激光焊接技术应用及其发展趋势(精)
- 格式:doc
- 大小:33.00 KB
- 文档页数:6
激光焊接技术的研究现状及发展趋势一、本文概述激光焊接技术,作为一种先进的焊接工艺,自诞生以来便在多个领域展现出其独特的优势和应用潜力。
本文旨在全面综述激光焊接技术的研究现状,并探讨其未来的发展趋势。
我们将从激光焊接的基本原理出发,分析其在不同材料、不同工业领域的应用情况,总结当前激光焊接技术面临的挑战与问题,并预测其未来的发展方向。
我们还将关注激光焊接技术的创新点和发展热点,以期为读者提供一个全面、深入、前沿的激光焊接技术全景图。
通过本文的阅读,读者可以了解到激光焊接技术的最新进展,以及未来可能的技术突破和应用拓展,为相关研究和应用提供参考和借鉴。
二、激光焊接技术的研究现状激光焊接技术自诞生以来,便以其独特的优势在工业生产中占据了重要的地位。
作为一种高效、高精度、低热输入的焊接方法,激光焊接已广泛应用于汽车、电子、航空、冶金等多个领域。
目前,激光焊接技术的研究现状主要体现在以下几个方面。
激光焊接的工艺研究已经相当成熟。
研究人员通过不断优化激光功率、焊接速度、保护气体等参数,实现了对焊接过程的精确控制。
同时,针对不同材料的特性,研究人员还开发出了多种激光焊接方法,如脉冲激光焊、连续激光焊、激光填丝焊等,以满足不同行业的需求。
激光焊接设备的研究也在不断进步。
随着激光技术的快速发展,激光焊接设备的功率和稳定性得到了显著提升。
同时,设备的智能化、自动化水平也在不断提高,如机器人激光焊接系统的出现,大大提高了生产效率和质量稳定性。
激光焊接过程中的质量控制和检测技术也是当前研究的热点。
通过在线监测焊接过程中的温度、熔池形态等关键参数,可以实时调整焊接工艺参数,保证焊接质量。
同时,无损检测技术的应用也为激光焊接的质量控制提供了有力支持。
然而,尽管激光焊接技术在许多方面已经取得了显著的成果,但仍存在一些挑战和问题。
例如,对于某些高反射率或高导热性的材料,激光焊接的难度较大。
激光焊接的成本较高,也在一定程度上限制了其应用范围。
激光焊接技术的研究现状及发展趋势探究【摘要】激光焊接技术是一种高效、精密的焊接方法,被广泛应用于工业生产中。
本文首先介绍了激光焊接技术的基本原理,包括激光束的生成和聚焦等机理。
接着介绍了激光焊接技术的研究现状,包括其在材料连接、电子器件制造等领域的应用。
结合最新的研究成果,探讨了激光焊接技术在工业生产中的应用前景和发展趋势。
分析了激光焊接技术面临的挑战,如焊缝质量控制、成本降低等问题,并提出了未来的发展展望。
激光焊接技术的不断创新和改进,将进一步推动工业制造领域的发展,为提高产品质量和生产效率提供重要支持。
【关键词】激光焊接技术、研究现状、发展趋势、工业应用、未来挑战、基本原理、总结与展望1. 引言1.1 背景介绍传统的焊接方法存在着一定的局限性,如变形大、焊道狭窄、焊缝不均匀等问题。
而激光焊接技术通过高能密度的激光束,可以实现快速、高精度焊接,避免了传统焊接方法的缺点。
激光焊接技术被认为是未来焊接领域的发展方向。
本文将探讨激光焊接技术的基本原理、当前研究现状、工业生产中的应用情况,以及未来的发展趋势和挑战。
通过对激光焊接技术的深入研究,可以更好地了解这一技术的优势和局限性,为其未来的发展提供有力支持和指导。
2. 正文2.1 激光焊接技术的基本原理激光焊接技术的基本原理是利用高功率密度激光束对工件进行瞬时加热,使其局部熔化并在熔池中实现焊接。
激光光束经过透镜聚焦后在焊接区域形成一个极小的焦点,能量集中,可以快速提高工件表面温度,达到熔化和接合的目的。
