变压器的励磁涌流浅谈
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
浅析变压器励磁涌流产生的原因摘要:变压器在整个电网中处于核心的地位,但是价格高昂的大型变压器在日常工作中有可能发生各项故障,一旦发生故障大型变压器缺乏替代措施就给带来严重的损失。
当前,只能用具有极高的灵敏性和选择性的纵联差动保护的方法来预防和保护变压器发生故障,然而,仍旧遇到很多的困难。
关键词:变压器励磁涌流电力系统在电力系统中变压器在整个电网中处于核心的地位,有着不可或缺的重要地位。
但是价格高昂的大型变压器在日常工作中有可能发生各项故障,一旦发生故障大型变压器缺乏替代措施就给带来严重的损失。
当前,只能用具有极高的灵敏性和选择性的纵联差动保护的方法来预防和保护变压器发生故障,然而,仍旧遇到很多的困难。
励磁涌流是一种暂态过程,指外部故障切除或者变压器空载投入时电压得以恢复。
出现高达6-8倍的励磁电流,它也是一种能够使变压器电源测电流互感器传到二次侧的暂态不平衡电流。
而类似这种可流入差动回路的情况往往会导致差动保护动作的发生。
介于此,分析研究励磁涌流是如何发生及发生时对变压器差动保护的影响和解决方案是非常有必要的。
一、变压器励磁涌流的产生及特点变压器励磁“涌流”现象是由于电源接通后变压器电压变动产生的一种现象。
具体可分为励磁起始涌流、电压恢复涌流、共振涌流这三种现象,它们的产生均是由不同电压变动就会造成程度不同的变压器励磁涌流现象。
1.1励磁起始涌流上面介绍的励磁起始涌流是指电力系统在变压器开始运行是进入的瞬态性的励磁电流。
而即使电力系统被切除,变压器运行也停止。
励磁电流也同时为零时,其铁心中的磁通也并不是瞬间归零的,而是有一段剩磁值,如果变压器再次通电时其磁值恰在磁通波形的最低谷,而剩磁ΦR为正值,那么这时变压器产生的磁通波形便不会从负最大值(-Φmax)开始,而是由剩磁ΦR开始。
在这种情况下,变压器才会产生瞬态励磁涌流,而且有很大的瞬态冲击现象。
1.2电压恢复涌流在清除变压器的外部故障时,变压器排除故障接通电流,电压恢复正常值的过程中产生的励磁涌流称为电压恢复涌流。
变压器励磁涌流产生机理及抑制措施探讨 1、变压器励磁涌流及特点 变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。
当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。
总的来说,变压器励磁涌流有以下几个特点:第一,波形呈现尖顶形状,表明其中含有相当成分的非周期分量和高次谐波分量,其中高次谐波以二次和三次为主,并且,随着时间推移,某一相二次谐波含量可能超过基波分量的一半以上。
第二,励磁涌流幅值与变压器空载投入的电压初相角直接相关。
对于单相变压器来说,当电压过零点投入时,励磁涌流幅值最大。
由于三相变压器各相间有120度相位差,所以涌流也不尽相同。
第三,在最初几个波形中,涌流将出现间断角。
第四,涌流衰减的时间常数与变压器阻抗、容量和铁心材料等都相关。
2、励磁涌流产生机理 变压器励磁涌流是由变压器铁心饱和引起的。
在铁心不饱和时,铁心磁化曲线的斜率很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。
下面以单相变压器空载合闸为例分析励磁涌流产生机理。
设变压器在时间t=0时合闸,则施加于变压器上的电压为: (1) 又,变压器电压与磁通间的关系为:(2) 故:(3) 式(3)中第一式为稳态磁通,后两式为暂态磁通,为铁心剩磁,与合闸时刻的电压相关。
计及成本和工艺,现代常用的电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的10%。
因此,变压器稳态正常运行时,磁通不会超过饱和磁通,铁心也不会饱和。
但在暂态过程中,如变压器空载合闸时,由于剩磁的作用,运行磁通就有可能大于饱和磁通,从而造成变压器饱和。
例如,最严重的是电压过零时刻,合闸,假若此时铁心的剩磁,非周期磁通为经过半个周期后,磁通达到,将远大于饱和磁通,造成变压器严重饱和。
变压器励磁涌流原理1. 引言变压器是电力系统中常见的电力传输和配电设备,它的基本原理是利用电磁感应现象将交流电能从一个电路传递到另一个电路。
在变压器的正常运行中,励磁涌流是一个重要的现象,对变压器的运行稳定性和效率产生重要影响。
本文将详细解释与变压器励磁涌流原理相关的基本原理。
2. 变压器的基本结构和工作原理变压器由两个或多个线圈(称为主线圈和副线圈)和一个铁芯组成。
主线圈连接到电源,副线圈连接到负载。
铁芯是由高导磁率的铁材料制成,主要用于集中磁通并减小磁通损耗。
变压器的工作原理可以用以下几个步骤来描述: 1. 当主线圈中通入交流电时,产生的交变磁场穿过铁芯,并感应在副线圈中产生电动势。
