,磷酸盐水垢,硅酸盐水垢和锈垢几、大类。
表3—4是用X射线法测得的各种坚硬水垢的组成。
表3-4 X—射线反射法测得水垢成分二、水垢成分的定性分析方法1.碳酸盐水垢碳酸盐水垢通常呈白色片状,断面呈颗粒状。
如果把白色水垢放在热水中无溶解、崩解现象,而置于3%(1:10)盐酸溶液中,在室温下即迅速溶解,而且有大量气泡产生,则是碳酸盐水垢,反应式为:CaCO3+2HCI====CaCl2+H2O+CO2↑当碳酸盐水垢中混有金属腐蚀产物如铁锈时,外观可能呈红褐色或粉红色。
气化灰水系统结垢原因分析与对策摘要:煤气化属于煤洁净的重要技术之一,位于煤炭行业有着重点应用。
灰水系统水质不良,则会导致系统发生结垢情况,泵能力受此影响明显降低。
同时,造成激冷水管线与激冷环出现结垢情况,激冷水流量受此影响明显减少,激冷环、下降管使用年限明显降低,以此对系统稳定连续运行产生不利影响。
所以,有关气化灰水系统,需对其结垢原因采取全面分析,制定合理可行的对策措施,以此为气化灰水系统稳定连续运行提供可靠保障。
对气化灰水系统结垢原因分析与对策进行了分析,旨在为有关人员提供一定的参考和借鉴。
关键词:气化灰水系统;结垢;原因;对策前言:世界能源紧缺背景下,煤炭资源更是供不应求,对其采取高效综合利用,是影响能源化工领域发展的重要问题。
煤气化作为煤洁净的关键技术之一,位于煤炭行业有着重点应用。
有关水煤浆气化技术,凭借其工艺、安全与技术水平、成本等方面的优势特点,也获得广泛重点应用。
气化灰水系统若发生结垢问题,势必会对系统运行产生不利影响,所以,有关人员务必对结垢原因采取全面分析,通过合理可行的方法对策,保证气化灰水系统稳定安全运行。
1灰水系统工艺流程有关灰水系统工艺流程,涉及涵盖黑水闪蒸、沉降与灰水混合、洗涤。
首先,位于气化炉激冷室、碳洗塔底部位置,对存在的激冷水、煤气洗涤水,利用黑水管线,对此直接输送至闪蒸系统,逐级通过高压、低压和真空闪罐,对此完成闪蒸处理,确保对黑水所含CO2、H2S等实现有效排除。
通过闪蒸流程处理之后,对黑水采取降温,待温度符合相应标准,便可直接输送至沉降槽,选用絮凝剂,对此加以合理使用,以保证黑水所含残渣能够更快完成沉降。
位于沉降槽底部位置,含固量较高黑水,需借助过滤设备,对此完成有效过滤处理,对残渣和粉尘等实现有效清除。
对沉降处理的灰水采取有效收集,并直接输送到灰水槽,为防止灰水管路发生结垢情况,保证灰水固体颗粒具有良好的稳定性质,可选用分散剂,位于灰水之中加以合理添加使用。
工业循环水系统中结垢和腐蚀现象分析及控制方案摘要:工业水处理是使用化学和物理方法去除水中杂质的过程。
电石生产的特点是很复杂的过程,生产环节与水密不可分。
电石炉是将电能转化为热能的设备,这就决定了它时刻处在高温环境状态下运行。
为了保证电石炉长周期安全运行,对设备各系统进行冷却必不可少。
循环冷却水的再利用尤其可以提高用水过程的效率,循环水的再利用将产生盐分积聚的问题,这些问题会污染并损坏热交换器,降低传热效率并增加设备成本和安全隐患。
关键词:工业循环水系统;结垢;腐蚀前言工业循环水系统中传热面上的结垢现象一直被人们关注,有效降低管线中的结垢速率,实现持续的稳产高产,已成为电石生产领域研究的热点之一。
为保持油藏压力,提高采收率。
为了节约水资源,多数企业目前采用循环冷却水代替普通工业用水,冷却水在对设备降温的同时,其自身温度也在不断上升,有时在夏季设备冷却水出口温度高达60℃以上,这样的工作温度极易形成水垢粘接在设备内壁,从而造成设备换热效果差,而且水垢还会局部脱落、堆积阻塞管路和阀门,导致水流阻力增加,设备壁厚被腐蚀减薄,另一方面会造成垢下腐蚀,甚至穿孔,必须每隔一段时间对结垢严重的管段进行酸洗或停产维修,增加了管线维护费用,严重影响了电石的正常生产和经济效益。
1产生结垢的原因1.1硬垢天然水中溶解有各种盐类物质,有重碳酸盐、硫酸盐、氯化物、硅酸盐等。
其中溶解的重碳酸盐为最多,也最不稳定,容易分解成碳酸盐。