激光焊接技术的基本过程包括预热、熔化、混合和冷却四个阶段。
预热阶段是指激光束在焊缝区域加热工件并提高表面温度;熔化阶段是指工件局部熔化形成熔池;混合阶段是指添加适量的填充材料,如焊丝,以填补焊缝;冷却阶段是指熔化部分冷却形成焊接接头。
激光焊接技术具有高能量密度、高效率、精密焊接等优点。
通过调节激光功率、加工速度和焊接参数,可以实现对不同材料的焊接操作,包括金属、塑料、陶瓷等材料。
激光焊接技术应用及其发展趋势激光焊接技术是一种高能密度热源焊接技术,具有焊接速度快、熔深大、变形小、焊接质量高等优点,因此在工业生产中得到了广泛的应用。
以下是激光焊接技术的应用及其发展趋势。
激光焊接技术在汽车制造行业得到了广泛的应用。
激光焊接可以用于汽车零部件的生产,如车门、车身与车顶的焊接,能够有效提高焊接质量和尺寸精度。
激光焊接还可以用于整车的焊接,提高整车的强度和安全性能。
激光焊接技术在航空航天行业也得到了广泛的应用。
激光焊接可以用于航空航天设备的生产,如发动机零部件的焊接、涡轮叶片的焊接等,能够提高零部件的强度、耐腐蚀性和耐高温性。
激光焊接技术还可以应用于电子元器件的生产。
激光焊接可以替代传统的焊接方法,如电阻焊接、电弧焊接等,从而提高焊接质量和生产效率。
激光焊接还可以实现多层电子元器件的焊接,提高电子元器件的可靠性和稳定性。
随着科技的不断发展,激光焊接技术也在不断推动着创新。
未来激光焊接技术的发展趋势有以下几个方面:激光焊接技术将越来越广泛地应用于高新技术领域。
随着人工智能、新能源、新材料等领域的快速发展,对于焊接技术的要求也越来越高,激光焊接技术具有其独特的优势,将在这些领域得到更多应用。
激光焊接技术将更加智能化。
随着机器学习和自动化技术的发展,激光焊接设备将具备更高的智能化水平,能够实现自动调节焊接参数、自动检测焊接质量等功能,提高焊接效率和质量。
激光焊接技术将更加绿色环保。
传统的焊接方法通常会产生大量的烟尘和废气,对环境造成污染,而激光焊接技术采用非接触加工方式,只需要少量的气体辅助,减少了废气的排放,更加环保。
激光焊接技术将向着微小化方向发展。
随着微电子技术的不断发展,对于微观零部件的生产提出了更高的要求,激光焊接技术可以实现微观尺寸的焊接,满足微电子领域的需求。
激光焊接技术具有广泛的应用前景,并且在不断推动着科技创新,未来的发展趋势将更加广泛、智能化、环保和微小化。
激光焊接技术应用及其发展趋势激光焊接技术是一种高能量密度的热源焊接技术,广泛应用于汽车、航空航天、电子、微电子、生物医学、精密仪器等领域。
它通过将激光能量聚焦在焊接接头上,使接头局部处于高温状态,通过熔融和固态扩散,将接头连接起来。
激光焊接技术具有焊接速度快、焊缝质量高、热影响区小、焊接接头尺寸小等优点,因此被广泛应用于各个领域。
随着科技的不断进步,激光焊接技术在以下几个方面取得了重要的突破和进展。
激光焊接技术在汽车行业的应用越来越广泛。
激光焊接技术可以实现高度自动化和高速焊接,大大提高了汽车生产效率。
激光焊接技术在汽车车身的制造中有着重要的作用,可以实现各种材料的焊接,如钢板焊接、铝板焊接、镁合金焊接等。
激光焊接技术还可以实现汽车零部件的精密焊接,提高了汽车的结构强度和安全性。
激光焊接技术还可以用于汽车发动机零部件的焊接,提高了发动机的性能和可靠性。
激光焊接技术在电子和微电子领域的应用也非常广泛。
激光焊接技术可以实现微小尺寸的焊接,因此被广泛应用于电子和微电子领域的连接焊接。
激光焊接技术可以用于电子器件的封装焊接,如集成电路的封装焊接、光电器件的封装焊接等。
激光焊接技术还可以用于电子器件内部的线路连接焊接,如不锈钢线与金属板的连接焊接等。