2. 由于副线圈的存在,电流开始流动,形成副线圈中的磁场。
3. 根据法拉第电磁感应定律,副线圈中的磁场会感应回主线圈中产生电动势。
4. 如果副线圈上有负载,电流会从副线圈流向负载,完成能量传递。
3. 励磁涌流的定义和原因励磁涌流是指在变压器的励磁过程中,出现的瞬态电流。
这种电流是由于铁芯的饱和和磁滞现象引起的。
励磁涌流会导致变压器的损耗增加、温升升高,甚至引起振荡和不稳定的运行。
励磁涌流的主要原因是铁芯的磁滞和饱和效应。
在变压器中,铁芯的磁化曲线是非线性的,当磁通密度较低时,磁化曲线近似为直线,但当磁通密度较高时,磁化曲线出现饱和和磁滞现象。
在励磁过程中,磁通密度会不断变化,导致磁芯中的磁滞和饱和效应。
4. 励磁涌流的影响因素励磁涌流的大小和变压器的设计参数、运行条件以及电源特性等因素密切相关。
以下是一些主要影响因素的解释:4.1 铁芯特性铁芯的导磁率和磁滞特性是影响励磁涌流的重要因素。
导磁率越高,磁化过程中的涌流效应越小。
而磁滞特性越明显,励磁涌流越大。
4.2 变压器参数变压器的额定容量和变比也会影响励磁涌流的大小。
一般来说,容量越大,励磁涌流越大;变比越高,励磁涌流越小。
4.3 电源特性电源的电压波形和频率对励磁涌流有很大影响。
变压器励磁涌流产生机理及抑制措施1、变压器励磁涌流及特点变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。
当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。
总的来说,变压器励磁涌流有以下几个特点:第一,波形呈现尖顶形状,表明其中含有相当成分的非周期分量和高次谐波分量,其中高次谐波以二次和三次为主,并且,随着时间推移,某一相二次谐波含量可能超过基波分量的一半以上。
第二,励磁涌流幅值与变压器空载投入的电压初相角直接相关。
对于单相变压器来说,当电压过零点投入时,励磁涌流幅值最大。
由于三相变压器各相间有120度相位差,所以涌流也不尽相同。
第三,在最初几个波形中,涌流将出现间断角。
第四,涌流衰减的时间常数与变压器阻抗、容量和铁心材料等都相关。
2、励磁涌流产生机理变压器励磁涌流是由变压器铁心饱和引起的。
在铁心不饱和时,铁心磁化曲线的斜率很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。
下面以单相变压器空载合闸为例分析励磁涌流产生机理。
设变压器在时间t=0时合闸,则施加于变压器上的电压为:(1)又,变压器电压与磁通间的关系为:(2)故:(3)式(3)中第一式为稳态磁通,后两式为暂态磁通,为铁心剩磁,与合闸时刻的电压相关。
计及成本和工艺,现代常用的电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的10%。
因此,变压器稳态正常运行时,磁通不会超过饱和磁通,铁心也不会饱和。
但在暂态过程中,如变压器空载合闸时,由于剩磁的作用,运行磁通就有可能大于饱和磁通,从而造成变压器饱和。
例如,最严重的是电压过零时刻,合闸,假若此时铁心的剩磁,非周期磁通为经过半个周期后,磁通达到,将远大于饱和磁通,造成变压器严重饱和。
变压器励磁涌流原理
变压器励磁涌流是指在刚开始接通变压器时,由于电感元件励磁过程中磁感应强度逐渐增大的关系,导致变压器中的电流迅速增加,形成一个短暂的高峰电流。
励磁涌流的主要原因有以下几点:
1. 电感元件的电流变化滞后于电压变化。
由于电感元件的特性,当电压突然改变时,电感元件中的电流并不会立即改变,而是需要一定的时间来达到稳态。
在这个过程中,电流会迅速增加,导致励磁涌流。
2. 初级绕组和次级绕组之间的电容效应。
变压器的初级绕组和次级绕组之间会存在一定的电容效应。
当变压器接通时,由于电容的充电过程,会导致涌流的产生。
3. 磁芯饱和和磁滞。
在刚开始接通变压器时,由于磁感应强度逐渐增大,磁芯中会出现饱和和磁滞现象。
这些现象会导致磁路中的电流迅速变大,从而产生涌流。
励磁涌流对变压器和电网造成的影响主要有以下几点:
1. 过大的励磁涌流会导致变压器绕组和瓷套的过热,甚至引发绝缘击穿,导致设备损坏。
2. 励磁涌流还会对电网造成短暂的过电压,对其他设备和线路造成影响。
为了减小励磁涌流的影响,可以采取以下措施:
1. 使用励磁变压器。
励磁变压器是在主变压器旁边并列连接一个励磁变压器,通过调节励磁变压器的励磁电流来抑制励磁涌流。
2. 采用软起动方式。
通过逐步升高初始电压,使得励磁涌流逐步增加,避免突然产生过大的涌流。
3. 提前预热变压器。
在正式接入电网之前,可以对变压器进行预热,使其达到临界电压之后再投入运行,从而减小励磁涌流的影响。
变压器空载合闸产生的励磁涌流及其影响?
