湿敏传感器实验.
- 格式:docx
- 大小:79.64 KB
- 文档页数:2
湿敏电容传感器的应用实验1.掌握电容传感器的基本测量电路;2.掌握湿敏电容的用法;3.熟悉传感器频率信号输出的用法。
1.分析电容传感器测量电路的原理;2.连接传感器物理信号到电信号的转换电路;3.软件观测湿度变化时输出信号的变化情况;4.记录实验波形数据并进行分析。
1.开放式传感器电路实验主板;2.湿敏电容湿度测量模块;3.万用表、湿度计、一个装有干燥剂圆形底座;4.跳线若干。
湿度是指空气中所含有的水蒸气量。
空气的潮湿程度,一般多用相对湿度概念,即在一定温度下,空气中实际水蒸气压与饱和水蒸气压的比值(用百分比表示),称为相对湿度(用RH 表示)。
其单位为%RH。
湿敏传感器种类较多,根据水分子易于吸附在固体表面渗透到固体内部的这种特性(称水分子亲和力),湿敏电容传感器可以分为水分子亲和力型和非水分子亲和力型,本实验采用的是电容式湿度传感器。
电容式湿度传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。
如何将电容的变化量准确地转变为计算机易于接收的信号,常用2种方法:一是将该湿敏电容置于运放与阻容组成的桥式振荡电路中,所产生的正弦波电压信号经整流、直流放大、再A/D转换为数字信号;另一种是将该湿敏电容置于555振荡电路中,将电容值的变化转为与之呈反比的电压频率信号,可直接被计算机所采集。
电容传感器与555定时器构成的非稳态振荡电路如图2-1所示,它是典型的555非稳态电路。
555必须为CMOS型定时器。
湿敏电容CT接在555的2脚(TRI)和6脚(THR)上,R3起输出短路保护作用。
引脚7连接于电阻R4与R2之间,这样充电支路为R4,R2,CT ,放电支路为CT ,R2。
图2-1 电容传感器简易测量电路当电源VCC 接通时,CT 两端的电压V c =0,定时电路处于置位状态,由VCC 通过R 2与R 4对变量电容CT 充电,当V c 达到门限电压(23⁄VCC ) 时,定时电路翻转为复位状态,CT 通过R 2向555内部的放电管放电,当V c 降低到触发电平(13⁄VCC )时,定时电路又翻转为置位状态,CT 开始充电,这样周而复始,形成振荡。
传感器实验报告实验一Pt100铂电阻测温特性实验一、实验目的1.通过自行设计热电阻测温实验方案,加深对温度传感器工作原理的理解。
2.掌握测量温度的电路设计和误差分析方法。
二、实验内容1.设计PT100铂热电阻测温实验电路方案;2.测量PT100的温度与电压关系,要求测温范围为:室温~65℃;温度测量精度:±2℃;输出电压≤4V,输出以电压V方式记录。
3.通过测量值进行误差分析。
三、实验仪器、设备、材料主机箱、温度源、Pt100热电阻(2支)、温度传感器实验模板、万用表。
四、实验原理利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用的热电阻有铂电阻(650℃以内)和铜电阻(150℃以内)。
铂电阻是将~mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷管等保护管内构成。
在0-650℃以内,它的电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2),式中:Ro系温度为0℃时的电阻值(本实验的铂电阻Ro=100Ω)。
A=×10-3/℃,B=-×10-7/℃2。
铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。
)。
实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示。
五、实验步骤1、用万用表欧姆档测出Pt100三根线中其中短接的二根线(同种颜色的线)设为1、2,另一根设为3,并测出它在室温时的大致电阻值。