在使用重碳酸盐含量较多的水作为冷却水时,当通过换热器传热面时会受热分解。
当循环水经过冷却塔冷却时,溶解在水中的CO2会逸出,水的PH会升高。
重碳酸盐在碱性条件下会发生以下反应。
Ca(HCO3)2+2OH-=CaCO3↓+2H2O+CO2-3当水中溶解有氯化钙时,还会产生置换反应。
CaCl2+CO2-3=CaCO3↓+2Cl-当水中溶解有磷酸盐时,磷酸根和钙离子还会生成磷酸钙。
3Ca2++2PO3-4=Ca3(PO4)2↓当循环水在冷却蒸发过程中,水分不断蒸发而浓缩,浓缩倍数提高,原来溶解于水中的盐类浓度会不断增加,当其浓度超过同等条件下的饱和溶解度时就会出现结晶析出,形成水垢。
水垢(污垢)的形成、清理及预防方法溴化锂吸收式制冷机工作一定时间后,换热器(主要是冷凝器)表面产生的污垢会使换热器传热管管壁热阻增加,从而导致机组的制冷效率降低。
本文简要介绍了溴化锂吸收式制冷机换热器传热表面结垢的危害、成因及有效预防见解,并提出了常见的处理方法,供有关人员参考。
换热器传热表面结垢的危害性:换热器表面结垢无形中增加了管壁的厚度,由于换热器传热管壁的导热系数λ较大(λ钢约为50W/(m•K),λ铜约为110W/(m•K)),而水垢的导热系数λ很小(λ水<1W/(m•K)),仅为前者的几百到几千分之一,这样就大大增加了换热器管壁的传热热阻,降低了换热器的传热效率,减少了冷剂水的再生量,使机组的制冷量下降,造成能量的大量浪费,从而增大了企业的运营成本;换热器传热管结垢后,使冷凝压力升高,冷凝温度与冷却水出口温度的差值增大;结垢还会腐蚀设备,缩短设备的使用寿命,结垢严重时还会使冷却管堵塞,减少水流通截面积,增大水流阻力,增加循环水泵运行费用;所以在溴化锂吸收式制冷机的使用过程中应定期进行冷却水水质检查,并定期进行除垢处理。
换热器传热表面结垢的原因:溴化锂吸收式制冷机换热器表面结垢的原因是多方面的:过饱和溶液中盐类的结晶析出;不同分散度的一些物质的固体颗粒的粘结;有机胶状物和矿质胶状物的沉积;某些物质的电化学腐蚀以及微生物产生等。
这些混合沉淀形成了污垢,其中冷却水里面的溶解盐类(如重碳酸盐、硫酸盐、磷酸盐、氯化物、硅酸盐等)产生固相沉淀是结垢的主要原因。
形成固相沉淀的条件是:a)随着温度的升高,某些盐类的溶解度下降。
如Ca(HCO3)2,Ca(HO)2,CaCO3,CaSO4,Ca3(PO4)2,MgCO3,Mg(HCO3)2,Mg(HO)2等。
b)随着水分的蒸发,水中溶解盐类的浓度增高,一些盐因过饱和而析出。
c)被加热的冷却水中发生化学反应,或者某些离子形成另一些难溶的盐类离子。
具备了上述条件的某些盐类,首先在机组换热器水侧的金属表面沉积出原始胚芽,然后逐渐变为具有潜晶形或无定形结构的颗粒,互相聚附,形成结晶或聚团。
反渗透系统如何有效控制碳酸钙结垢反渗透系统进水碳酸钙结垢的控制方法在反渗透系统的运行中,进水碳酸钙结垢是一个需要关注的问题。
为了确保系统的稳定运行,以下是一些控制碳酸钙结垢的方法:一、加酸加酸可以降低水的pH值,使碳酸钙从饱和状态变为不饱和状态,从而避免其析出。
一般使用食品级的酸,如柠檬酸或酒石酸等。
二、加阻垢剂阻垢剂是一种能够抑制碳酸钙结垢的化学药剂。
正规厂商的阻垢剂多为有机酸盐类和聚丙烯酸盐类,对阻垢效果较好。
在加入阻垢剂的同时,还需要注意控制其他离子如Si、Sr、Ba等的浓度,以防止其与CaCO3共同析出。
三、强化树脂软化通过离子交换可以去除水中结垢的阳离子,从而降低CaCO3的饱和度。
这种方法适用于大型水处理系统。
四、弱酸树脂软化该方法主要应用于大型苦咸水处理系统。
通过使用弱酸性的树脂来降低水的pH值,从而防止CaCO3的析出。
五、石灰软化在水中加入氢氧化钙可去除碳酸盐硬度。
这种方法适用于硬度较高的水源。
六、预防性清洗定期对反渗透膜进行清洗可以去除膜表面的沉积物和结垢物质,从而防止其影响系统的性能。
七、调整设备参数通过调整设备的运行参数,如回收率、工作压力等,可以影响水的饱和度和结垢倾向。
