2007(试行)移动通信基站电磁辐射环境监测方法
- 格式:pdf
- 大小:335.63 KB
- 文档页数:23
1、GSM基站频率900MHz、1800 MHz、cdma2000分配的频率是1920~1935 MHz(上行)2、什么是基站?基站子系统主要包括两类:基站发射台(BTS)和基站控制器(BSC)3、基站监测2007年7月《移动通信基站电磁辐射环境监测方法》移动通信监测依据的标准:(1)移动通信。
2G发射天线的特点:(1)发射源全向定向;(2)标称发射功率2~60W;(3)频率800~1000MHz;(4)固定方式屋顶重力支架,地面铁塔,屋面拉线塔,窗户,阳台或屋顶悬挂全向天线县城及乡镇:水平瓣宽360°,垂直瓣宽20°以内。
定向天线城区:(1)板状定向天线俯角在3°~15°不等;(2)水平瓣宽分为90°和65°两种;对于基站的监测现在主要以《移动通信基站电磁辐射环境监测方法》作为我们监测的规范要求。
(1)适用范围:适用于超过GB8702(电磁辐射防护规定)规定豁免水平,工作频率范围在110 MHz~40GH内的移动通信基站的。
可豁免的电磁辐射体的等效辐射功率频率范围MHz 等效辐射功率,W0.1~3 300>3~300000P有效=P标称×G G:天线增益。
监测范围:监测点位一般布设在以发射天线为中心半径50m的范围内可能受到影响的保护目标,根据现场环境情况可对点位进行适当调整。
探头(天线)尖端与操作人员之间距离不少于0.5m。
在室内监测,一般选取房间中央位置,点位与家用电器等设备之间距离不小于1m。
每个测点连续测5次,每次监测时间不小于15s,并读取稳定状态下的最大值。
测量仪器探头(天线)尖端距地面(或立足点)1.7m。
5G移动通信基站电磁辐射环境监测技术规范(试行)1范围本文件在符合《5G移动通信基站电磁辐射环境监测方法(试行)》(HJ1151—2020)的基础上,规定了5G移动通信基站电磁辐射环境监测的监测仪器、监测工况及5G终端设备、监测布点和质量保证。
本文件适用于浙江省范围内的5G移动通信基站的电磁辐射环境监测,对其他网络制式的移动通信基站可参照执行。
2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
HJ11515G移动通信基站电磁辐射环境监测方法(试行)3术语和定义下列术语和定义适用于本标准。
3.1遮挡物screen所有能对电磁波产生反射、吸收和抵消等作用的物体。
3.2电磁辐射环境影响最大区域areas with the greatest environmental impact of electromagnetic radiation通过理论预测计算出在理想条件下,基站发射天线产生的电磁辐射环境影响最大区域。
4监测仪器监测仪器在满足HJ1151-2020中3.2监测仪器的相关要求前提下,应满足以下规定:4.1探头(天线)监测仪器应使用三维全向电场探头(天线),探头(天线)监测频率应覆盖700MHz~5000MHz频率范围。
4.2监测频率监测频率范围应覆盖基站天线所有下行频段,监测频率选定为700MHz~5000MHz,并根据监测目的选择相应频率进行监测数据的读取和评价。
4.3分辨率带宽监测仪器分辨率带宽档位应设置在100kHz~1MHz范围内,一般选定为500kHz,且应满足数据采集取样率不小于1次/秒。
4.4量程监测仪器量程档位应选定在50µW/cm2~250µW/cm2范围内,在仪器不过载的前提下应尽量选择量程较低的档位。
5监测工况及5G终端设备5.1监测工况监测时应统一执行数据传输应用场景,推荐在6分钟监测时间内,5G终端下载3GB以上的测试数据包。
5G基站电磁辐射监测方法策略探索摘要:随着通信业的发展,5G已成为我国通信主流技术。
人们享受5G带来的高速率、低时延和大容量优质网络服务的同时,越来越多的人也开始关注5G 基站电磁辐射对周边环境的影响。
本文就5G基站电磁辐射方法策略进行研究,以供参考。
关键词:5G基站;电磁辐射;监测方法引言随着在线学习、视频会议、远程办公等网络需求日益增大,4G网络已无法满足人们对网络大带宽、低延时的要求。
5G网络能提供高质量的用户体验,而5G 网络的核心是基站建设。
当前5G“新基建”已成为人们关注的焦点。
在基站建设过程中,辐射问题一直备受关注。
因此,了解5G基站的电磁辐射水平,总结5G 基站辐射特性和规律,找到控制和减弱5G基站电磁辐射影响的防治措施,对引导公众正确认识5G基站辐射,更好地享受5G带来的便利和体验具有重要意义。