煤炭是国民经济发展的主要动力,煤矿的生产为电能,直接决定了供电系统的可靠性、安全性和稳定性。
变压器作为煤矿供电系统的主要电气设备,对供电系统的安全稳定运行具有重要意义。
在实际生产中,变压器的误动作是影响其稳定运行的关键故障因素,而导致误动作的主要因素是励磁涌流。
因此,有效地抑制变压器空载合闸产生的励磁涌流十分重要。
所谓的空载合闸就是在变压器二次侧不带负载的情况下,将一次侧合闸接入额定电压。
变压器铁芯中的磁通相位落后电压90度,所以此时铁芯中的磁通为最大,但磁通是不能突变的,所以铁芯中会产生一个方向相反随时间衰减速的直流磁通来抵消这个最大值,经过半个周期后,这个直流磁通又与交流磁通方向相同,二者相加,就使得铁芯饱和,就会产生很大的励磁涌流。
显然,励磁涌流的发生,是受励磁电压的影响。
只要系统电压一有变动,励磁电压受到影响,就会产生励磁涌流。
在不同的情况下将产生如下所述的初始、电压复原及共振等不同程度的励磁涌流。
其瞬时尖峰值及持续时间,将视下列各因素的综合情况而定,可能会高达变压器额定电流的8~30倍。
励磁涌流的发生,会使变压器的铁芯饱和,造成涡流损耗、铁损增大,漏磁通增强。
较大的励磁涌流使变压器过热,绝缘老化,影响变压器寿命,严重时可能造成周围绝缘介质损伤,烧毁变压器,甚至造成大面积的停电。
时间有限,想要了解更多变压器励磁涌流知识与治理方法,期待您与小编下期不见不散。
励磁涌流1 概述变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。
当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。
2 励磁涌流的特点当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下:1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。
2)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。
因此,在开始瞬间衰减很快,以后逐渐减慢,经~1s后其值不超过~In。
3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。
4)励磁涌流的数值很大,最大可达额定电流的8~10倍。
当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。
3 励磁涌流的大小合闸瞬间电压为最大值时的磁通变化在交流电路中,磁通Φ总是落后电压u90°相位角。
如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。
在这种情况下,变压器不会产生励磁涌流。
合闸瞬间电压为零值时的磁通变化当合闸瞬间电压为零值时,它在铁芯中所建立的磁通为最大值(-Φm)。
可是,由于铁芯中的磁通不能突变,既然合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。
因此,在铁芯中就出现一个非周期分量的磁通Φfz,其幅值为Φm。
这时,铁芯里的总磁通Φ应看成两个磁通相加而成,如图2所示。
铁芯中磁通开始为零,到1/2 T时,两个磁通相加达最大值,Φ波形的最大值是Φ1波形幅值的两倍。
因此,在电压瞬时值为零时合闸情况最严重。
虽然我们很难预先知道在哪一瞬间合闸,但是总会介于上面论述的两种极限情况之间。
变压器绕组中的励磁电流和磁通的关系由磁化特性所决定,铁芯越饱和,产生一定的磁通所需的励磁电流就愈大。
变压器励磁涌流的特点
变压器励磁涌流是指在变压器初次通电时,励磁电流引起的瞬态电流波动现象。
其特点如下:
1. 时间短暂:励磁涌流只在初次通电瞬间出现,随后逐渐减小并稳定到额定工作状态。
2. 电流较大:励磁涌流的电流值通常是变压器额定电流的两至五倍,甚至更高。
3. 非对称性:励磁涌流在电枢和电抗器两侧不对称,因为在电路中存在感抗,导致电流不同步。
4. 产生过电压:励磁涌流会在变压器中产生较高的瞬态过电压,对绝缘系统和绝缘材料造成冲击。
