土壤水分入渗的影响因素研究
- 格式:pdf
- 大小:163.82 KB
- 文档页数:2
一、实验目的1.加深对土壤渗吸速度变化的一般规律的了解。
2.了解土壤质地对土壤渗吸速度的影响。
3.掌握土壤渗吸速度的常规测定方法及装置原理。
二、实验设备水在土壤中入渗分为有压入渗和无压入渗。
如漫灌、畦灌和沟灌都属于有压入渗。
喷灌、滴灌属于无压入渗。
本试验是模拟有压入渗条件下,土壤渗吸速度的测定。
本试验为室内试验,试验装置如图4-1-1。
试验仪器大体分为由两部分,即试样渗吸桶和供水马氏瓶。
双环入渗试验的外环外径为15cm,内径14cm;内环的外径直径10cm,内径直径9cm,高15cm。
安装后要求内环环顶端与渗吸筒齐平,下端插入土内10cm。
试验桶正上方为自动供水箱(即为马氏瓶),使内环保持稳定的水层深度。
供水马氏瓶外径6cm,内径5cm。
此外再配备秒表、水桶、水勺和刮土板等试验用具。
三、实验方法及步骤1.实验准备工作a.人员分工每组实验人员3~5人,其中一人计时兼指挥,一人读取供水水位数值,一人加水,其余人员做记录和观察渗吸规律。
b.准备工作和内环一并称重,(1)测量试样桶容积V,按欲模拟土壤干容重干M。
计算出干土重'(2)将筛网贴紧桶底铺好,然后开始填装。
土样一般分5~6次填装,均匀夯实,层间要“打毛”。
土样全部装好后用刮板刮平表面,最后将马氏瓶安装好待用。
(3) 关闭供水箱(马氏瓶)的出水口,向水箱内注水,然后用胶塞密封注水进水口。
图4-1-1 试验装置示意图(4) 在试样图环内表层铺塑料薄膜,向环内注入约5cm深的水层,打开供水箱开关,用注射器抽水,直至马氏瓶能正常供水(目的是调节马氏瓶)。
(5) 检查秒表是否正常及回零位。
(6) 记录供水箱原始水位读数。
2. 实验方法及步骤试验人员必须精力集中,认真负责,在统一指挥下,分工协作,作好记录。
a.迅速抽取塑料薄膜,并开始记时水位数值。
b.读取第一分钟末供水箱的水位,按试验要求读取水位数值。
c.实验至渗吸速度稳定后(即每两次水位读数差相同),实验结束。
第33卷第1期1997年1月 林 业 科 学SC IEN TIA SILV AE SIN ICAE V o l.33,N o.1J a n.,1997不同林地土壤水分入渗和入渗模拟的研究*周择福 洪玲霞(中国林业科学研究院林业研究所 北京 100091) (中国林业科学研究院资源信息研究所 北京 100091)摘 要 由达西定理和能量守恒原理推导了土壤水分入渗的数学模型,水平土柱法实测了模型中的基本运动参数:土壤水分扩散率D(θ),推求了土壤水分非饱和导水率K(?,经过计算机用有限差分法模拟了六块不同林地的土壤水分入渗过程,实地试验检验了模拟结果。
结果表明计算的累积入渗量和入渗率与实测值非常一致。
经过模拟结果绘制的入渗时水分随时间变化的剖面图,形象地反映了不同林地的土壤水分入渗的全过程。
关键词 土壤水分入渗,动态模拟,不同林地类型土壤水分入渗过程和渗透能力决定了降雨进程再分配中的地表迳流和土壤储水性,在干旱、半干旱地区,林业发展的主要途径是充分有效地利用自然降水、减少地表迳流、增加土壤水分。
因此,土壤水分入渗的研究在干旱半干旱地区较为重要。
多年来,该研究逐步深入。
研究途径可分为两类:纯经验公式和半理论、半经验公式。
随着计算机技术和数学——物理建模技术的发展,利用数学——物理的原理,建立数学模型,然后应用计算机技术进行数值模拟,再经实验验正模拟结果,解决实际问题,减少大量的田间试验,提高试验精度。
用这一方法研究土壤水分入渗已经在农业和水利部门取得了很大的成功,推动了农田水利土壤水分研究的向前发展[1]。
但是,此项研究在林业,特别在干旱、半干旱地区的不同林地尚属空白。
因此,本文就此问题进行了研究。
1 土壤水分入渗模型的建立及边界条件的确定 由Darcy定律和能量守恒原理推导的土壤水分运动方程反映了土壤水分运动的基本规律,其方程为: θt=z D(θ)θz±K(θ)z(1)式中:θ为土壤容积含水量(cm3/cm3);D(θ)为土壤水分扩散率(cm3/cm3);K(θ)非饱和导水率(cm/min);z为土壤水分入渗的深度(cm);K(θ)/z为由土壤水的重力势引起的水分变化,水流方向与所取坐标访向一致取+,否则为-。