激光焊接技术提供了一种精确、可靠的焊接方法,为电子和微电子器件的制造提供了重要的工艺支持。
激光焊接技术在各个领域的应用正在不断扩大和深入。
随着科技的不断进步,激光焊接技术将会更加成熟和普及,为各个行业的发展提供更多的支持。
未来的发展趋势包括继续提高焊接速度和焊缝质量、降低设备成本和能耗、提高设备的稳定性和可靠性等。
激光焊接技术还将与其他相关技术相结合,如机器人技术、自动控制技术、光纤通信技术等,实现更加智能化、高效率、高质量的焊接。
激光焊接技术的研究现状及发展趋势探究激光焊接技术是近年来发展迅猛的一种金属材料连接技术,具有高效、高精度、无污染等优点,广泛应用于汽车、航天、电子、化工等领域。
文章将从研究现状和发展趋势两方面进行探究。
一、研究现状1. 激光焊接技术的应用范围不断扩大。
目前,激光焊接技术已经广泛应用于汽车制造、电子电气、工程机械、石油化工等领域,并在航空、航天、国防等高端领域得到了广泛的应用。
2. 激光功率不断提高。
激光功率是影响激光焊接技术的主要因素之一,目前激光功率已经从原来的几百瓦提高到了几千瓦,以满足不同领域对焊接深度和速度的要求。
3. 激光脉冲宽度控制技术不断完善。
激光脉冲宽度是影响激光焊接技术的另一项关键因素。
随着激光脉冲宽度控制技术的不断提高,激光焊接技术的稳定性和精度得到了极大提高。
4. 激光焊缝的质量得到了显著提升。
随着激光焊接技术的不断发展,焊缝质量得到了极大提升。
现在的激光焊接技术已经能够实现低热影响区、小变形、高连接强度等优点。
二、发展趋势1. 激光焊接技术将向高功率和高频率发展。
随着激光功率不断提高,激光焊接技术将向高功率和高频率发展,以应对越来越复杂的焊接需求。
2. 激光焊接技术将更加智能化。
随着人工智能技术的不断提高,激光焊接技术将更加智能化,实现更高效、更精准的焊接操作。
3. 激光焊接技术将向多模式发展。
多模式激光器可以同时发射多个波长的激光,实现多种焊接模式切换,提高焊接效率和质量。
4. 激光检测技术将与激光焊接技术紧密结合。
激光检测技术可以对焊接缺陷、裂纹等进行检测和分析,提高焊接质量和工艺优化。
综上所述,激光焊接技术在不断发展中,应用领域不断拓展,同时也涌现出了一系列新技术和新方向。
未来,激光焊接技术将更加智能化、高效化,进一步满足市场需求。
2024年激光焊接技术市场发展现状引言激光焊接技术是一种利用激光束对金属材料进行精细焊接的技术。
由于其高精度、高效率和无需物理接触等优点,激光焊接技术在制造业中扮演着重要角色。
本文将对激光焊接技术市场的发展现状进行分析和探讨。
市场概况激光焊接技术市场目前呈现出快速增长的态势。
据统计数据显示,全球激光焊接技术市场规模在过去几年里保持了持续增长,预计未来几年内市场规模将进一步扩大。
这主要归因于激光焊接技术在汽车制造、航空航天、电子设备、医疗器械等领域的日益广泛应用。
发展趋势1. 自动化程度提高近年来,随着制造业向智能化、自动化方向发展,激光焊接技术也在不断向自动化程度更高的方向发展。
自动化激光焊接系统的出现使得生产效率大幅提升,同时降低了人工成本和减少了人为误差。
2. 激光焊接技术与机器人技术的结合机器人技术的快速发展也为激光焊接技术的进一步应用提供了巨大机遇。
激光焊接技术与机器人技术的结合可以实现更高级别的自动化和精密焊接操作。
在汽车制造和航空航天领域,机器人激光焊接系统已经广泛应用,提升了生产效率和产品质量。
3. 激光焊接技术的多功能化激光焊接技术不仅可以用于传统金属材料的焊接,还可以应用于其他领域,如塑料焊接、电子元器件焊接等。