15G基站电磁辐射技术特点就工作频段来说,5G较之前2G/3G/4G使用的频段都更高。
5G使用更高的工作频段可以带来更高的传输速率,同时使用的电磁波频段越高,所传播的能量越大,对基站周围的环境影响也就越大。
为了支持天线具备更强的MIMO和分集接收能力,同时减少RRU与天线之间的连接损耗,5G基站建设中采用了将RRU与天线集成在一起的设备AAU。
AAU采用了Ma55iveMIMO技术,通过增加天线的通道数,可以提升系统容量和频谱效率,增加信号覆盖维度,可形成高增益和可调节的窄带赋形波束,提升用户覆盖效果。
同时多通道带来的是天线发射功率的大幅增加,随之产生的电场强度也会增强。
波束赋形也是5G的一项关键技术,通过这一技术,发射能量可以汇集到用户所在位置,而不向其它方向扩散,并且基站可以通过监测用户的信号,对其进行实时跟踪,使最佳发射方向跟随用户移动,保证在任何时候手机接收点的电磁波信号都处于叠加状态。
根据5G技术的这一特点,在进行5G基站电磁环境监测时,需要将5G终端设备与被监测的5G基站建立连接并至少处于一种典型应用场景。
5G移动通信基站电磁环境辐射监测随着 5G 技术的迅速发展和广泛应用,5G 移动通信基站如雨后春笋般在各地建立起来。
然而,人们在享受 5G 带来的高速网络体验的同时,也对基站电磁环境辐射产生了担忧。
为了消除公众的疑虑,保障公众的健康和安全,对 5G 移动通信基站电磁环境辐射进行监测显得尤为重要。
一、5G 移动通信基站电磁辐射的基本原理要理解 5G 移动通信基站电磁环境辐射监测,首先需要了解电磁辐射的基本原理。
电磁辐射是由电场和磁场的交互变化产生的一种能量传播形式。
在 5G 移动通信中,基站通过天线向周围空间发射电磁波,以实现与用户设备的通信。
5G 所使用的频段较高,波长短,能量相对集中。
但这并不意味着其辐射就一定更强。
辐射的强度取决于多种因素,包括基站的发射功率、天线的增益、辐射方向以及与监测点的距离等。
二、5G 移动通信基站电磁环境辐射监测的重要性保障公众健康:电磁辐射对人体健康的潜在影响是公众关注的焦点。
虽然目前尚未有确凿的科学证据表明 5G 电磁辐射会对人体造成直接的严重危害,但进行监测可以及时发现异常情况,采取相应措施,保障公众的健康。
维护通信秩序:通过监测,可以确保基站的电磁辐射在规定的限值范围内,避免对其他通信系统造成干扰,维护正常的通信秩序。
增强公众信任:公开透明的监测数据能够消除公众的疑虑,增强对5G 技术的信任,促进 5G 网络的建设和发展。
三、5G 移动通信基站电磁环境辐射监测的方法现场监测:监测人员携带专业的电磁辐射监测设备,到基站附近的不同位置进行测量。
这些设备能够准确测量电场强度、磁场强度等参数。
模型预测:利用计算机模型,根据基站的技术参数、地理位置等信息,预测其电磁辐射的分布情况。
但这种方法需要准确的输入数据和可靠的模型,并且需要现场监测数据进行验证和修正。
长期监测:在一些重点区域或敏感地点设置长期监测站点,持续收集电磁辐射数据,以便观察其变化趋势。
四、监测设备与技术常用的监测设备包括频谱分析仪、电磁场探头、综合场强仪等。
移动通信基站辐射的妥善设计基站天线辐射有严格安全标准进行控制关于公众受到移动通信基站天线产生的射频能量照射有国家和国际的安全标准。
最广为接受的标准是由美国电气和电子工程师协会和美国国家标准学会(ANSI/IEEE),国际非电离辐射防护委员会(ICNIRP)和美国全国辐射防护与测量委员会(NCRP)所研制的。
这些射频标准是以“平面波功率密度”来表示的,它的单位是mW/cm2。
对于工作在800MHz-2200MHz频段的基站(例如,在美国的PCS 基站),1999 ANSI/IEEE规定的对于一般公众的照射标准是1.2mW/cm2。
对于工作在900MHz频段的基站(例如,在美国的模拟移动通信基站),1999 ANSI/IEEE规定的对于一般公众的照射标准是0.57mW/cm2。
非电离辐射防护委员会(ICNIRP)非电离辐射防护标准比1999 ANSI/IEEE标准略低而非电离辐射防护委员会(ICNIRP)标准和1999 ANSI/IEEE标准基本上是相同的。
在1996年美国联邦通信委员会发布了关于他们所管理的频率和器件的射频标准,包括移动通信基站天线。
美国通信委员会(FCC)关于移动通信基站天线的标准和ANSI/IEEE的标准基本上是相同的。
公众的照射标准适用于在一个较短的时间内的平均功率密度,这个时间在手机的工作频率上是30分钟。
在有多个天线的情况下,这些标准适用于所有天线所产生的总功率密度。
1989年我国发布了国家标准GB10436-1989,即“作业场所微波辐射卫生标准”。