第1篇一、实验目的土壤渗透速率实验旨在测定土壤在不同条件下渗透水的能力,分析影响土壤渗透速率的因素,为土壤工程设计和水资源管理提供科学依据。
二、实验原理土壤渗透速率是指土壤在单位时间内渗透水的能力,通常用单位时间内通过土壤横截面积的水量来表示。
实验中,通过测定一定时间内土壤样品渗透的水量,计算出土壤渗透速率。
三、实验材料与方法1. 实验材料(1)土壤样品:选取不同质地、不同有机质含量的土壤样品,过筛后备用。
(2)实验仪器:渗透仪、电子天平、计时器、水杯、滴定管、蒸馏水、量筒等。
2. 实验方法(1)将土壤样品均匀铺设在渗透仪的土壤盒中,确保土壤层厚度一致。
(2)将土壤盒放置在渗透仪上,调整好水头高度。
(3)打开渗透仪,开始计时,记录渗透时间。
(4)待土壤渗透至预定深度后,关闭渗透仪,取出土壤样品,称量渗透前后的土壤重量。
(5)根据渗透前后的土壤重量差和渗透时间,计算出土壤渗透速率。
四、实验结果与分析1. 实验结果实验结果表明,不同质地、不同有机质含量的土壤样品渗透速率存在显著差异。
具体数据如下:(1)沙土:渗透速率约为1.5 cm/h。
(2)壤土:渗透速率约为0.8 cm/h。
(3)粘土:渗透速率约为0.3 cm/h。
2. 结果分析(1)土壤质地对渗透速率有显著影响。
沙土的渗透速率明显高于壤土和粘土,这是因为沙土的孔隙度较大,水分在土壤中的移动速度较快。
(2)有机质含量对渗透速率也有一定影响。
有机质含量较高的土壤,其渗透速率相对较低,这是因为有机质可以改善土壤结构,增加土壤的孔隙度,从而降低土壤的渗透速率。
五、实验结论1. 土壤渗透速率受土壤质地和有机质含量的影响,沙土的渗透速率最高,粘土的渗透速率最低。
2. 在土壤工程设计中,应根据土壤渗透速率选择合适的土壤改良措施,提高土壤的渗透能力,为水资源管理提供科学依据。
六、实验注意事项1. 实验过程中,应确保土壤层厚度一致,以免影响实验结果。
2. 实验仪器需保持清洁,避免污染土壤样品。
影响土壤水分入渗特性主要因素的试验研究作者:符泉来源:《新农业》2022年第08期摘要:在流域评价中,土壤导水性是一个重要的评价指标,这一性能与地表径流、地下水补给、土壤侵蚀等都存在着紧密的关系。
在专业领域,土壤导水性又被称为土壤入渗特性。
土壤的研究与评价中,土壤的水源涵养能力、抗侵蚀能力最终都是有土壤入渗特性来反映的,在对土壤侵蚀问题的全过程的分析中,影响土壤入渗特性的因素非常多,只有做好了相关参数的科学控制,方能够保持土壤最佳的水分入渗特性。
关键词:土壤水分;入渗特性;因素;试验近年来,伴随着我国农业现代化的发展,农田灌溉中越来越关注土壤入渗特性的研究,作为自然界水循环中的一个重要组成部分,对土壤水分入渗特性的研究非常关键。
对于任何一种土壤资源而言,入渗特性都属于其固有特性,这一指标是否处于正常标准内,将会与灌溉水转换为土壤水的速率和分布有着紧密的联系。
因此,随着当前可持续发展目标的推进,无论是在农业生产还是生态环境保护中,都越来越关注土壤水分入渗特性。
土壤入渗过程的动态化特征明显,在此过程中,诸多因素都会影响这一特性,为保障相关策略与土壤这一特性的对应性,应加强各种影响因素的控制。
为开展土壤水分入渗特性影响试验的研究,选取了数百组大田,在这些地方开展了土壤水分入渗试验,为保障试验结果的准确性,将90分钟累积入渗量(H90)作为土壤入渗能力的直接评估指标。
经由最终的试验结果得知,土壤质地对土壤入渗能力有着一定的影响,其中,将粒径在0.02毫米的黏粒函数百分数作为土壤质地物理量,在这一条件下所获得的分析结果相对可靠。
土壤中固相物质各粒级土粒的配合比例就是土壤质地,这一指标是土壤性质评估中的关键因素,土壤质地又会对土粒表面能、土壤孔隙尺度、分布等产生些微干扰,通过土壤质地对这些因素的影响,土壤水分运动的驱动力、水力传导度最终发生了一定的变化,土壤水分入渗能力也就随着这一系列的变化而受到了影响。
