类金刚石碳膜的制备及其机械性能和应用
- 格式:pdf
- 大小:144.03 KB
- 文档页数:2
书山有路勤为径,学海无涯苦作舟金刚石性能介绍金刚石在自然界材料中具有特别优异的机械性能、热学性能、透光性、纵波声速、半导体性能及化学惰性,是一种全方位的不可替代的特殊多功能材料。
用化学气相沉积(Chemical Vapor Deposition 简称CVD)方法生长的金刚石膜具有与颗粒状天然金刚石和高压人造金刚石几乎完全相同的性能,但却克服了小颗粒状天然金刚石和高压人造金刚石尺寸大小的限制。
材料学家一致认为只有这种连续性大尺寸块状材料,才能使得金刚石全部优异性能得到充分的发挥。
金刚石膜的优异性能主要表现在以下几个方面: 1.机械性能:金刚石在已知材料中硬度最高(维氏硬度可达10,400kg/mm2 本站注:约合102GPa)、耐磨性最好且摩擦系数极低。
CVD 金刚石膜中不含任何粘结剂,其多晶结构又使其在各个方向具有几乎相同的硬度,且没有解理面,因此其综合机械性能兼具单晶金刚石和聚晶金刚石(PCD)的优点,而在一定程度上又克服了它们的不足,而且价格低廉。
它不仅可代替天然金刚石、高压人造单晶金刚石和聚晶金刚石在机械领域应用而且大大拓宽了其应用范围:如制造各种适合拉制软硬丝的高性能拉丝模具;焊接型CVD 金刚石工具(使用寿命超过PCD 工具的1-3 倍);制作形状较为复杂的CVD 金刚石涂层硬质合金刀具(使用寿命比涂层前提高10-50 倍);其低摩擦系数还可用于摩擦部件如轴承的耐磨涂层等。
据国外专家统计,仅应用于超硬材料方面就可以开发、改造出二千多种新产品。
2.声学性能:金刚石在所有材料中的传声速度最快,为18.2km/s。
利用此性能不仅能制作频率响应超过5GHz 的声表面波器件(这种最高频响声表面波器件在通信领域的应用极其广泛)而且还可制作频响达60kHz 以上的超高保真扬声器及性能最优异的声传感器。
3.热学性能:天然金刚石热导率达20W/cm.K, 为所有物质中最高者, 比SiC 大4 倍, 比Si 大13 倍, 比GaAs 大43 倍, 是Cu 和Ag。
磁过滤直流真空阴极弧沉积类金刚石膜的结构和力学性能研究祝土富,沈丽如,徐桂东(核工业西南物理研究院,成都610041)[摘要] 采用磁过滤直流真空阴极弧沉积技术在不锈钢基体上制备了类金刚石(DLC)膜。
利用光学显微镜、台阶仪、X射线光电子能谱、Raman光谱、显微硬度计、摩擦磨损仪、洛氏硬度计检测了薄膜的表面形貌、厚度、结构和相关力学特征。
结果表明,膜中仍然存在着um级的大颗粒分布,膜厚为290nm,sp3键含量较高,在空气中的摩擦系数约为0.25,耐磨性能优良,膜与基体的结合性能良好。
[关键词]磁过滤真空阴极弧;DLC膜;结构;摩擦磨损性能Micro-structure and Mechanical Properties of Diamond-like CarbonFilmsDeposited by DC Filtered Cathodic Vacuum Arc TechnologyZHU Tufu, SHEN Liru, XU Guidong( Southwestern Institute of Physics, chendu 610041, China )[Abstract]Diamond-like carbon (DLC) films were deposited on stainless steel substrate by DC filtered cathodic vacuum arc technology. The structure and morphology of the films were studied by X-ray photoelectron spectroscopy(XPS), Raman spectroscope and optical microscope. The thickness of the films was measured by surface profilometer.The mechanical properties were investigated by ball-on-disk tribometer, micro hardness tester and Rockwell apparatus. The resultsshowed that there were still some large particulates with magnitude of microns existed in the films. The thickness of the films was 290 nm. The content of sp3 bonding carbon atoms was quite high. The Friction coefficient of the films was about 0.25. The films exhibited excellent wear resistance. The adhesion of the films to substrate was very well.