需要根据实际情况进行优化调整。
八、更换反渗透膜如果反渗透膜出现堵塞或结垢问题,可以考虑更换膜组件。
选择具有抗结垢性能的膜组件可以增强系统的稳定性。
综上所述,控制反渗透系统进水碳酸钙结垢需要综合运用多种方法。
在实际操作中,需要根据水源条件和设备状况选择合适的方法进行控制。
同时,定期维护和清洗也是保证系统正常运行的重要措施。
12-6 循环冷却水处理字体[大][中][小]冷却水的循环使用过程中,通过冷却设备的传热与传质,循环水中的Ca2+、mg2+、Cl-、SO42-等离子、溶解性固体、悬浮物相应增加,空气中的污染物等可进入循环水中,使微生物繁殖和循环冷却水系统的铜管产生结垢、腐蚀,造成凝汽器传热效果恶化和水流截面减少。
其后果主要表现为:(1) 铜管内水的阻力增加;(2) 在设备扬程相同的情况下,冷却水的流量减少;(3) 使凝汽器进出口的冷却水温差加大;(4) 以上均导致凝汽器凝结水温升高,凝汽器内的真空恶化。
当出现上述现象时,就应对循环冷却水予以判别。
一、水质判断在热电厂凝汽器循环冷却系统中形成的水垢,通常只有碳酸盐类,这是因为Ca(HCO3)2易受热分解生成难溶的CaCO3,反应式如下Ca(HCO3)2→CaCO3↓+CO2+H2O(12-36)尤其在循环冷却系统中,它有蒸发和浓缩的作用,因此也容易生成水垢。
循环水中是否有CaCO3析出,都会从水质表现出来,因此要用水质来判断。
水质判断的主要方法有:1.饱和指数法[又称朗格里尔(Langlier)指数法]它是水的实测pH值减去同一种水的碳酸钙饱和平衡时的pH值之差数。
即IL=pH0-pH s(12-37)式中I L——饱和指数;pH0——水的实测pH值;pH s——水在碳酸钙饱和平衡时的pH值。
当I L>0时,有结垢倾向,当I L=0时,不腐蚀不结垢,当I L<0时,有腐蚀倾向。
pH s可根据水的总碱度、钙硬度和总溶解固体的分析值和温度由表12-31查得相应常数代入下式,即可计算得出:pH s=(9.3+N s+N t)-(N H+N A)(12-38)饱和指数和稳定指数配合应用,将更有助于判断水质的倾向。
运用指数来判断水质问题有很大的局限性,因为它仅依单一碳酸钙的溶解平衡作为判断依据,没有考虑结晶和电化学过程,更未考虑水中胶体的影响,而且把碳酸钙既作为缓蚀剂又作为污垢来考虑。
水垢的主要成分以及去除方法水垢是我们日常生活中常见的一种问题,它不仅会影响到家居设施的美观,还会影响到水质的健康。
了解水垢的成分以及有效的去除方法对我们解决这一问题至关重要。
水垢的主要成分。
水垢的主要成分是碳酸钙,它是由水中的钙离子和碳酸根离子在水中结合而成的。
当水中的钙离子和碳酸根离子的浓度超过了水溶解度时,就会形成水垢。
此外,水垢还可能含有一些其他的金属离子、硅酸盐等成分,这些成分都是由于水中溶解物质的含量过高而导致的。
水垢的去除方法。
1. 使用醋水。
醋水是一种非常有效的去除水垢的方法。
将白醋和水按照1:1的比例混合,然后将混合液倒入需要清洁的地方,静置片刻后用刷子或抹布擦拭,水垢就能够被轻松去除。
2. 使用柠檬。
柠檬中含有丰富的柠檬酸,可以对付水垢。
将柠檬切成片,直接涂抹在水垢的表面,静置片刻后用清水冲洗,水垢就能够被去除。
3. 使用碱性清洁剂。
碱性清洁剂可以有效地溶解水垢。
将碱性清洁剂涂抹在水垢的表面,静置片刻后用清水冲洗,水垢就能够被轻松去除。
4. 使用专业的清洁产品。
市面上还有一些专门用于清洁水垢的产品,这些产品通常含有强效的去垢成分,能够快速有效地去除水垢,使用起来非常方便。
5. 定期清洁。
定期清洁是预防水垢的重要方法。
在日常生活中,我们可以定期使用醋水或者柠檬来清洁水垢,避免水垢长时间积累而难以清理。
6. 水质处理。
如果家中的自来水水质较硬,容易形成水垢,可以考虑安装水软化设备,通过软化水质来减少水垢的产生。
总结。