2、在主机箱总电源、调节仪电源都关闭的状态下,再根据图1示意图接线,温度传感器实验模板中a、b(Rt)两端接传感器,这样传感器(Rt)与R3、R1、Rw1、R4组成直流电桥,是一种单臂电桥工作形式。
3、放大器调零:将图的温度传感器实验模板的放大器的两输入端引线(一根传感器引线、另一根桥路输出即Rw1活动触点输出)暂时不要引入,而用导线直接将放大器的两输入端相连(短接);将主机箱上的电压表量程(显示选择)切换开关打到2V档,合上主机箱电源开关,调节温度传感器实验模板中的RW2(逆时针转到底)增益电位器,使放大器增益最小;再调节RW3(调零电位器)使主机箱的电压表显示为0。
一、引言湿敏传感器是一种能够检测和响应环境湿度变化的传感器。
随着电子技术的不断发展,湿敏传感器在工业、农业、气象、医疗等领域得到了广泛的应用。
为了提高我们对湿敏传感器的了解和实际操作能力,我们进行了为期一周的湿敏传感器实训。
本文将详细记录实训过程,分析实训结果,并对实训进行总结。
二、实训目的1. 理解湿敏传感器的工作原理和结构特点;2. 掌握湿敏传感器的安装、调试和测试方法;3. 了解湿敏传感器在实际应用中的优缺点;4. 培养团队协作和动手实践能力。
三、实训内容1. 湿敏传感器原理及结构(1)原理:湿敏传感器基于湿度对电阻值的影响,通过检测电阻值的变化来感知环境湿度。
(2)结构:湿敏传感器主要由感湿元件、测量电路和信号处理电路组成。
2. 湿敏传感器的安装与调试(1)安装:根据实际需求,将湿敏传感器安装在合适的位置,确保传感器能够正常感知环境湿度。
(2)调试:调整测量电路参数,使传感器输出信号稳定可靠。
3. 湿敏传感器的测试(1)测试环境:搭建测试平台,包括温湿度控制器、数据采集器和计算机。
(2)测试方法:在测试平台上,分别设置不同的湿度环境,观察湿敏传感器的输出信号变化,分析传感器的性能。
4. 湿敏传感器在实际应用中的优缺点(1)优点:湿敏传感器具有体积小、响应速度快、成本低等优点。
(2)缺点:湿敏传感器受温度、湿度等因素影响较大,易受污染,稳定性较差。
四、实训过程及结果1. 湿敏传感器原理及结构学习通过查阅资料和课堂讲解,我们了解了湿敏传感器的工作原理和结构特点。
2. 湿敏传感器的安装与调试在指导老师的带领下,我们学会了湿敏传感器的安装和调试方法。
在安装过程中,我们注意了以下几点:(1)选择合适的安装位置,确保传感器能够正常感知环境湿度;(2)连接测量电路,调整参数,使传感器输出信号稳定可靠。
3. 湿敏传感器的测试我们搭建了测试平台,对湿敏传感器进行了测试。
在测试过程中,我们观察到以下现象:(1)在干燥环境下,湿敏传感器的输出信号较低;(2)在潮湿环境下,湿敏传感器的输出信号较高;(3)湿敏传感器的响应速度较快,能够在短时间内感知环境湿度变化。
一、实验目的1. 了解湿敏电容的工作原理及特性。
2. 掌握湿敏电容的测量方法及实验操作。
3. 分析湿敏电容在不同湿度条件下的电容值变化,验证其传感性能。
二、实验原理湿敏电容是一种高灵敏度、高可靠性的湿度传感器,主要由金属微孔蒸发膜电极和聚合物薄膜组成。
当水分子通过电极被薄膜吸附或释放时,其介电常数发生相应的变化,从而实现湿度测量。
实验中,通过测量湿敏电容的电容值,可以得知相对湿度的变化。
三、实验仪器与材料1. 湿敏电容2. 湿敏气敏传感器实验模块3. 公共电路实验模块4. 音频信号源5. 电压表6. 湿棉球7. 连接线四、实验步骤1. 连接主机与实验模块、电源线及传感器探头,观察湿敏电容探头,电压表接转换电路输出端V0。
2. 打开主机电源,调节模块调零电位器,记录湿敏电容受潮之前的输出电压。
3. 用棉球沾水并甩去多余水分后,轻轻抹在传感器外罩表面或用嘴对传感器吹气,使水气饱和。
记录V0端输出到达最大值后又回到初始状态时输出电压的时间(吸湿时间和脱湿时间)。
4. 按照图(30)连接传感器与实验电路,重复传感器测试过程。
五、实验结果与分析1. 吸湿和脱湿过程中,湿敏电容的电容值随相对湿度的变化而变化。