通过与不同领域的技术结合,激光焊接技术的适用范围得到了扩大,为市场的发展提供了更多机会。
4. 能源效率的提高传统焊接技术存在能源浪费和环境污染等问题,而激光焊接技术具有高能源转化效率和低能源消耗的特点。
随着环保的日益重视,激光焊接技术的能源效率优势将成为推动其市场发展的重要因素之一。
市场挑战尽管激光焊接技术市场发展前景广阔,但也面临一些挑战。
1. 价格因素限制激光焊接技术设备相对传统焊接设备而言价格较高,因此在初期投资上存在一定难度。
这使得中小型企业难以承担相关设备的成本,限制了其广泛应用。
2. 技术门槛较高激光焊接技术需要经过专业培训和技术熟悉才能正确操作。
由于技术门槛较高,一些中小企业可能面临人才不足的问题。
激光焊接技术激光焊接技术是一种高效、精确的金属连接方法,广泛应用于制造业领域。
本文将介绍激光焊接技术的原理、应用以及未来的发展趋势。
一、激光焊接技术原理激光焊接技术利用高能激光束,将焊接材料加热到熔点或者高于熔点,使其熔化并通过表面张力达到连接的目的。
激光束能够扫描焊接接头,将能量集中在小区域内,使焊接过程更加精确,减少了热影响区域。
同时,激光焊接还能实现非接触焊接,避免了传统焊接中的接触污染问题。
二、激光焊接技术应用1. 汽车制造激光焊接技术在汽车制造中扮演重要角色。
它可以实现汽车零部件的精确连接,提高零部件的强度和密封性。
例如,车身焊接中的激光斜焊接技术能够提高焊缝质量,提高车身整体刚性。
2. 电子制造激光焊接技术在电子制造领域应用广泛。
电子器件的微小尺寸要求高精度的焊接技术,激光焊接技术能够满足这一需求。
它可以焊接超薄导线,实现高密度的连接。
此外,激光焊接还能够实现熔池形状的控制,避免焊接过程中的高热影响。
3. 航空航天航空航天制造要求材料具有高强度、轻质和高温抗性。
激光焊接技术能够实现这些要求,因为它能够焊接高强度的金属,并且焊接过程中热影响区域较小,减少了材料的变形。
三、激光焊接技术的未来发展随着制造业的不断发展,激光焊接技术也在不断演进。
未来,我们可以期待以下几个发展趋势:1. 新材料的应用新材料对焊接技术提出了更高的要求。
激光焊接技术可以适应各种材料的焊接,包括钢铁、铝合金、镍基合金等。
随着新材料的出现,激光焊接技术将不断发展以满足新材料焊接的需求。
2. 自动化和智能化随着制造业的自动化水平不断提高,激光焊接技术也将朝着自动化和智能化方向发展。
例如,激光焊接机器人可以实现自动化的焊接过程,提高生产效率和产品质量。
3. 激光焊接装备的小型化随着激光焊接技术的不断发展,相应的焊接装备也越来越小型化。
小型化的焊接装备更加灵活,可以适应各种生产环境,提高生产的灵活性和效率。
综上所述,激光焊接技术在制造业中发挥着重要的作用。
2023年激光焊接行业市场环境分析激光焊接技术是一种高新技术,具有高精度、高速度、高质量等特点,在各个行业中应用广泛,市场前景广阔。
本文将从行业发展趋势、市场规模和市场竞争等方面进行分析。
一、行业发展趋势1. 自动化程度提高随着自动化技术的不断发展,激光焊接设备的自动化程度也将不断提高,许多企业将会更多的采用大型自动化激光焊接设备,以提高生产效率和品质。
2. 应用领域进一步拓展目前激光焊接技术已经广泛应用于汽车、机械制造、航空航天、冶金、电子等多个领域。
未来还将有更多的行业将激光焊接技术应用到自身的生产和制造中。
3. 优化设备结构由于激光焊接设备的结构和性能不断优化,制造成本和能耗将会进一步降低。
未来,激光焊接设备将会更加紧凑、智能化和环保。
二、市场规模根据统计,全球激光焊接设备市场规模从2020年的约300亿美元,到2025年有望达到535亿美元左右。