水垢是我们日常生活中常见的问题,了解水垢的成分以及有效的去除方法对我们解决这一问题至关重要。
采用醋水、柠檬、碱性清洁剂、专业的清洁产品以及定期清洁等方法可以有效地去除水垢,预防水垢的产生。
同时,我们也可以通过改善水质来减少水垢的产生。
希望通过本文的介绍,能够帮助大家更好地了解水垢的成分以及有效的去除方法,让我们的生活更加清洁、健康。
水垢的处理方法
水垢是我们日常生活中经常会遇到的问题,它会影响到我们的生活质量和家居环境。
因此,了解水垢的处理方法是非常重要的。
在本文中,我们将介绍一些常见的水垢处理方法,希望能够帮助大家更好地解决这一问题。
首先,我们来了解一下水垢是什么。
水垢是由水中的碳酸钙和碳酸镁等成分在物体表面沉淀形成的一种白色晶体物质。
它通常出现在水龙头、浴缸、马桶、花洒等地方,给我们的清洁和美观带来了困扰。
针对水垢问题,我们可以采取以下几种处理方法:
1. 使用醋,醋是一种常见的家庭清洁剂,它对水垢有很好的去除效果。
我们可以将醋倒入喷雾瓶中,然后喷洒在受水垢影响的表面,用刷子轻轻擦拭,就可以将水垢清除干净。
2. 使用柠檬,柠檬中含有丰富的柠檬酸,可以有效溶解水垢。
我们可以将柠檬切片,然后直接擦拭在受水垢影响的表面,或者将柠檬汁与水混合后喷洒在表面,再用刷子清洁,同样可以取得很好
的效果。
3. 使用专业清洁剂,市面上也有很多专门用于清除水垢的清洁剂,可以根据不同的情况选择适合自己的产品,按照说明书上的方法进行清洁。
4. 定期清洁,定期清洁是预防水垢的重要方法。
我们可以定期对水龙头、浴缸等容易积垢的地方进行清洁,避免水垢长时间沉积造成难以清除的情况。
5. 使用软水,软水含有较少的矿物质,可以减少水垢的生成。
我们可以通过安装软水设备或者购买软化水产品来改善家庭用水质量,从而减少水垢问题。
总之,水垢是一个常见的问题,但是我们可以通过一些简单的方法来解决。
希望大家能够根据自己的实际情况选择合适的处理方法,保持家居清洁和舒适。
水煤浆气化炉装置水系统结垢问题分析与预防处理措施摘要:水煤浆气化水系统是气化装置的重要技术环节之一,是气化装置的血液;该系统运行正常与否,是气化装置能否长周期稳定高负荷运行的关键,同时也直接影响着各主要设备的使用寿命。
本文以宁夏煤业甲醇分公司煤制甲醇项目的水煤浆气化装置水系统的运行情况,对水系统结垢、堵塞等制约长周期稳定运行的问题进行深入的分析,并就水系统的结垢堵塞问题提出了针对性的解决方案。
关键词:水煤浆气化炉装置;水系统结垢;预防处理措施1水煤浆气化炉装置水系统结垢问题分析甲醇分公司气化装置在气化炉投料运行后最初的一段时间,水系统的运行还算正常,随着时间的推移,激冷水量逐渐下降,激冷水过滤器切换也变得越来越频繁,而换热器的换热效果也不同程度的下降。
气化炉运行后期激冷水过滤器虑孔因结垢变小,使得虑孔更容易受杂质堵塞,使虑孔变得更小,因垢片紧密附着在金属表面,简单的在线冲洗只能把杂质冲掉对垢片没有任何作用,所以随着时间的推移,虑孔垢片增厚,致使激冷水量随着时间而降低;同样,结垢也会使换热器换热效率不断下降,如其中A炉激冷水泵前后手阀因为结垢而无法动作,以致于其中一个泵机封泄漏无法切出检修;B炉投料后,激冷水量一直上不去,水量长期在380 t/h附近徘徊,—部分的原因是这和激冷水过滤器在备用情况下静止的灰水水质较差导致结垢加之固体颗粒的沉淀堵塞虑孔所致。
气化炉经过1.5-2个月左右的运行周期后,相继发现气化大黑水管线和激冷水过滤器堵塞严重,激冷水泵出入口阀、激冷水管道、灰水管道结垢严重,气化单元的黑水管线和激冷水相关管线的堵塞物多为黑色疑似结垢堵塞物,约20-40 mm厚度不等,而闪蒸单元的灰水管线结垢多为灰白色,厚度多在5-25 mm不等,这些垢块或堵塞物都结垢致密附着力强,结垢堵塞情况在年度大检修后变符更加严重。
2水系统结垢原因分析2.1机理分析钙垢和镁垢是水中较为常见的水垢,0℃下碳酸钙在水中的溶解度只有20 mg /L。
烧水壶不结垢的方法
“哎呀,我这烧水壶老是结垢,可烦死了!”
