《教学分析》-薄膜力学性能
- 格式:ppt
- 大小:1.21 MB
- 文档页数:88
薄膜材料的力学行为与性能优化薄膜材料是一种在工业和科学研究中广泛应用的材料,具有独特的力学行为和性能。
力学行为是指材料在外力作用下的变形和破坏规律,而性能则是指材料在特定条件下的使用效果和可靠性。
本文将探讨薄膜材料的力学行为以及如何优化其性能。
首先,薄膜材料的力学行为与其厚度密切相关。
薄膜材料由于其厚度较小,表面积较大,因此在外力作用下更容易发生变形和破坏。
例如,金属薄膜在受到拉伸力时,由于其原子间距较大,容易出现滑移和塑性变形,导致薄膜的延展性较好。
而陶瓷薄膜则由于其原子间距较小,容易出现断裂和脆性破坏。
因此,针对不同类型的薄膜材料,需要采取不同的力学行为优化策略,以提高其力学性能。
其次,薄膜材料的力学行为还与其组织结构和晶体结构密切相关。
薄膜材料的组织结构可以通过控制制备工艺来调控,例如沉积温度、沉积速率等。
晶体结构则可以通过控制材料的成分和晶格缺陷来调控。
通过优化组织结构和晶体结构,可以改变薄膜材料的晶界强化效应、位错强化效应等,从而提高其力学性能。
例如,通过控制沉积温度和沉积速率,可以得到具有较高晶界密度和较小晶粒尺寸的薄膜材料,从而提高其抗拉强度和硬度。
此外,薄膜材料的力学行为还与其表面处理和界面结合方式密切相关。
薄膜材料的表面处理可以通过化学处理、离子注入等方法来实现。
界面结合方式可以通过选择合适的衬底材料、控制沉积工艺等来实现。
通过优化表面处理和界面结合方式,可以改善薄膜材料的界面结合强度和界面应力传递效果,从而提高其力学性能。
例如,通过在薄膜材料表面形成一层氧化膜,可以提高其抗腐蚀性能和界面结合强度。
最后,薄膜材料的性能优化还需要考虑其力学行为与其他性能指标的综合关系。
例如,薄膜材料的力学性能与其光学性能、电学性能等密切相关。
在实际应用中,需要综合考虑薄膜材料的各项性能指标,以满足特定的使用需求。
例如,在太阳能电池中,需要选择具有较高光吸收率和较好光电转换效率的薄膜材料,以提高太阳能的利用效率。
薄膜力学性能评价技术一、薄膜概述薄膜可定义为用物理、化学等方法,在金属或非金属基底表面形成的一层具有一定厚度的、不同于基体材料性质、且具有一定的强化、防护或特殊功能的覆盖层[1]。
薄膜与基体是不可分割的,薄膜在基体上生长,彼此相互作用,薄膜的一面附着在基体上,并受到约束产生内应力。
附着力和内应力是薄膜极为重要的固有特性[2,3]。
薄膜的制备方法有很多,其中实验室里最常用的方法有物理气相沉积法(PVD)和化学气相沉积法(CVD)。
薄膜按照形成方法分为天然薄膜和人工合成薄膜;按照晶体结构可以分为单晶、多晶以及非晶薄膜[4]。
另外,薄膜从用途上还可以分为光学薄膜、导电薄膜、以及耐磨防腐薄膜等等。
不同用途的薄膜对自身的性能要求不统一,薄膜要达到使用需求,就需要对自身相应的性能进行表征。
在机械工业中,薄膜主要用于改善工件的承载能力或者摩擦学性能。
这些性能与薄膜的力学特性密切相关。
例如增加工件的硬度就可以相应的增加其承载能力,在工件表面沉积一层减磨涂层可以显著改善其摩擦学性能等[5~12]。
薄膜力学性能表征方法有很多,但目前来说这些表征方法还存在一些问题。
首先,对于有基体支撑的薄膜,其表征手段难以消除基体对薄膜性能的影响;无基体支撑的薄膜一是在制备上比较困难,二是其界面结合问题与实际情况也相差甚远,直接影响到薄膜的力学性能的测试[13~18]。
其次,对于大块样品的力学性能检测手段不能直接用来测试接近二维结构的薄膜样品。
本文主要介绍当下较为常用的几种薄膜力学性能检测手段。
二、薄膜硬度的测量硬度的经典定义是材料抵抗另一种较硬材料压入产生永久压痕的能力。
硬度从物理意义上讲是材料本质结合力的度量,它与材料抵抗弹性、塑性变形的能力、拉伸强度、疲劳强度、耐磨性以及残余应力等密切相关,是材料综合力学性能的反映[19,20]。
目前薄膜硬度的测量方法主要有显微硬度和纳米压痕硬度两种。
1.薄膜显微硬度测量方法显微硬度计是一种压入硬度,测量的仪器是显微硬度计,它实际上是一台设有加负荷装置带有目镜测微器的显微镜。