这一标准对于微波工作人员所在的操作位所容许的微波辐射平均功率密度作了规定。
对于连续波辐射:一日8小时暴露的平均功率密度为50μW/cm2,即日剂量不超过400μW/cm2。
对于脉冲波辐射:一日8小时暴露的平均功率密度为25μW/cm2,即日剂量不超过200μW/cm2。
对于肢体局部辐射(不分连续波和脉冲波),一日8小时暴露的平均功率密度为 500μW/cm2,即日剂量不超过4mW/cm2。
基站电磁辐射环境监测知识及操作概述说明1. 引言1.1 概述基站电磁辐射环境监测是指对基站产生的电磁辐射进行实时、精确的监测和评估工作。
随着移动通信技术的飞速发展,基站已经成为现代城市中不可或缺的设施之一。
然而,由于基站发射设备会产生一定程度的电磁辐射,因此人们对于基站电磁辐射对人体健康的影响越来越关注。
为了做到科学合理地评估基站电磁辐射环境,保护公众和工作人员的健康安全,进行基站电磁辐射环境监测工作至关重要。
1.2 文章结构本文分为五个部分:引言、基站电磁辐射环境监测知识、基站电磁辐射环境监测操作、实际案例分析以及结论。
在引言部分,我们将介绍本文撰写目的、文章结构以及概述。
1.3 目的本文旨在深入探讨基站电磁辐射环境监测的相关知识以及操作方法,并通过实际案例分析进行详细说明。
文章将通过引入相关概念和原理,提供关于基站电磁辐射的基础知识,同时解释为什么我们需要对其进行监测。
在操作部分,我们将介绍所需设备和工具、测量方法与技术以及数据分析与报告撰写流程。
实际案例分析将提供一些真实场景下的监测情况,并展示数据应用与效果评估的重要性。
最后,在结论部分,我们将总结文章中的主要观点,并对未来发展趋势提出展望和建议。
通过本文的阐述,读者将能够全面了解基站电磁辐射环境监测的重要性和操作过程。
以上为“1. 引言”的内容介绍,请继续完成后续部分的撰写。
2. 基站电磁辐射环境监测知识:2.1 什么是基站电磁辐射:基站电磁辐射指的是移动通信基站发射设备中的无线电频率辐射,包括电磁波、微弱的电场和磁场成分。
这些辐射主要来自于基站天线发送和接收信号所需的无线电频率能量,用于与移动设备进行通信。
2.2 为什么需要进行基站电磁辐射环境监测:进行基站电磁辐射环境监测的目的在于评估无线通信系统对周围环境和人体健康可能产生的潜在影响。
通过监测和评估,可以了解基站辐射水平是否符合国家相关标准并且没有超过人体可承受范围,保证人们身处通信基站周围时不会受到过高的辐射。
校园5G移动通信基站电磁辐射监测实验平台开发与应用作者:杜艳军赵剑锟李小燕刘义保来源:《科技风》2023年第33期摘要:本文以东华理工大学广兰校区5G移动通信基站为研究对象,依据《5G移动通信基站电磁辐射环境监测方法(试行)》,使用全频段电磁辐射分析仪NBM550,采用扇形布点法,开发校园5G移动通信基站电磁辐射监测实验平台,并利用平台对校园内5G移动通信基站的电磁辐射水平进行监测。
研究结果表明:距离宿舍楼顶5G基站0.6m处,电场强度达到18V/m;此外,国家标准对照结果进一步显示,该实验平台设计合理、操作规范、数据可靠。
研究结果可以为高校师生在校园5G移动通信基站电磁辐射评价与防护方面,提供一定的借鉴和参考。
关键词:5G基站;高校;电磁辐射;监测;评价信息时代给人们的生产生活带来了巨大的变革,随着无线电技术的快速发展,移动通信基站作为现代社会中不可或缺的设施之一,已在各个城市广泛布设。
作为新一代移动通信技术,5G具有高速率、低时延和大连接的特点。
2019年以来,国家大力推进5G基站建设,这极大地推动了远程医疗、工业控制、远程驾驶、智慧城市、智慧家居等应用的普及[1]。
众所周知,移动通信采用电磁波的形式传输信息,它在给人们带来极大便捷的同时,也增加了城市中的电磁辐射水平。
一方面,超出本底值的电磁辐射不仅会影响电子设备的正常使用,还可能对人体健康和周边环境带来潜在危害。
人们长期生活在移动通信基站所产生的电磁辐射环境中,随着环保意识的提高,基站电磁辐射对人体健康的影响受到了越来越多的关注和研究,由基站引发的电磁辐射污染逐渐成为群众重点探讨的话题。
另一方面,电磁辐射已在联合国人类环境保护会议上被列为“造成公害”的主要污染之一,我国新修订的《中华人民共和国环境保护法》也把电磁辐射作为环境污染和危害的重要因素。
此外,移动电话对人体的电磁辐射损伤等问题也越来越多地被人们所广泛关注[2]。
现阶段,我国移动通信虽然仍以4G网络为主,但随着国家对5G基站的大力建设与逐渐普及,5G 移动通信基站电磁辐射水平大小及其对人体健康的影响已愈发引起人们的重视。