在中国市场,激光焊接设备市场的规模也在逐年扩大,单年增长率高达20%以上。
三、市场竞争目前,全球激光焊接设备市场处于高度竞争状态。
市场主要厂商包括TRUMPF、ROFIN,Prima Power、Coherent等。
在国内,激光焊接设备市场竞争也会越来越激烈。
较为知名的企业有德美特,诺尼、鼎泰、美卓等。
随着技术不断更新和市场的扩大,市场竞争将更加激烈,企业需要在研发和市场营销上不断精进才能在激烈的竞争中占据优势。
总之,随着激光焊接技术的不断发展,其市场前景无限,企业需要注重技术创新和市场营销,不断提高自身核心竞争力,才能在竞争中取得更好的成绩。
激光焊接技术的研究现状及发展趋势探究1. 引言1.1 激光焊接技术的定义激光焊接技术是一种利用激光束将热能集中到焊接点进行熔化并连接材料的先进焊接方法。
通过激光束高能量密度和高束质量,可以实现快速、高效、精确的焊接过程。
激光焊接技术在金属、塑料、陶瓷等材料的连接中广泛应用,具有焊缝小、热影响区少、变形小等优点。
随着激光技术的不断进步和发展,激光焊接技术已成为现代制造业中一种重要的焊接方法,被广泛应用于汽车、航空航天、电子、医疗器械等领域。
激光焊接技术的发展为加工技术的进步和产品质量的提高提供了重要支持,是当前研究和发展的热点之一。
1.2 激光焊接技术的重要性1.提高生产效率:激光焊接技术具有快速焊接速度、操作简便等特点,可以大幅提高生产效率,节约人力、时间和成本。
2.提高焊接质量:激光焊接技术能够实现高精度的焊接,焊缝质量好,可以避免气孔、裂纹等焊接缺陷,确保焊接连接的牢固性和稳定性。
3.拓展适用范围:激光焊接技术可以应用于各种金属材料的焊接,包括高熔点金属和难焊材料,具有很强的适用性和通用性。
4.降低能源消耗:相比传统焊接方法,激光焊接技术采用光能作为热源,能量利用效率高,节能环保,有利于减少对环境的影响。
激光焊接技术在制造业中的重要性不容忽视,其在提高生产效率、提高焊接质量、拓展适用范围和降低能源消耗等方面的优势,使其成为现代工业领域中备受重视的焊接技术之一。
2. 正文2.1 激光焊接技术的研究现状1. 激光焊接技术的发展历程:激光焊接技术自20世纪70年代开始逐渐发展,并在各个领域得到广泛应用。
随着激光技术和光学技术的不断进步,激光焊接技术的研究也得到了快速发展。
2. 激光焊接技术的研究热点:当前的研究主要集中在提高焊接质量和效率、拓展适用范围、降低成本和提高稳定性等方面。
利用不同波长的激光进行焊接,探索新的焊接材料、优化焊接参数等。
3. 激光焊接技术的现有问题:虽然激光焊接技术在许多领域取得了成功,但仍然存在一些问题,如焊接过程中容易产生气孔、热裂纹等缺陷,需要进一步研究和解决。
激光焊接技术应用及其发展趋势激光焊接技术是一种高能量密度的热源焊接技术,具有焊缝深、狭、小热影响区和可控性好的特点,因此在许多领域有广泛的应用。
以下是激光焊接技术的应用及其发展趋势的详细介绍。
激光焊接技术的应用:1. 汽车制造业:激光焊接技术可以高效、精确地焊接汽车车身、零部件和发动机等,提高汽车的结构强度和疲劳寿命。
2. 电子产品制造业:激光焊接技术可以用于焊接电子元器件、电子芯片和导电线路等,提高电子产品的性能和可靠性。
3. 航空航天工业:激光焊接技术可以用于焊接飞机组件、发动机零部件和航天器结构等,提高航空航天器的安全性和性能。
4. 医疗器械制造业:激光焊接技术可以用于焊接人工关节、牙齿种植体和器官植入物等,提高医疗器械的适应性和耐用性。
5. 冶金工业:激光焊接技术可以用于焊接金属材料、合金和复合材料等,提高冶金工业的生产效率和产品质量。