5. 影响变压器稳态工作:励磁涌流对变压器中的磁场分布、电动势和整体工作状态有一定的影响,但在短时间内会趋于稳定。
6. 可引起机械振动:励磁涌流可能引起变压器和相邻设备的机械振动和冲击。
为了避免励磁涌流对系统造成不利影响,通常采取一些措施如使用合适的变压器铁心材料、合理设计电路使励磁电流尽快达到稳定状态、采用绕组的恰当绝缘等。
变压器励磁涌流特点及措施变压器励磁涌流,这个名字听上去就有点儿高深莫测,对吧?简单来说,励磁涌流就是在变压器接通电源的时候,瞬间产生的一种电流。
这股电流就像一阵狂风,来得快去得也快,但可别小看它,搞不好会给变压器带来不少麻烦。
这种情况尤其在变压器初次启动的时候,简直就像是在开一场电流的派对,喧闹得很。
想象一下,你一打开电源,变压器就像被打了兴奋剂似的,电流猛地蹿上去,瞬间达到了很高的水平。
这种现象发生的原因,其实是因为变压器内部的铁芯在电流的作用下,产生了磁场,这个磁场又带动了电流的流动。
就好比你在喝饮料的时候,气泡一下子涌上来,真是让人措手不及。
不过,这种强烈的涌流其实是短暂的,过不了多久就会回归到正常水平。
但在这短短的瞬间,它可能会带来设备的过热、老化,甚至损坏,想想都让人心惊。
面对这样的涌流,咱们应该怎么办呢?预防是关键,绝对不能掉以轻心。
在设计变压器的时候,就得考虑到这个问题,采用一些保护措施。
比如,选用合适的保护装置,像是限流器和保护继电器,这些可都是可以帮助咱们控制涌流的好帮手。
就像是在家里遇到突如其来的大雨,提前准备好雨具总是比临时慌忙找伞强多了。
还有一种常见的做法,就是设置一个合理的启动程序。
比如,逐步加压,慢慢来,而不是一下子给它来个“电量满格”。
想象一下,像是在给小猫喂食,慢慢地让它适应,不然一下子喂太多,它可受不了。
逐步启动的好处就是能够有效降低涌流的强度,给设备一个缓冲期,减少冲击。
此外,定期维护也是不可或缺的环节。
就像我们的身体需要定期检查,变压器也需要定期检修。
检查铁芯的状态,看看有没有松动的情况,或是绝缘材料是否老化。
保持设备在最佳状态,能让我们在关键时刻减少涌流对设备的冲击。
当然了,理论归理论,实践才是王道。
有些情况下,即使做足了准备,涌流还是会出现。
这个时候,咱们就得冷静应对,快速启动保护措施,让设备安全度过这个“狂欢派对”。
有些高级一点的变压器,甚至会配备自动保护系统,一旦检测到涌流过大,立马就会切断电源,简直是个聪明的小家伙。
浅析变压器励磁涌流的特点及对差动保护的影响摘要:变压器励磁涌流和内部故障的可靠识别是实现变压器差动保护的关键,它直接影响着变压器差动保护正确动作率。
而因变压器励磁涌流引起的差动保护误动又时有发生。
本文结合一次 220 kV 主变在空载投运时发生因励磁涌流引起的差动保护误动故障,对励磁涌流的特性、保护误动的原因及如何躲开励磁涌流的影响等进行探讨分析。
关键词:励磁涌流变压器差动保护;二次谐波一励磁涌流的产生原因及特点1 励磁涌流的产生原因变压器是根据电磁感应原理制成的电气设备。
正常运行时,产生的励磁涌流很小,只不过是额定电流的3%-5%。
当变压器空载合闸投入运行或断开外部故障后电压恢复时,可能会出现数值较大的励磁电流,可达到额定电流的6-8倍,更大的甚至可以达到10倍,空载合闸正好在电压瞬间值为零时,它在铁芯中所建立的磁通为最大值(-Φm),由于铁芯中的磁通不能突变,即合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。
因此,铁芯中出现非周期分量的磁通Φm,磁通-Φm与Φm相抵消。
经过半个周期,变压器铁芯中的总磁通将达到最大值2Φm,此时铁芯处于严重饱和状态,因而励磁电流的数值剧烈增大,形成励磁涌流。
励磁涌流的衰减速度和大小与合闸瞬时电压的相位、剩磁大小和方向有着直接的关系。
2 励磁涌流区别于变压器短路时的特点(1)励磁涌流因含明显的非周期分量电流,使励磁涌流波形明显偏于时间轴的一侧;(2)励磁涌流的数值很大,最大可达额定电流的8-10倍。
(3)励磁涌流的大小与合闸角、铁芯剩磁的大小和方向,以及铁芯剩磁等有关。
(4)励磁涌流中含有大量的高次谐波分量,其中以二次谐波分量电流为主。
因此励磁涌流非正弦波,呈现尖顶波,相邻两个波形之间出现间断,波形间断的宽度为间断角。