薄膜材料力学行为的解析与应用薄膜材料是指厚度在纳米到微米级别的材料,由于其特殊的结构和性质,在科学研究和工程应用中具有广泛的应用前景。
薄膜材料的力学行为对其性能和应用起着决定性的作用。
本文将从理论分析和实际应用两个方面探讨薄膜材料力学行为的解析与应用。
一、薄膜材料力学行为的理论分析1.1 薄膜材料的力学模型薄膜材料的力学行为可以通过力学模型来描述。
常用的力学模型有弹性模型、塑性模型和粘弹性模型等。
弹性模型适用于小应变范围内的力学行为,可以通过胡克定律来描述薄膜材料的应力-应变关系。
塑性模型适用于大应变范围内的力学行为,可以通过流变学模型来描述薄膜材料的应力-应变关系。
粘弹性模型则适用于在长时间内受到持续应力作用下的力学行为,可以通过弛豫时间和粘滞阻尼来描述薄膜材料的应力-应变关系。
1.2 薄膜材料的应力分析薄膜材料的应力分析是研究其力学行为的重要手段。
应力分析可以通过数学方法和实验方法来进行。
数学方法主要包括有限元分析和解析解法。
有限元分析是一种基于数值计算的方法,可以模拟薄膜材料在外力作用下的应力分布和变形情况。
解析解法则是通过数学推导和解方程的方法,得到薄膜材料的应力分布和变形情况的解析解。
实验方法则是通过实验手段来测量薄膜材料在外力作用下的应力和变形情况,如拉伸试验、压缩试验和扭转试验等。
1.3 薄膜材料的断裂行为薄膜材料的断裂行为是研究其力学行为的重要内容。
薄膜材料的断裂可以通过断裂力学来描述。
断裂力学主要包括线弹性断裂力学和断裂韧性理论。
线弹性断裂力学适用于小应变范围内的断裂行为,可以通过应力强度因子来描述薄膜材料的断裂行为。
断裂韧性理论适用于大应变范围内的断裂行为,可以通过断裂韧性来描述薄膜材料的断裂行为。
二、薄膜材料力学行为的应用2.1 薄膜材料在微电子领域的应用薄膜材料在微电子领域具有广泛的应用。
薄膜材料可以用于制备微电子器件的传感器、电容器和电阻器等。
薄膜材料的力学行为对微电子器件的性能和可靠性起着重要的影响。
测试塑料薄膜的⼒学性能3抗撕裂性塑料薄膜的抗撕裂性是其极限抗断裂性的⼀种复杂功能,有不同的ASTM 标准测试薄膜的抗撕裂性:ASTMD 1004⽤于测量很低加载速率下引发撕裂必需的⼒,⽽ASTMD 1938测量的是单⼀撕裂使撕裂扩展所必需的⼒。
ASTMD 1922⽤埃尔曼多夫型撕裂测试机测量特定长度的塑料薄膜使撕裂扩展所需的平均⼒值。
在ASTMD 2582中,测试的是薄膜的抗穿刺扩展撕裂性。
在这些测试中,有两个不同的值很有意义,要测量:1、引发撕裂所需的⼒(ASTM D 1004和ISO 344);2、撕裂扩展所需的⼒(ASTMD 1938、 D 1922和ISO 6383-1)。
ISO标准对⼤棚膜有具体规定。
第⼆个⼒(使撕裂扩展所需的⼒)被认为最重要,因为,尽管有时不可能防⽌⼤棚膜撕裂(如薄膜没有固定牢,被⼤风掀起,撞到结构的突出部分),但如果撕裂很难扩展,就⾮常有利。
抗撕裂引发也很重要,⼀般也不能忽略。
对于农⽤塑料薄膜来说,就其总的⼒学性能和常见断裂机理⽽⾔,塑料薄膜的抗撕裂性⾮常重要。
研究发现,LDPE薄膜的抗撕裂扩展性变化很⼤。
抗撕裂扩展性能的测试值为5~20N。
这⼀变化的可能原因是各向异性、伸长的影响、所测薄膜厚度变化以及撕裂过程中所⽤速度不同。
摆捶⽅法测试塑料薄膜和薄⽚材的抗撕裂扩展性ASTMD 1922-94a给出了特定长度的塑料薄膜撕裂扩展所需的平均⼒的测量,⼴泛⽤于包装材料。
尽管不总是有可能将薄膜撕裂数据与其他⼒学性能或韧性关联,但在应变速率与实际包装应⽤中发现的⼀些近似时,这种⽅法所⽤仪器为撕裂试样提供了⼀种控制⼿段。
由于⽣产过程中有取向,塑料薄膜和⽚材在其抗撕裂性上经常表现出明显的各向异性。
⼀些薄膜在撕裂过程中⼤幅度伸长.使这⼀情况更加复杂,即使是在测试⽅法中加载速率较快时。
伸长程度⼜取决于薄膜的取向和⽣产薄膜的聚合物本⾝的⼒学性能。
撕裂⼒和试样厚度之间没有直接的关系。
撕裂⼒通常⽤毫⽜(mN)或克⼒(gf)表⽰。