烧水壶不结垢的方法有不少呢。
首先呢,水质很重要,如果你们当地的水质比较硬,那结垢的可能性就大。
所以尽量使用经过净化处理的水来烧水,这样能大大减少水垢的形成。
比如说,我有个朋友,他家以前一直用自来水直接烧水,那壶里的水垢可厚了,后来他装了个净水器,用净化后的水烧水,水垢问题就明显改善了很多。
然后呢,就是要注意烧水的方法。
不要反复把水烧开,水开了就及时关掉电源或火源。
因为水在反复烧开的过程中,水中的矿物质会更容易沉淀形成水垢。
我记得有一次在办公室,有个同事就老是让水一直烧着,结果他那个烧水壶没多久就结了厚厚的一层垢。
还有啊,定期清理烧水壶也很关键。
一旦发现有少量水垢了,就赶紧清理掉,别等它积累得太多。
清理的方法也简单,可以用白醋或者柠檬酸泡一泡,然后用刷子刷一刷,就能把水垢去掉了。
就像我自己家里的烧水壶,我每隔一段时间就会用白醋泡一下清理,这样一直都保持得挺干净的,几乎没什么水垢。
另外,烧水壶的材质也会有一定影响哦。
有些材质的壶可能更容易结垢,所以在购买的时候可以选择一些质量好、不容易结垢的材质。
像那种不锈钢的,通常就比一些普通的金属材质要好一些。
最后呢,就是要养成好的使用习惯。
比如,不要把水装得太满,避免水沸腾的时候溢出来,这样也会导致水垢更容易形成。
而且每次用完烧水壶,最好把里面的水倒干净,让它保持干燥,这样也能减少水垢的积累。
总之呢,只要注意这些方面,就能有效地减少烧水壶结垢的情况啦。
水垢的问题还是略微有一点的,不过只能自己勤快点每次用完用湿巾擦
一擦啦
水垢问题是一个积极的环境潜在威胁,如果不加以管理,可能会损
害水系统和施工材料。
我们应该采取有效的措施来应对水垢问题,以
确保水系统和施工材料的长期可持续性。
一、水垢的形成
1. 水垢的构成:水垪主要是由碳酸钙,磷酸钙,镁酸盐,铝酸盐,钠
酸盐等离子形成,构成了白色结块。
2. 水垢源:水垢主要是由水中疏松沉积物,化学和有机物,水处理剂,运输时附着的污染物,以及随水来源而带来的污染物综合作用结果而
形成的。
3. 水垢形成条件:水中有大量混合悬浮物时,水垢有可能形成;当水
温超过60℃,PH值超过8,氯含量超过2.5毫克/升时,水垢也有可能
形成。
二、水垢的危害
1.水垢可能损害水系统:水垢可能阻塞水管,加大水流量和阀门内压力,损坏泵和阀门,影响水处理系统的效率。
2.水垢可能破坏施工材料:水垪会使施工件表面脱落,失去光洁度,破坏涂料的附着力,缩短使用寿命。
三、水垢的预防
1. 定期检查:定期检查水机系统以及施工件,及时清除发现的水垢,以防止水垢的进一步发展。
2. 增加化学药剂:增加适量的抑制剂,降低硬度和pH,抑制水垢的生成。
3. 加强清洁:每次用完用湿巾擦一下,及时清除残留在施工件上的水垢,减少水垢的沉积。
四、总结
水垪是一个积极的环境潜在威胁,必须通过正确的操作来确保水系统和施工材料的长期可持续性。
主要措施有:定期检查、增加化学剂以及加强清洁,每次用完后用湿巾擦一擦为宜。
循环水系统结垢原因分析及对策【摘要】在人类生活生产用水中,要从各种天然水体中取用大量的水,其中工业用水占了很大比重,约占城市用水量的80%,其中冷却用水量约占2/3。
钢铁联合企业更是消耗工业水的大户,因此处理好工业循环水对于节约水资源具有重要的意义。
本文主要从循环水的水温、浓缩倍数、系统运行管理等方面对循环水使用中常见的结垢问题进行了分析,提出了建议,对于循环水的正常运行具有一定指导意义。
【关键词】循环水冷却水;结垢;水温;浓缩倍数;运行管理Cause analysis and countermeasures of circulating water systemMa Songjie 1, Wei Xiangling 21. Guangxi Liugang Environmental Protection Co., Ltd., Liuzhou, Guangxi, 5450022. Guangxi Zhongsheng Testing Technology Co., LTD., Liuzhou, Guangxi, 545002[Abstract] In the water used for human life and production, a large amount of water should be taken from various