对于三相变压器,三相二次谐波大小不同,但总有至少一相的二次谐波较大。
(5)一般情况下变压器容量越大,抗阻比X/R越大,衰减常数越大,衰减的越慢。
小容量的变压器几个周波即可达到稳定;而大型变压器衰减持续时间可达几十秒。
220kV变压器空载合闸励磁涌流及抑制措施分析引言励磁涌流是变压器合闸电源时的一种暂态状况,所有三个相以及接地中性点都有可能出现涌流。
对变压器差动保护来讲,励磁涌流可视为一种差动电流。
暂态涌流并不属于故障条件,保护仍需制动,这是变压器差动保护设计时需考虑的重要因素。
随着电力变压器制造中新型硅钢性能的改进以及采用速度很快的差动继电器,励磁涌流现象变得更为突出。
1励磁涌流产生机理及危害变压器铁芯的非线性饱和特性会导致其空载合闸时产生励磁涌流。
涌流的波形、大小和持续时间取决于许多特性因素,如变压器容量、绕组接法、合闸时电压的相位角、合闸绕组所在部位、铁芯的剩磁及磁化特性等。
励磁涌流仅流进变压器一侧的保护区(即实际电源侧),由于在差动保护看起来为真实的差动电流而使继电器动作。
励磁涌流主要分为:合闸涌流、合应涌流和恢复涌流。
其中,合闸涌流的本质是合闸的时候,变压器磁通不能突变。
由于合闸角、主变剩磁等原因,会导致主变磁通饱和,产生很大的励磁电流。
变压器纵差(分相差动)保护用来保护主变三侧,但是励磁涌流始终是纵差(分相差动)保护无法完全解决的问题,其原因在于用电量保护来保护磁联系的元件,必然存在缺陷。
励磁涌流主要危害:(1)可能引起变压器差动保护动作,造成投运失败,影响送电效率。
(2)数值大的励磁涌流会导致变压器及断路器因电力过大而受损,连续冲击会降低变压器绕组机械强度,损坏电气设备。
(3)导致周边换流站直流换相失败或功率波动。
2涌流检测方法当电力变压器合闸电源时,灵敏的差动保护可能误动。
为使差动保护躲过涌流,必须采取措施使算法能区分涌流状况与故障状况。
波形对称法:将流入继电器的差流进行微分,将微分后波形的前半周数据和后半周数据逐点做对称比较,故障电流基本上是工频正弦波,波形对称。
而励磁涌流时,三相差动电流中有大量的二次谐波和三次谐波分量存在,波形发生畸变、间断、不对称,利用算法检测出这种畸变,即可识别出励磁涌流。
变压器励磁涌流原理变压器励磁涌流是指在变压器初次通电或负载快速变化时,由于变压器磁路的非线性特性和励磁电流的突变,导致瞬态励磁涌流的现象。
这种励磁涌流不仅会给电网带来较大的冲击,还会给变压器本身造成额外的负荷,引起变压器的发热和运行不稳定性。
变压器的励磁涌流主要由以下几个方面造成:1.磁路的非线性特性:变压器的铁芯磁导率随磁场强度的变化而发生微小的变化,导致励磁电流的波形与电压波形不完全相同,出现高次谐波成分。
这些高次谐波会引起瞬态励磁涌流。
2.变压器的惯性:变压器由于具有自感性,当励磁电流突变时,变压器中的电流无法立即发生变化,会产生瞬态励磁涌流。
3.励磁电源的特性:励磁电源在初次通电或负载快速变化时,由于电源的电压输出特性和电极的电容性质,会产生较大的电流突变,导致励磁电流的瞬态变化。
由于励磁涌流的存在,会对电网和变压器产生一定的不良影响:1.对电网的影响:励磁涌流会导致电网瞬态电压的波动和振荡,甚至引起电压闪跳和电压失调。
对电网而言,这是一种干扰,会对电网的稳定性和供电质量造成一定的影响。
2.对变压器的影响:励磁涌流能额外提供给变压器一部分无用的有功负荷,导致变压器的额定负载和温升增加,降低了变压器的功率因数和效率。
此外,励磁涌流还会使得变压器线圈内的电流增大,导致电流密度升高,加剧了线圈绕组的发热,进一步影响变压器的运行稳定性和寿命。
为了减小励磁涌流对电网和变压器的影响,可以采取以下措施:1.优化变压器设计:通过选择合适的磁性材料、调整变压器的铁芯形状和绕组结构等,减小变压器的非线性特性,降低励磁涌流的发生。
2.使用励磁涌流限制装置:通过在变压器的励磁回路中串联合适的电感器或限流电阻,可以限制励磁涌流的大小,减小其对电网和变压器的影响。
3.控制励磁电源:在变压器初次通电或负载快速变化时,采取合适的控制策略,通过逐步增加励磁电流的大小,限制励磁涌流的产生。
总之,励磁涌流是变压器运行中的一种瞬态现象,会给电网和变压器本身带来一定的不良影响。