6. 其他应用领域:激光焊接技术还可以用于焊接微观材料、精密仪器、钟表和珠宝等。
激光焊接技术的发展趋势:1. 高功率激光器的发展:随着激光器技术的不断进步,高功率激光器的应用范围越来越广泛。
高功率激光器可以提供更高的焊接速度和能量密度,进一步提高激光焊接的效率和质量。
2. 自适应控制系统的应用:激光焊接过程中受到气流、温度和材料变形等因素的影响,容易导致焊缝质量不稳定。
为了解决这个问题,自适应控制系统可以实时监测焊接过程中的参数变化,并调整激光焊接的参数,保证焊缝质量的稳定性。
3. 混合焊接技术的发展:激光焊接技术可以与其他焊接技术(例如电弧焊、等离子焊和摩擦焊等)结合使用,形成混合焊接技术。
混合焊接技术可以充分利用各种焊接技术的优点,提高焊接效率和质量。
4. 激光焊接机器人的应用:随着机器人技术的不断进步,激光焊接机器人的应用越来越广泛。
激光焊接机器人可以实现自动化焊接,减少人力成本和提高生产效率。
激光焊接技术具有广泛的应用领域和良好的发展前景。
随着激光器技术、自适应控制系统、混合焊接技术和机器人技术的不断进步,激光焊接技术的应用范围将会更加广泛,焊接质量将会更加稳定和高效。
激光焊接技术应用及其发展趋势激光焊接是激光加工材料加工技术应用的重要方面之一。
70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。
由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的YAG 激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。
目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。
一、激光焊接的质量与特点激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。
图1显示在不同的辐射功率密度下熔化过程的演变阶段[2],激光焊接的机理有两种:1、热传导焊接当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。
2、激光深熔焊当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿入更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。
这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。
这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。
传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。
传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。
激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。
激光焊接的焊缝形状对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:l,最高可达10:1。
显示四种焊法在316不锈钢及DUCOLW30钢上的焊缝截面形状的比较,对比的结论有以下几点:(1)激光焊和电子束焊比TIG和等离子焊的主要优点相似:焊缝窄、穿透深、焊缝两边平行、热影响区小;(2)TIG和等离子焊投资少,广泛应用了许多年,经验比较多;(3)激光焊和电子束焊在高生产率方面优势大得多。