natural water bodies, among which the industrial water consumption accounts for a large proportion, accounting for about 80% of the urban water consumption, of which the cooling water consumption accounts for about 2 / 3. Iron and steel joint enterprises are large users of industrial water, so it is of great significance to deal with industrial circulating water to save water resources.This paper mainly analyzes the common scaling problems in the use of circulating water from the aspects of water temperature, concentration multiple, system operationand management of circulating water, and puts forward some suggestions, which has some guiding significance for the normal operation of circulating water.[Key words] circulating water cooling water; scaling; water temperature; concentration multiple; operation management一、垢样成分循环水中常常溶有各种杂质,如重碳酸盐、碳酸盐、硫酸盐、氯化物、硅酸盐、磷酸盐等。
循环水结垢怎样解决
我公司循环水使用情况:进水温度小于33℃、回水温度小于50℃。
使用2级反渗透纯水作循环水,PH7.22、电导率1.7μS/cm、氯化物小于10mg/L、钙离子0.37 mg/L、镁离子0.1 mg/L、总碱度7.5 mg/L。
运行15天后,开始在冷却铜套上结垢。
每天补充新纯水约40吨、水循环量为250立方米/小时。
结垢时PH7.29、电导率44μS/cm、氯化物小于10mg/L、钙离子1.97 mg/L、镁离子0.33mg/L、总碱度17.9 mg/L、总硬度14.5 mg/L。
所有供水管道为不锈钢管路。
水池用环氧树脂作
1布三涂。
用自来水作循环水前15天也不结垢,15天后也会结垢,中间加自来水补充。
是什么原因造成的结垢?。
在什么情况下水容易结垢,汽包、水管容易腐蚀? 用锅炉、水壶等容器烧水或供应蒸汽时,硬水中溶解的钙、镁碳酸氢盐受热分解,析出白色沉淀物,渐渐积累附着在容器上,叫结垢。锅炉结垢,不但多耗燃料,且易造成局部过热,引起。锅炉给水进行预先软化可防止结垢。 根据结垢层沉积的机理,可将污垢分为颗粒污垢、结晶污垢、化学反应污垢、腐蚀污垢、生物污垢等。
1)颗粒污垢:悬浮于流体的固体微粒在换热表面上的积聚。这种污垢也包括较大固态微粒在水平换热面上因重力作用形成的沉淀层,即所谓沉淀污垢和其他胶体微粒的沉积。
2)结晶污垢:溶解于流体中的无机盐在换热表面上结晶而形成的沉积物,通常发生在过饱和或冷却时。典型的污垢如冷却水侧的碳酸钙、硫酸钙和二氧化硅结垢层。
3)化学反应污垢:在传热表面上进行化学反应而产生的污垢,传热面材料不参加反应,但可作为化学反应的一种催化剂。
4)腐蚀污垢:具有腐蚀性的流体或者流体中含有腐蚀性的杂质对换热表面腐蚀而产生的污垢。通常,腐蚀程度取决于流体中的成分、温度及被处理流体的 pH 值。
5)生物污垢:除海水冷却装置外,一般生物污垢均指微生物污垢。其可能产生粘泥,而粘泥反过来又为生物污垢的繁殖提供了条件,这种污垢对温度很敏感,在适宜的温度条件下,生物污垢可生成可观厚度的污垢层。
6)凝固污垢:流体在过冷的换热面上凝固而形成的污垢。例如当水低于冰点而在换热表面上凝固成冰。温度分布的均匀与否对这种污垢影响很大。 防止结垢的技术应考虑以下几点:1)防止结垢形成;2)防止结垢后物质之间的粘结及其在传热表面上的沉积;3)从传热表面上除去沉积物。