变压器励磁涌流的抑制方法变压器是电力系统中重要的电力设备之一,用于变换电压和电流。
在变压器的运行过程中,涌流是一种常见的问题,会对变压器的稳定运行和设备寿命造成不利影响。
因此,抑制变压器励磁涌流是非常必要的。
励磁涌流是指在变压器初次通电时,由于磁路中的磁场急剧变化所产生的瞬态电流。
这种涌流会导致变压器的铁芯饱和,进而引起磁损耗和温升的增加,甚至可能损坏绝缘。
因此,抑制变压器励磁涌流可以有效提高变压器的运行效率和使用寿命。
一种常见的抑制变压器励磁涌流的方法是采用串联电抗器。
串联电抗器是一种电气元件,它的电抗性质能够抵消变压器励磁涌流的影响。
在变压器的输入侧串联一个适当的电抗器,可以有效地减小励磁涌流的幅值,降低变压器的磁损耗,提高变压器的效率。
另一种抑制变压器励磁涌流的方法是采用变压器差动保护装置。
差动保护装置是一种用于检测变压器状态的装置,可以及时发现变压器的异常情况,并采取相应的措施进行保护。
在变压器的输入侧和输出侧分别安装差动保护装置,可以实时监测变压器的电流差异,一旦发现异常情况,就会自动切断电源,避免励磁涌流对变压器的影响。
合理设计变压器的参数也是抑制励磁涌流的重要手段。
通过选择合适的铁芯材料、匝数比和绕组抗阻值,可以减小励磁涌流的幅值,降低变压器的磁损耗。
同时,还可以合理布置变压器的绕组,减小磁场的漏磁,进一步减小励磁涌流。
在变压器运行过程中,适当控制励磁电流的启动时间也是抑制励磁涌流的有效手段。
通过调整变压器的启动方式和启动时间,可以使励磁涌流的幅值逐渐增大,避免突变的励磁涌流对变压器产生影响。
还可以采用软启动技术来抑制励磁涌流。
软启动技术是一种通过逐渐增加变压器的励磁电流来启动变压器的方法,可以有效减小励磁涌流的幅值,降低变压器的磁损耗。
抑制变压器励磁涌流是保证变压器正常运行的重要措施。
通过采用串联电抗器、差动保护装置、合理设计变压器参数、控制启动时间以及采用软启动技术等方法,可以有效降低励磁涌流的幅值,提高变压器的运行效率和使用寿命。
变压器励磁涌流引起线路差动保护误动分析变压器励磁涌流是指当变压器通电时,由于磁路的存在导致瞬态电流增大,这种瞬态电流称为励磁涌流。
励磁涌流一般在变压器通电后的几个周期内逐渐减小并趋于稳定。
然而,励磁涌流的存在可能会引起线路差动保护的误动,从而导致保护装置误动跳闸。
下面对这一问题进行详细分析:首先,励磁涌流引起线路差动保护误动的原因主要有两方面:1.励磁涌流造成的差动电流:当励磁涌流通过变压器的绕组时,会引起电流相位和大小的差别,形成差动电流。
这会导致差动保护动作,误判为线路故障。
2.励磁涌流带来的谐波电流:励磁涌流中常含有很多谐波成分,特别是2次和3次谐波。
这些谐波电流会经过线路的绕组,产生线路差动保护的误判。
其次,线路差动保护误动的分析主要从两个方面入手:1.励磁涌流的大小和减小趋势:首先需要了解励磁涌流的大小及其减小的趋势。
通过实际测量和计算分析,可以确定励磁涌流的大小,以及其在变压器通电后的几个周期内的变化情况。
这样可以为保护装置的调整提供参考依据。
2.励磁涌流引起的差动电流和谐波电流:其次需要计算励磁涌流引起的差动电流以及谐波电流。
可以通过建立励磁涌流的模型,计算励磁涌流对不同线路绕组的影响,得出相应的差动电流和谐波电流。
根据这些计算结果,分析差动保护装置可能的误动情况。
最后,根据上述分析,可以采取一系列措施来减小变压器励磁涌流引起的线路差动保护误动:1.调整保护装置的动作阈值:根据励磁涌流的特点和分析结果,适当调整保护装置的动作阈值,使其能够识别出真正的故障信号,并避免误动。
2.加装滤波器:通过在变压器的绕组或者线路的末端加装滤波器,可以有效地减小励磁涌流带来的谐波成分,从而避免谐波电流对差动保护的干扰。
3.优化变压器的设计:在变压器的设计和制造过程中,可以采取一些措施,如合理设置变压器的磁路和绕组结构,减小励磁涌流的大小和持续时间。
4.增加辅助保护手段:在线路差动保护的基础上,增加其他的辅助保护手段,如零序电流保护、过零保护等,可以提高差动保护的可靠性和准确性。
变压器励磁涌流形成的原因变压器励磁涌流是指在变压器开始工作时,一时间流过变压器的电流较大,远远超过定常工作时的额定电流。