但电子束焊须在真空室或局部真空中进行。
也可在空气中,但熔透能力比激光焊差;(4)激光焊和电子束焊,焊缝窄且热影响区小,因而变形最小。
2、激光焊接焊缝的组织性能采用大功率激光光束焊接时,因其能量密度极高,被焊工件经受快速加热和冷却的热循环作用,使得焊缝和热影响区区域极窄,其硬度远远高于母材,因此,该区域的塑性相对较低。
为了降低接头区域的硬度,应采取焊接前预热和焊后回火等相应的工艺措施。
激光回火是一种在激光焊后随即采用非聚焦的低能量密度光束对焊道进行多道扫描从而降低焊缝硬度的新工艺。
激光焊接金属及热影响区的组织和硬度是由化学成分和冷却速度决定的。
在激光焊接中,现行焊接工艺一般不需要填充金属。
在这种情况下,焊缝的组织和硬度主要由钢板的化学成分和激光照射条件来决定。
采用填充焊丝的激光焊接由于可以选择任意合金成分的焊丝作为最佳的焊缝过渡合金,因而可以保证两侧母材的联结具有最佳性能[4]。
可以对高熔点、高热导率、物理性质差异较大的异种或同种金属材料进行焊接[5],可以得到无污染、杂质少的焊缝。
激光焊接加热速度快,焊接熔池迅速冷却,与普通的常规焊接在金相组织上有着很大的区别。
二、激光焊接的应用领域1、制造业应用激光拼焊(Tailored Bland Laser Welding)技术在国外轿车制造中得到广泛的应用[6],据统计,2000年全球范围内剪裁坯板激光拼焊生产线超过100条,年产轿车构件拼焊坯板7000万件,并继续以较高速度增长。
国内生产的引进车型Passat,Buick,Audi等也采用了一些剪裁坯板结构。
日本以CO2激光焊代替了闪光对焊进行制钢业轧钢卷材的连接,在超薄板焊接的研究,如板厚100微米以下的箔片,无法熔焊,但通过有特殊输出功率波形的YAG激光焊得以成功,显示了激光焊的广阔前途。
日本还在世界上首次成功开发了将YAG激光焊用于核反应堆中蒸气发生器细管的维修等[6],在国内苏宝蓉等还进行了齿轮的激光焊接技术[7]。
2、粉末冶金领域随着科学技术的不断发展,许多工业技术上对材料特殊要求,应用冶铸方法制造的材料已不能满足需要。
由于粉末冶金材料具有特殊的性能和制造优点,在某些领域如汽车、飞机、工具刃具制造业中正在取代传统的冶铸材料,随着粉末冶金材料的日益发展,它与其它零件的连接问题显得日益突出,使粉末冶金材料的应用受到限制[8]。
在八十年代初期,激光焊以其独特的优点进入粉末冶金材料加工领域,为粉末冶金材料的应用开辟了新的前景,如采用粉末冶金材料连接中常用的钎焊的方法焊接金刚石,由于结合强度低,热影响区宽特别是不能适应高温及强度要求高而引起钎料熔化脱落,采用激光焊接可以提高焊接强度以及耐高温性能。
3、汽车工业20世纪80年代后期,千瓦级激光成功应用于工业生产,而今激光焊接生产线已大规模出现在汽车制造业,成为汽车制造业突出的成就之一。
德国奥迪、奔驰、大众、瑞典的沃尔沃等欧洲的汽车制造厂早在20世纪80年代就率先采用激光焊接车顶、车身、侧框等钣金焊接,90年代美国通用、福特和克莱斯勒公司竟相将激光焊接引入汽车制造,尽管起步较晚,但发展很快。
意大利菲亚特在大多数钢板组件的焊接装配中采用了激光焊接,日本的日产、本田和丰田汽车公司在制造车身覆盖件中都使用了激光焊接和切割工艺,高强钢激光焊接装配件因其性能优良在汽车车身制造中使用得越来越多,根据美国金属市场统计,至2002年底,激光焊接钢结构的消耗将达到70 000t比1998年增加3倍。
根据汽车工业批量大、自动化程度高的特点,激光焊接设备向大功率、多路式方向发展。