防止结垢采取的措施包括以下几个方面: 1 设计阶段应采取的措施 在换热器的设计阶段,考虑潜在污垢时的设计,应考虑如下 6 个方面:1)换热器容易清洗和维修(如板式换热器);2)换热设备安装后,清洗污垢时不需拆卸设备,即能在工作现场进行清洗;3)应取最少的死区和低流速区;4)换热器内流速分布应均匀,以避免较大的速度梯度,确保温度分布均匀(如折流板区);5)在保证合理的压力降和不造成腐蚀的前提下,提高流速有助于减少污垢;6)应考虑换热表面温度对污垢形成的影响。
2 运行阶段污垢的控制 1)维持设计条件 由于在设计换热器时,采用了过余的换热面积,在运行时,为满足工艺需要,需调节流速和温度,从而与设计条件不同,然而应通过旁路系统尽量维持设计条件(流速和温度)以延长运行时间,推迟污垢的发生。2)运行参数控制 在换热器运行时,进口物料条件可能变化,因此要定期测试流体中结垢物质的含量、颗粒大小和液体的 pH 值。3)维修措施良好 换热设备维修过程中产生的焊点、划痕等可能加速结垢过程形成,流速分布不均可能加速腐蚀,流体泄漏到冷却水中,可为微生物提供营养,对空气冷却器周围空气中灰尘缺少排除措施,能加速颗粒沉积和换热器的化学反应结垢的形成。用不洁净的水进行水压试验,可引起腐蚀污垢的加速形成。4)使用添加剂 针对不同类型结垢机理,可用不同的添加剂来减少或消除结垢形成。如生物灭剂和抑制剂、结晶改良剂、分散剂、絮凝剂、缓蚀剂、化学反应抑制剂和适用于燃烧系统中防止结垢的添加剂等。5)减少流体中结垢物质浓度 通常,结垢随着流体中结垢物质浓度的增加而增强,对于颗粒污垢可通过过滤、凝聚与沉淀来去除;对于结疤类物质,可通过离子交换或化学处理来去除;紫外线、超声、磁场、电场和辐射处理紫外线对杀死细菌非常有效,超强超声可有效抑制生物污垢,现在的研究还有磁场、电场和辐射处理装置,结论有待进一步研究。
3 化学或机械清洗技术 化学清洗技术是一种广泛应用的方法,有时在设备运行时,也能进行清洗,但其主要缺点是化学清洗液不稳定,对换热器和连结管处有腐蚀。机械清洗技术通常用在除去壳侧的污垢,先将管束取出,沉浸在不同的液体中,使污垢泡软、松动,然后用机械方法除去垢层。
4 机械在线除垢技术 1)使用磨粒 在流体中加入固体颗粒来摩擦换热器表面,以清除污垢,但对换热器表面易产生腐蚀。2)海绵胶球连续除垢主要应用于电站凝汽器中冷却水侧的污垢清除,海绵胶球在换热器管内通过泵打循环,胶球比管子直径略大,通过管子的每只胶球轻微地压迫管壁,在运动中擦除沉积物。3)自动刷洗 换热器管道刷洗设施由 2 个外罩和 1 个尼龙刷组成,外罩安装在每根管的两端,改变水流方向可使刷子沿管道前后推进刷洗。水流换向可使刷子沿管道前推刷洗。水流换向由压缩空气驱动并定时控制联结在管道上的四通阀来完成。 现从锅炉内表面氧和二氧化碳腐蚀现象分析腐蚀的机理,提出防治措施。
1 腐蚀产生机理 由于锅炉是一种有极性的电解质,在水的极性分子的吸引下,钢材表面的一部分铁原子开始移入锅炉水而成为带正电的铁离子,而钢材上保留多余的电子带负电荷。若铁离子不断进入锅炉水,则使钢板(管)上逐渐出现坑洞,产生腐蚀。其化学反应: Fe+2H2O=Fe(OH)2+H2↑ 2H2+O2=2H2O 4Fe(OH)2+O2+2H2O=4Fe(OH)3↓
另外,水中的溶解氧又是阴极去极化剂,即: O2+4e+2H2O=4OH— 所以氧腐蚀速度与水中含氧量成正比。 由于溶解氧本身是阴极去极化剂,对金属的危害十分严重;而二氧化碳在水溶液中呈酸性,直接破坏金属表面保护膜,加速了氧对金属的电化学腐蚀。
在天然水中,碱度主要由HCO3的盐类[如Ca(HCO3) 2、Mg(HCO3) 2]组成,这些重碳酸盐(暂时硬度)在低压锅炉中经过一系列的变化,在水中产生二氧化碳和碳酸,从而引起锅炉内表面腐蚀。特别是有些使用单位对原水不进行任何处理,直接送入锅炉,在锅炉内被加热的过程中,重碳酸盐被分解,产生沉淀物,即: 生成的重碳酸铁[Fe(HCO3)2]对锅炉产生腐蚀。换句话说,只要水中存在CO2,腐蚀铁的反应就会一直进行下去,直到CO2消耗完为止。