这种现象通常会导致一些问题,例如噪音、损耗增加、温升加剧以及设备寿命的缩短等。
励磁涌流的形成主要有以下几个原因。
第一,励磁涌流的主要原因是变压器铁芯的磁化特性。
铁芯在没有外加电流的情况下,具有一定的剩磁。
当变压器开始工作时,需要建立磁场,使铁芯进入饱和状态。
然而,在开始时,由于剩磁的影响,需要较大的电流才能克服铁芯的磁阻,因此励磁电流会短时间内增大,形成励磁涌流。
第二,励磁涌流也和变压器的磁致伸缩效应有关。
在变压器铁芯中,有弱的磁致伸缩效应,即在磁场作用下,铁芯会发生微小的变形。
当变压器开始工作时,由于磁场的急剧变化,会引起铁芯发生微小的振动。
这种振动又会导致铁芯表面的涡流损耗增加,引起额外的电流流过变压器,形成励磁涌流。
第三,变压器线圈的电感特性也是产生励磁涌流的原因。
变压器的线圈是由导线绕制而成的,具有一定的电感。
当变压器开始工作时,输入电压突然变化,线圈中的感应电动势也会急剧变化。
根据电感的自感作用,线圈会产生互感电流,而这种互感电流会导致励磁涌流。
第四,变压器的电容性负载也会对励磁涌流产生影响。
电容负载是指将变压器的输出端连接到一个大型电容器上,用于滤波或补偿的装置。
这种电容负载会对变压器的电流波形产生变形,使得变压器输入电流出现突变。
这个突变引起的因果循环会导致较大的励磁涌流,需要一段时间才能趋于稳定。
在实际应用中,为了减小励磁涌流对变压器及其他设备的影响,常采取一系列的措施。
例如,通过合理的电压控制、使用磁控开断器等来限制励磁电流的大小。
另外,在变压器选型和设计过程中,也会考虑到这个因素,通过优化铁芯和线圈的设计,来减小励磁涌流的影响。
综上所述,变压器励磁涌流的形成是由于铁芯磁化特性、磁致伸缩效应、线圈电感特性和电容负载等多种因素的综合作用。
了解这些原因,有助于我们更好地理解励磁涌流的形成机理,并采取相应的措施来减小其对设备的影响。
变压器的励磁涌流浅谈
【摘要】随着系统的快速发展,大容量高参数机组大量普及。
在讨论对变压器的保护时,励磁涌流是一个永远的话题。
【关键词】励磁涌流;空载投入;带负荷恢复性;涌流闭锁
1.引言
变压器绕组中,励磁电流与磁通的关系,由磁化特性决定,铁芯越饱和,产生一定的磁通所需要的励磁电流就越大。
在变压器空载投入和外部故障切除后电压恢复时,由于变压器电、磁能的快速转换,铁芯中磁通密度大大增加,铁芯饱和现象非常严重,励磁电抗大大减小,因而励磁电流数值大增,由磁化特性决定的电流波形很尖,此电流即励磁涌流,其一般为变压器额定电流的5~10倍,为空载电流的50~100倍,单衰减较快。
2.空载投入励磁涌流
励磁涌流含有很大成分的非周期分量、含有大量的高次谐波分量且以二次谐波为主,波形为尖顶波,且波形之间有间断,并偏向时间轴的一侧。
励磁涌流的大小与电源电压值和合闸初相角、合闸前铁心磁通值和剩磁方向、系统等值阻抗值和相角、变压器绕组的接线方式和中性点接地方式、铁心材质的磁化特性、磁滞特性等、铁心结构型式、工艺组装水平[1]有关。
一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。
励磁涌流的数值很大,最大可达额定电流的5~10倍。
图1 合闸时电压及激磁的情况
图2 励磁电流的情况
在正常稳态时铁心中的磁通滞后外加电压90°(电感上的电流落后外加电压90°),磁通Φ落后电压U 90°相位角。
如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,在这种情况下,变压器不会产生励磁涌流。
当合闸瞬间电压为零值时,它在铁芯中所建立的磁通为最大值(Φm)。
可是,由于铁芯中的磁通不能突变,既然合闸前铁芯中没有磁通,这一瞬间仍要保持磁通为零。
因此,在铁芯中就出现一个非周期分量的磁通Φfz,其幅值为Φm。
如图1所示,铁芯里的总磁通Φ应看成两个磁通相加而成,铁芯中磁通开始为零,到1/2 T时,两个磁通相加达最大值,达到2Φ。
因此,在电压瞬时值为零时合闸情况最严重。
励磁涌流的大小和衰减速度,与合闸瞬间外加电压的相位,铁芯中剩磁的大小和方向、电源容量、变压器的容量及铁芯材料等因素有关。
励磁涌流的大小和衰减速度(见图2)。
[2]
对于三相交流变压器,由于三相之间相差120°,所以任何瞬间合闸至少有