[Keywords]filtered cathodic vacuum arc; DLC films; structure; friction and wear behaviour1.引言类金刚石(DLC)膜是一种含有大量sp3键的亚稳态非晶碳薄膜,碳原子间主要以sp3和sp2杂化键结合,sp3键的含量越多,薄膜的性能就越接近于金刚石。
类金刚石碳薄膜的摩擦行为与机理研究文章标题:探讨类金刚石碳薄膜的摩擦行为与机理摘要:本文将深入探讨类金刚石碳薄膜的摩擦行为与机理研究,从实验数据和理论分析两方面展开讨论,帮助读者更全面地理解该主题,并对相关理论有更深刻的认识。
1. 介绍类金刚石碳薄膜是一种具有很高硬度和优异耐磨性能的材料,被广泛应用于工业领域。
在摩擦学研究中,类金刚石碳薄膜的摩擦特性备受关注。
本文将从摩擦行为和摩擦机理两个方面展开讨论。
2. 实验数据分析2.1 类金刚石碳薄膜的摩擦系数:实验结果表明,类金刚石碳薄膜具有较低的摩擦系数,这使其在工业应用中具有重要意义。
我们将分析不同条件下的摩擦系数变化,以探究其规律。
2.2 摩擦磨损特性:通过实验数据分析,我们可以发现类金刚石碳薄膜在不同载荷和速度下的摩擦磨损特性,探讨其磨损机理和规律。
3. 理论分析3.1 表面润滑理论:类金刚石碳薄膜的润滑性能对其摩擦行为起着重要作用。
我们将从分子动力学模拟等方面进行理论分析,探讨其表面润滑机理。
3.2 润滑膜形成机制:润滑膜是影响摩擦行为的重要因素之一,我们将结合实验数据和理论模型,探讨润滑膜的形成机制及其对摩擦性能的影响。
4. 总结与展望通过对类金刚石碳薄膜摩擦行为与机理的全面讨论,我们得出了一些重要的结论和认识。
也指出了目前研究中存在的不足和亟待解决的问题,展望未来的研究方向和发展趋势。
个人观点:在类金刚石碳薄膜摩擦行为与机理的研究中,我认为理论和实验的结合至关重要。
只有通过理论分析和实验数据的验证,我们才能深入理解其摩擦特性,并为工业应用提供更有效的指导和支持。
我也认为在未来的研究中,需要更加注重润滑膜的形成机制和作用,在实际应用中进一步优化类金刚石碳薄膜的摩擦性能。
结论:通过本文的探讨,我们对类金刚石碳薄膜的摩擦行为与机理有了更全面的认识。
在未来的研究中,我们将继续深入探讨该领域的相关问题,为相关工业领域的发展和应用提供更有效的支持。
以上是对你指定的主题的文章撰写,如有需要,还请查看并提出修改意见。
oDLC类金刚石镀膜技术知识介绍DLC(类金刚石薄膜)定义:类金刚石薄膜是近年兴起的一种以sp3和 sp2键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,而具有高硬度.高电阻率.良好光学性能以及优秀的摩擦学特性。
类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇Diamond Like Carbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。
DLC薄膜性能机械性能:高硬度和高弹性模量、优异的耐磨性、低摩擦系数电学性能:表面电阻高化学惰性大光学性能:DLC膜在可见光区通常是吸收的,在红外去具有很高的透过率稳定性:亚稳态的材料、热稳定性很差,400摄氏度oDLC镀膜技术解析:oDLC镀膜技术,是指通过纳米镀膜技术将DLC(类金刚石薄膜)均匀地沉积于钢化玻璃或者物质表面,形成一层独特的保护膜。
借助类金刚石薄膜自身的高硬度优势提高钢化玻璃的表面硬度,改善其防刮抗压性能。
、oDLC镀膜技术的应用由于DLC类金刚石有着和金刚石几乎一样的性质,因此,它的产品被广泛应用到机械、电子、光学和医学等各个领域。
同时类金刚石膜有着比金刚石膜更高的新能价格比,所以相当广泛的领域内可以代替金刚石膜。
1、机械领域的应用①用于防止金属化学腐蚀和划伤方面②磁介质保护膜2、电子领域的应用①UISI芯片的BEOL互联结构的低K值的材料②碳膜和DLC薄膜交替出现的多层结构构造共振隧道效应的多量子阱结构3、光学领域的应用①塑料和聚碳酸酯等低熔点材料组成的光学透镜表面抗磨损保护层②DLC膜为性能极佳的发光材料之一:光学隙带范围宽,室温下光致发光和电致发光率都很高。