重碳酸铁[Fe(HCO3)2]溶解于水。如果水中不存在O2,那么,Fe(HCO3)2以溶解液状态被加热分解,产生沉淀物——Fe2O3(红锈),它是松散的水渣,通过排污排掉。这种腐蚀的特点是内表面腐蚀均匀,呈现光亮。如果水中存在O2,那么O2就和Fe(HCO3)2反应,产生二氧化碳即:
4Fe(HCO3)2]+O2+2H2O→4 Fe(OH)3↓+8CO2 Fe(OH)3又与水溶液中的Fe(OH)2相互碰撞后生成Fe3O4(黑锈)保护膜。 新产生的CO2又变为碳酸,破坏保护膜,腐蚀内表面。反应反复进行,直到O2全部消耗完为止。实验表明,即使存在少量的O2,也明显加快了腐蚀进程。
二氧化碳的产生除与直接进入锅炉的原水有关外,还与是否采用除氧方式有关,当采用热力式除氧时,软化水在系统外先被加热,当水温达到60℃以上时,重碳酸钠NaHCO3就开始分解出Na2CO3和CO2,CO2及原水中游离的O2、N2等气体在除氧器中被除掉,不进入系统,重碳酸盐则以NaCO3形式进入系统。如果不采用任何除氧方式,那以NaHCO3未分解直接进入锅炉,在炉内被加热分解,产生二氧化碳。 2 氧和二氧化碳对低压锅炉腐蚀的原因分析 2.1一是大量补入的原水未采用钠离子交换软化和未采用任何除氧方式。低压锅炉由于用气量大,需要大量均衡连续的给水,当补给水水质达不到标准规定要求,补给水中的重碳酸盐在炉内加热的过程中产生二氧化碳;或在直接补入生水的过程中,即补进了溶解氧,对锅炉金属壁面产生腐蚀。
2.2PH值过低,加速了金属壁腐蚀。如果锅炉给水能够达到标准规定要求,金属壁即使有腐蚀也是均匀腐蚀,即当PH=9.5~11时,金属具有坚硬的氧化保护层,可大大减缓腐蚀,甚至避免腐蚀情况的发生。但是当PH值<7时,氧分子、氢离子、氯离子等作为腐蚀介质都很活路,由于水中氧分子、氢离子、氯离子的存在,就使锅炉受热面产生了腐蚀。同时二氧化碳溶于水也会降低PH值。
2.3水温的影响。锅水的温度高,钢材表面温度也高,则Fe2+在水溶液中的扩散速度加快,电解质水溶液的电阻降低。由于氧腐蚀的基本原理是靠扩散,扩散速度愈快,氧腐蚀速度亦快。对于低压锅炉来说,腐蚀速度随着水温的升高,局部腐蚀的程度和速度明显提高,当温度升高到脱氧温度(1000℃)以上时,气体氧随蒸汽进入蒸汽系统,水侧的腐蚀相应减小。
2.4停炉后不注意维护保养,造成吸氧腐蚀。锅炉停用,有的装满生水,有的随意裸露在大气中,这样由于保养不善或不保养,停炉状态下的腐蚀往往比运行状态下更严重。 3 防止腐蚀的措施 3.1选择有效的水处理方式 3.1.1采用锅外化学处理一钠离子交换软化法的同时,增设有效的除氧装置,除去水中的溶解氧。低压锅炉一般采用化学除氧,常用的化学试剂有亚硫酸钠、亚硫酸钠加催化剂、联安等。并定期化验,使锅水含量控制在标准范围内。 3.1.2采用炉外加热法。这种方法简单易行,是对原水(正常运行主要是补水)在炉外进行加热,而不是进行钠离子交换。由于加热,原水中重碳酸盐被分解出CO2以及其它气体,同时形成沉淀物,CO2以及其它气体通过上部排气孔排掉,沉淀物通过下部排污阀泄掉。这样,补水中不会再含有NaHCO3 或Na2CO3,并且不管热煤参数如何,系统内都不会再产生CO2,从而避免腐蚀。同时根据重碳酸钙、镁沉淀析出的原理,也可以避免在炉内形成水垢,满足防腐、防垢的要求。
炉外加热的设备应考虑到自身结垢和除气的问题,最好采用蒸汽混合式加热的方法,通过蒸汽将补给水的温度加热到沸点,在充分分解重碳酸盐的同时,将气体放掉。水箱和加热器可使用塑料等耐腐蚀材料,以便定期以酸洗的方式除掉水箱内表面及加热器上的水垢。
3.2充分利用邻近锅炉的排污水。由于低压锅炉防止腐蚀主要是消除补水中的CO2和游离O2,那么就可以在一个同时设有2台以上锅炉的锅炉房内,对邻近锅炉的排污水通过沉淀,等排出水渣后,再作为补给水使用,这样一方面可以对邻近锅炉的排污水进行二次利用,另一方面又可以满足补水的水质和防腐要求。
3.3采用锅内加药处理,控制锅水PH值。这是系统防腐的必要条件,同时也是最简单、最有效的方法。当锅炉循环水PH值低于10时可增加磷酸三钠和氢氧化钠药量进行调整,将PH值控制在10~12之间,使锅水中的钙、镁离子形成疏松的水渣,通过排污排出炉外。
3.4做好停炉保养工作是防止锅炉腐蚀的有效途径之一。通常短期停炉采用湿法保养,长期停炉采用干法保养。干法保养是将炉膛灰渣清除后,将盛装生石灰块或氯化钙的容器放在锅筒、炉膛及烟道中,同时将检查门、炉门、出灰门以及通用挡板加以密封,防止潮气进入。