单相电压型PWM整流器预测直接功率控制
- 格式:pdf
- 大小:274.60 KB
- 文档页数:4
第一题说明全控型整流电路的工作原理,并设计出一个单相全控整流电路及其控制电路(开环)1.单相全控型PWM整流电路的结构单相电压型桥式PWM整流电路最初出现在交流机车传动系统中,为间接式变频电源提供直流中间环节,电路结构如图1-1所示。
每个桥臂由一个全控器件和反并联的整流二极管组成。
u s是正弦波电网电压,u d是整流器的直流侧输出电压,Ls为交流侧附加的电抗器,Ls包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的。
起平衡电压,支撑无功功率和储存能量的作用。
全桥电路直流侧电容只要一个就可以。
由图1-1所示,能量可以通过构成桥式整流的二极管VD1-VD4完成从滞留测到交流侧的传递,也可以经过全控型器件V1-V4从直流侧你变为交流,反馈给电网。
图1-1所以PWM整流器的能量变换是可逆的,而能量的传递趋势是整流还是逆变,主要视V1-V4的脉宽调制方式而定。
2.单相全控型PWM整流电路的工作原理用正弦信号波和三角波相比较的方法对图1-1中的V1-V4进行SPWM控制,就可以在桥的交流输入端AB产生一个SPWM波u AB。
u AB中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。
当正弦信号波频率和电源频率相同时,i s也为与电源频率相同的正弦波。
由于Ls的滤波作用,谐波电压只使i s产生很小的脉动。
u s一定时,i s 幅值和相位仅由u AB中基波u ABf的幅值及其与u s的相位差决定。
改变u ABf的幅值和相位,可使i s和u s同相或反相,i s比u s超前90°,或使i s与u s相位差为所需角度。
u s> 0时,(V2、VD4、VD1、Ls)和(V3、VD1、VD4、Ls)分别组成两个升压斩波电路,以(V2、VD4、VD1、Ls)为例。
V2通时,u s通过V2、VD4向Ls储能。
V2关断时,Ls中的储能通过VD1、VD4向C充电。
单相电压型PWM整流器波形分析对于单相VSR而言,其交流侧基波电压控制有两种PWM的调制方式,即双极性调制和单极性调制。
以下将根据双极性PWM的调制方式,分析单相电压型PWM整流器(如图1所示)。
图1 单相电压型PWM整流器基于matlab的波形分析及仿真结果将图1的单相电压型PWM整流器在matlab中建立仿真模型如下图所示:图2 单相电压型PWM整流电路仿真模型系统仿真参数如下:交流侧电网电压220V,工频直流侧电阻R L=10Ω。
主电路储能元件参数为L=3 Mh,C=143μF。
PI参数Ki=2.3,τi=128。
图3 控制信号的时序分布(1)交流侧电压v(t)若单相VSR直流侧电容足够大,则在PWM过程中可近似认为其直流侧电压为一定值,即v dc(t)=V dc。
这样当采用双极性调制时,单相VSR交流侧电压v(t)波形为幅值在V dc、-V dc间切换的PWM波形。
第k周期中v(t)波形如图4所示。
图4 交流测电压波形(2)电感端电压v L(t)单相vsr网侧电感端电压v L(t)等于电网电动势e(t)与其交流侧电压v(t)之差,即v L(t)=e(t)-v(t)。
若令e(t)=E m sinωt,且当开关频率远高于电网基波频率时,第k个开关周期中e(t)可近似为一常值,即e(t) ≈ e(kT s)=E m sinωkTs。
其中,kT s ≤ t ≤ (k+1)T s。
如图5所示。
图5 电感电压波形(3)网侧电流i(t)若忽略单相VSR网侧电阻,则网侧电流i(t)为:i(t)=1/L∫v L(t)d t=1/L∫[e(t)-v(t)]d t得第k个开关周期网侧电流表达式为:i(t′)=1/L(E m sinωkTs-V dc)t′+i(t′=0) (0≤t′<t on);i(t″)=1L(E m sinωkTs+V dc)t″+i(t″=0) (0≤t″<T s - t on);当开关频率足够高,且在稳态条件下,各区间电流初始条件满足:i(t′=0)=i(t″=t s-t on);i(t′=t on)=i(t′=0);因此,求得第k个开关周期中,VSR网侧电流脉动峰峰值为:Δi km=i(t′=0) - i(t′=t on)= V dc - E m sinωkTs Lt on (V dc>E m)由于采用双极性PWM控制,第k个开关周期中的PWM占空比D k=(2t on-T s )/ T s;得:Δi km=[T s (V dc-E m sinωkTs) (1+D k)] / 2L网侧电流i(t)波形如图6所示。