4、医学领域的应用①在人工心脏瓣膜的不锈钢或钛合金表面沉积DLC膜能同时满足机械性能、耐腐蚀性能和生物相溶性要求②人工关节承受的抗磨性简而言之,类金刚石膜由于其良好的性能和广泛的应用,正受到越来越多的关注,近段时间由信利光电推出的金刚盾钢化膜正式采用了oDLC镀膜技术。
化学气相沉积(CVD ) 金刚石薄膜的主要制备方法及应用引言•金刚石又名钻石, 是碳的同素异构体, 属于立方晶系, 具有面心立方结构, 典型的原子晶体。
金刚石具有很多无与伦比的优异性能, 机械特性、热学特性、透光性、纵波声速、半导体特性及化学惰性等, 在自然界所有的材料中均是首屈一指的。
例如: 金刚石硬度是自然界中硬度最高的,热导率是已知材料中最高的(是铜的热导率5 倍) , 高绝缘性和从红外到紫外极宽的透光性⋯⋯。
由于自然界中金刚石储量极少,并且开采也非常困难, 因此价格昂贵, 而且无论天然金刚石还是高温高压下合成的人造金刚石都是离散的颗粒状, 应用范围受到了很大限制。
近几年, 发达国家对化学气相沉积(简称CVD) 金刚石膜制备及应用开发研究进行了大量投资。
由于CVD 金刚石制造成本低, 可以大面积化、曲面化, 而且其厚度可按需要从不足1Lm 直至数毫米, 而且制备出的CVD 金刚石薄膜物理性和天然金刚石基本相同或接近, 化学性质完全相同, 使金刚石的应用领域大大扩大。
1制备方法1. 1热灯丝CVD 法(HFCVD) (如图1)•热灯丝CVD 法是在基片表面的附近用5 0. 15mm左右螺旋钨丝通电加热、钨丝温度控制2000~2200℃。
真空室压力控制40 乇左右, 基片温度控制在700~1000℃左右, 基片与钨丝距离l<10mm , 然后通入CH4 和H2 混合气体,使它们激发离解,从而在基片表面生成金刚石。
此法的改良形式是EACVD 法,实际上就是在热丝CVD 基础上给基片加一个150V 左右偏压, 使薄膜在沉积过程中同时受到电子的轰击, 可使薄膜中沉积速率得到提高。
此方法简单易行,缺点是沉积速度较慢v <10Lmöh , 不均匀, 工艺稳定性差, 易污染。
1. 2微波等离子体CVD 法(M PCVD)(如图2)•M PCVD 是将微波发生器产生的微波用波导管经隔离器进入反应器, 并通入CH4 和H2 混合气, 产生CH4—H2 等离子体, 从而产生固体碳元素。
高温高压下金刚石合成的研究与应用一、前言金刚石是一种非常特殊的材料,由碳元素组成,因为其硬度极高、耐磨性强以及导热性能良好而被广泛地应用于珠宝和工业领域。
然而,金刚石在自然条件下的生成十分困难,因此大部分金刚石都是通过高温高压合成法来制备的。
本文将介绍金刚石高温高压合成的研究和应用进展。
二、金刚石合成的历史虽然金刚石早在公元前4世纪就已被人们发现,但是一直到20世纪初才被人们制备出来。
最初的金刚石合成方法是进行石英和金属的反应,发现萤石和方解石可以作为碳源,成功制备出了金刚石。
但是,该方法效率低下,产量极少,完全无法应用于商业生产。
直到20世纪50年代和60年代,人们发现了金属硼、碳酸钠等作为碳源,利用高温高压合成的方法,可以制备出高质量的人造金刚石,这也打开了人造金刚石的大门。
三、金刚石的高温高压合成金刚石合成可以使用多种方法,但是高温高压法是最为常见和有效的方法之一。
该方法是通过将金属粉末和碳源置于高温高压的环境下,使二者反应生成金刚石。
现代高压技术的出现使得金刚石的合成更加容易。
在高压的作用下,碳可以转变为金刚石相,同时金属粉末也可以被快速热解,从而生成金刚石。
高温高压合成的金刚石可以分为两种,即单晶金刚石和多晶金刚石。
前者具有比多晶金刚石更高的硬度和透明度,因此更加适用于珠宝制造领域。
后者则具有更广泛的应用领域,可以用于工具制造、电化学领域以及医疗设备制造等多个领域。
四、金刚石的应用领域金刚石的硬度极高,因此在切削工具制造领域被广泛应用。
目前,金刚石切削工具已经成为高速、高效加工领域的主流工具。
同时,由于金刚石的导热性能良好,因此也被用于半导体器件的制造。
此外,金刚石还被广泛应用于高功率激光器的制造、医疗领域和环保领域。
例如,金刚石微电极可以用于在体科学研究中的神经信号测量,金刚石薄膜电极可以用于检测气体中的污染物。
在环保领域,金刚石合成材料可以用于处理有害废物和净化地下水。
五、结语金刚石的高温高压合成技术虽然在人类历史上已经有了相当长时间的发展和应用,但是在技术层面和应用领域上,仍有待深入学习和探索。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。