在工艺方面美国Sandia国家实验室与Pratt Witney联合进行在激光焊接过程中添加粉末金属和金属丝的研究,德国不莱梅应用光束技术研究所在使用激光焊接铝合金车身骨架方面进行了大量的研究,认为在焊缝中添加填充余属有助于消除热裂纹,提高焊接速度,解决公差问题,开发的生产线已在奔驰公司的工厂投入生产。
4、电子工业激光焊接在电子工业中,特别是微电子工业中得到了广泛的应用[12]。
由于激光焊接热影响区小加热集中迅速、热应力低,因而正在集成电路和半导体器件壳体的封装中,显示出独特的优越性,在真空器件研制中,激光焊接也得到了应用,如钼聚焦极与不锈钢支持环、快热阴极灯丝组件等。
传感器或温控器中的弹性薄壁波纹片其厚度在0.05-0.1mm,采用传统焊接方法难以解决,TIG焊容易焊穿,等离子稳定性差,影响因素多而采用激光焊接效果很好,得到广泛的应用。
5、生物医学生物组织的激光焊接始于20世纪70年代,Klink等及jain用激光焊接输卵管和血管的成功焊接及显示出来的优越性,使更多研究者尝试焊接各种生物组织,并推广到其他组织的焊接。
有关激光焊接神经方面目前国内外的研究主要集中在激光波长、剂量及其对功能恢复以及激光焊料的选择等方面的研究,刘铜军进行了激光焊接小血管及皮肤等基础研究的基础上又对大白鼠胆总管进行了焊接研究。
激光焊接方法与传统的缝合方法比较,激光焊接具有吻合速度快,愈合过程中没有异物反应,保持焊接部位的机械性质,被修复组织按其原生物力学性状生长等优点将在以后的生物医学中得到更广泛的应用。
6、其他领域在其他行业中,激光焊接也逐渐增加特别是在特种材料焊接中国内进行了许多研究,如对BT20钛合金[22]、HEl30合金[23]、Li-ion电池[24]等激光焊接,德国玻璃机械制造商Glamaco Coswig公司与IFW接合技术与材料实验研究院合作开发出了一种用于平板玻璃的激光焊接新技术。
三、激光焊接设备的智能化控制激光焊接监控自动化的关键之一是熔池的实时监视,因此,跟踪传感器的选择成为了一个至关重要的前提。
在所有传感器中,光学传感器以其灵敏度和测量精度高,动态特性好,于工件无接触及包含的信息量大等特点,成为发展得最快的跟踪传感器,而CCD(Charge-coupled Device电荷耦合装置)集成光学器件的应用又使得光学传感器上升到了视频传感的新高度[25]。
激光焊接的优点之一是焊接速度快,薄板的焊接速度可达10m/min以上[26],在高速连续的焊接过程中,如果出现焊接缺陷,将在极短的时间内造成大量的废品。
实现在线的激光焊接质量监测是保证质量的十分重要的环节,华中科技大学设计的信号处理及反馈控制系统通过将声、光传感器所采取的信号放大、滤波、双限比较后进行A/D转换,再将数字信号由微机进行处理等,对激光输出功率、焊接速度、离焦量等工艺参数进行控制实现最佳工艺数[27]。
解决熔透问题,基本前提是对激光焊接过程进行实时检测和控制,提取激光焊接的特征信号。
近十年来,国内外的研究机构主要针对焊接过程中光致等离子体产生的声、光、电、热等信息进行提取,并分析处理,寻找特征信号[28,29,30]。
在填丝激光焊接时,激光填丝焊对接间隙宽度是主要的参数,为了保证缝全长都取得良好均匀的成形,实现高质量的激光填丝激光焊,开发了高精度对缝间隙检测传感器以从高质量送丝控制系统。
对于激光深熔焊而言,利用光学传感器检测焊接过程中的等离子体和反射激光的信号特征是一种简单而有效的实时检测焊接过程的方法[32]。
目前,利用光电管检测焊接过程中的等离子体或反射光的方法主要从工件侧面或与激光同轴两个方向进行。
至于光学传感器的选择,有三种不同波段的传感器可用于激光焊接过程检测。