两相出现不同的励磁涌流,它对变压器差动保护的正确动作有不利影响,而在稳态运行及差动范围外发生故障时则影响不大。
3.带负荷恢复性励磁涌流
由于电力系统较为复杂,以致出现变压器在没有切除负荷的情况下恢复电压,由于负荷回路的存在以及故障发生和切除时铁芯的磁链状态,并且变压器铁芯在暂态过程中存在非线性,使得带负荷恢复性涌流有其特殊的电磁暂态过程。
变压器带负荷恢复,一般有两种情况:在变压器保护区外故障,故障切除后恢复电压;以及我公司厂用低压变压器所采用的运行方式,即变压器备自投投入时,故障变压器跳开,备用变压器投入的情况。
带负荷恢复性励磁涌流,其在故障期间存在两个分量:一个暂态分量,一个稳态分量,稳态分量与故障程度成正比,若在变压器一次侧近端处,则稳态分量约为零,暂态分量的衰减很大程度上决定于负荷的性质[3]。
故障切除后的暂态过程中,电流的暂态分量衰减的很快,二次侧电流将会很快达到稳定的负荷电流。
通过对变压器两侧差流数据的分析,带负荷恢复性涌流的特征是:1)峰值不大,在变压器额定电流的3倍左右;2)二次谐波含量丰富,远远超过二次谐波制动的经验值15%;3)涌流的衰减速度比较缓慢,容易造成电流互感器的暂态饱和。
[3]
4.衰减计算
变压器存在铁芯的涡流损耗和磁滞损耗。
这些损耗在等效电路上可以用并联电阻来表示,由于损耗很小,并联电阻很大,对变压器的涌流衰减影响很小,可以忽略。
不考虑变压器和系统的损耗,并假设Ls=Lσ=0,变压器磁通Φ的变化关系为:
Φ(θ)= Φp一Φmcos(θ),θ≥α
式中Φm为变压器的稳态磁通幅值,Φp称为变压器的偏磁。
Φp=Φmcos(α)+ Φres为变压器的剩磁。
设θJ.K为第k个涌流周期的间断角,则:
θJ.K=θ2.K-1+θ1.K
式中θ2.K-1 、θ1.K分别为第k-1个周期的涌流结束角和第k个周期的涌流初始角可以得到涌流幅值Ik为:
式中I。
为第一个周期的涌流幅值,计算公式为:
最后,可得到间断角的近似计算公式:
,
式中T为工频周期。
[4]
5.防护措施
变压器差动保护原理建立在稳态磁路平衡的基础上,是差动保护原理的一种拓展。
在暂态过程中这种平衡关系将被打破,只有等到暂态过程衰减后,原先的平衡关系才能重新建立。
变压器差动保护中的关键问题是如何处理励磁涌流导致的误动,目前常用的涌流闭锁方法有:1)采用具有速饱和铁芯的差动继电器。
2)鉴别短路电流和励磁涌流的波形。
3)利用二次谐波制动,制动比一般为15%~20%。
4)采用利用波形对称原理的差动继电器。
励磁涌流是一次系统在稳态和衰减直流分量叠加磁链的激励下,作用于非线性励磁特性的电流输出。
在保护的数字信号处理中,将衰减的直流分量在时间上截断并进行了周期延拓,导致产生成了离散的幅度谱,混叠到了原来的幅度谱中,影响了二次谐波分量的大小,给二次谐波制动原理的差动保护带来了困难。
接入速饱和电流互感器阻止励磁涌流传递到差动继电器中,当励磁涌流进入差动回路时,由于速饱和电流互感器的铁芯具有极易饱和的特性,其中很大的非周期分量使速饱和电流互感器的铁芯迅速严重饱和,励磁阻抗锐减,使得励磁涌流中几乎全部非周期分量及部分周期分量电流从速饱和电流互感器的一次侧绕组通过,变换到二次侧绕组的电流就很小,差动保护就不会动作。
只要合理调节速饱和电流互感器一二次侧绕组匝数,就可以更好的消除励磁涌流对差动保护的影响。
6.结语
励磁涌流在变压器保护整定计算及实践中有很深远的意义,本文只浅显的谈了其特征、衰减计算及防范方法,还有很多方面没有涉及。
随着电力系统的发展,大容量变压器的广泛使用,微机保护被越来越多应用,其技术日趋成熟,对励磁涌流判别及防范方法也更加完善,因励磁涌流引起的误动必将大大减少。
参考文献
[1]徐安源.励磁涌流与继保整定配合初探[J].华东电力,2003年第12期.
[2]黄杰.变压器差动保护动作的原因分析及解决方法[OL].中国工控网,2007-11-6.
[3]王熙骏,陆于平,袁宇波.变压器带负荷恢复性励磁涌流的研究[C].第十届全国保护和控制学术研讨会,2005.
[4]张建松,何奔腾,张雪松.变压器衰减励磁涌流的计算研究[J].电力系统自动化,第29卷第12期,2005年6月25日.。