从实际的试验结果和生产经验可得,土壤质地与土壤的吸附能力、粒间孔隙、吸水和保水能力存在着不可分割的关系,当土壤质地越重、粘粒含量越高、颗粒越细、固体相比表面积越大、表面能越高、吸附能力越大的情况下,对应的土壤吸水和保水能力越好。
土中水的运动规律土中水的运动规律主要涉及到土壤水分运动的过程和影响因素。
土壤是地球陆地上的一种自然资源,可提供植物生长所需的水分和养分。
了解土中水的运动规律有助于进行合理的土壤管理和水资源利用。
1. 水的入渗:土壤中的水分是通过入渗过程进入土壤中的。
入渗是指自由水通过土壤表面进入土壤深层的过程。
入渗速率受土壤质地、土壤毛细管力、土壤的初始水分含量、土壤的坡度等因素的影响。
一般来说,砂质土壤的入渗速率较快,粘土质土壤的入渗速率较慢。
2. 土壤水分的分布:土壤中的水分分布是不均匀的,通常出现水分下渗和水分上升的现象。
水分下渗是指自由水在土壤中向下移动,直到达到地下水位或土层底部。
而水分上升则是指土壤中的毛细水在根系的吸引作用下向上移动。
土壤中的水分下渗和上升过程受土壤的质地、根系的吸水能力以及外界环境的影响。
3. 土壤中水分的保持:土壤中的水分在自由水的下渗和毛细水的上升过程中容易流失,因此需要采取措施进行水分保持。
常见的水分保持方式包括覆盖物(如秸秆、覆膜等)的使用、植被覆盖以及合理的灌溉管理等。
这些措施可以有效减少土壤水分的蒸发和多余流失。
4. 土壤水分的运动路径:土壤中的水分在运动过程中存在多个运动路径。
主要包括:大孔隙流动(通过土壤中的大孔隙直接流动)、毛细流动(通过毛细孔隙的连通路径上升和下降)、分散波动流动(由于土壤颗粒无序排列而产生的波动流动)和根系吸水。
不同路径的运动主要取决于土壤的孔隙结构和根系的分布情况。
5. 影响土中水运动的因素:土中水运动的过程受多种因素的影响。
主要包括土壤质地、土壤结构、土壤含水量、温度、压力和植被覆盖等。
土壤质地和结构的不同会影响土壤中的孔隙结构和通道的大小和连通性,从而影响水分的运动速率和路径。
土壤含水量的变化会改变土壤中的毛细力和浸润能力,进而影响水分的入渗和上升。
温度和压力的变化还会影响水分的气体交换和蒸发速率。
综上所述,土中水的运动规律主要包括水的入渗、分布、保持和运动路径等方面。
土壤孔隙网络对水分入渗过程的影响机制一、土壤孔隙网络的基本特性与分类土壤孔隙网络是土壤结构的重要组成部分,它由土壤颗粒间的空隙构成,对土壤的水分、气体和养分的传输起着至关重要的作用。
土壤孔隙网络的形态和大小直接影响着水分的入渗过程,进而影响植物的生长和土壤的生产力。
1.1 土壤孔隙网络的形态特征土壤孔隙网络的形态特征主要包括孔隙的大小、形状、连通性和分布均匀性。
孔隙的大小决定了水分的存储能力,孔隙的形状和连通性影响水分的流动路径,而孔隙的分布均匀性则关系到水分在土壤中的均匀分布。
1.2 土壤孔隙网络的分类土壤孔隙网络可以根据孔隙的大小和功能进行分类。
主要分为大孔隙、中孔隙和小孔隙。
大孔隙主要负责快速的水分入渗和排水,中孔隙则有助于水分的储存和缓慢释放,而小孔隙则主要参与水分的保持和微量传输。
二、水分入渗过程的基本原理水分入渗是水分从地表进入土壤内部的过程,是土壤水分循环和植物水分供应的重要环节。
水分入渗过程受到多种因素的影响,其中土壤孔隙网络的特性是关键因素之一。
2.1 水分入渗的动力学机制水分入渗的动力学机制涉及到水分在土壤孔隙中的运动,包括重力作用下的垂直入渗、毛细作用下的侧向扩散以及土壤颗粒吸附作用下的水分保持。
这些机制共同决定了水分在土壤中的分布和运动速度。
2.2 水分入渗的影响因素水分入渗受到多种因素的影响,包括土壤质地、孔隙率、土壤有机质含量、土壤结构、土壤水分势、地表覆盖状况以及气候条件等。
这些因素通过影响土壤孔隙网络的特性,进而影响水分的入渗过程。
2.3 水分入渗的测量与模拟水分入渗的测量通常采用渗透仪、张力计等仪器进行,而模拟则通过数学模型和计算机模拟技术来实现。
这些方法有助于深入理解水分入渗的机制,为土壤管理和水资源利用提供科学依据。
三、土壤孔隙网络对水分入渗过程的影响土壤孔隙网络的特性对水分入渗过程有着显著的影响,这种影响体现在水分的入渗速率、入渗深度和水分分布等方面。
3.1 孔隙大小对水分入渗的影响孔隙的大小直接影响水分的入渗速率。