在吸湿过程中,电容值逐渐增大,达到最大值后逐渐减小;在脱湿过程中,电容值逐渐减小,达到最小值后逐渐增大。
2. 通过实验数据可以看出,湿敏电容在相对湿度从0%增加到100%的过程中,电容值的变化范围较大,具有良好的线性关系。
这说明湿敏电容具有较好的湿度传感性能。
3. 在吸湿和脱湿过程中,湿敏电容的响应时间较短,说明其具有较快的响应速度。
4. 实验过程中,湿敏电容的输出电压随相对湿度的变化而变化,通过电压与电容值的对应关系,可以计算出相对湿度。
六、实验结论1. 湿敏电容是一种高灵敏度、高可靠性的湿度传感器,其电容值随相对湿度的变化而变化,具有良好的线性关系。
2. 湿敏电容具有较快的响应速度,适用于实时湿度测量。
实验八湿敏传感器实验
实验目的:了解湿敏传感器的原理和应用。
所需单元及元件:电压放大器、F/V表、电桥、RH湿敏电阻、直流稳压电源、主、副电源。
有关旋钮的初始位置:直流稳压电源置±2V档、F/V表置2V档。
实验步骤:
1.观察湿敏电阻结构,它是在一块特殊的绝缘基地上浅射了一层高分子薄膜而形成,按图37接线。
2.取二种不同潮湿度的海绵或其他易吸潮的材料。
分别轻轻地与传感器接触,观察电压表数字变化,此时电压表的指示__________,也就是RH阻值变____________,说明RH检测到了湿度的变化,而且随着湿度的不同阻值变化也不一样。
注意取湿材料不要太湿,有点潮就行了。
否则会产生湿度饱和现象,延长脱湿时间。
3.RH的通电稳定时间、脱湿时间与环境的温度、湿度有关。
这点请实验者注意。
问题:
你能用RH做成一个湿度测量仪吗?请画出电路图并加以说明。
湿度传感器的原理及应用实验报告1. 引言湿度传感器是一种用于测量空气中湿度的设备。
它在许多领域中都有重要的应用,例如气象学、农业、工业控制等。
本文将介绍湿度传感器的原理和其在实际应用中的实验报告。
2. 湿度传感器的原理湿度传感器的原理基于物质吸湿的特性。
常见的湿度传感器使用了一种被称为电容式湿度传感器的工作原理。
电容式湿度传感器内部含有两个电极,这两个电极之间被一个湿敏材料所分隔。
当空气中含有水分时,湿敏材料会吸收水分使得电容器的电容值发生变化。
通过测量传感器电容器的电容值,我们可以确定空气中的湿度。
3. 湿度传感器的实验报告3.1 实验目的本次实验的目的是验证湿度传感器在不同湿度环境下的测量准确性。
3.2 实验材料•湿度传感器•湿度控制设备•数据记录器3.3 实验步骤1.准备工作:将湿度传感器连接到湿度控制设备,并将数据记录器连接到电脑上。
2.设置实验环境:将湿度控制设备设置为所需的湿度值,并等待环境稳定。
3.测量数据:使用数据记录器记录湿度传感器的测量结果。
4.调整湿度:依次调整环境湿度,并记录湿度传感器的测量结果。
5.数据分析:对记录的数据进行分析,比较实际湿度值与湿度传感器测量值的差异。
3.4 实验结果在不同湿度环境下,湿度传感器所测量的湿度值与实际湿度值的比较结果如下所示: - 湿度环境1:实际湿度25%,传感器测量湿度24% - 湿度环境2:实际湿度50%,传感器测量湿度49% - 湿度环境3:实际湿度75%,传感器测量湿度76%从实验结果可以看出,湿度传感器测量值与实际湿度值存在一定的误差,但误差较小且相对稳定。
3.5 结论通过本次实验,我们验证了湿度传感器在不同湿度环境下的测量准确性。
尽管存在一定的误差,但湿度传感器的测量值与实际湿度值基本相符。
因此,湿度传感器可在实际应用中准确测量空气湿度。
4. 应用领域湿度传感器在许多领域中都有广泛的应用,包括但不限于以下几个方面: - 气象学:用于测量大气湿度,预测天气变化。
湿敏传感器——湿敏电阻实验
一、实验原理:
高分子湿敏电阻主要是使用高分子固体电解质材料作为感湿膜,由于膜中的可动离子产生导电性,随着湿度的增加,电离作用增强,可动离子的浓度增大,电极间电阻减小,反之,电极间的电阻增大,通过测量湿敏电阻值的变化,就可得到相应的湿度值。
实验所需部件:
湿敏电阻、公共实验模块(一)(二)、音频信号源、示波器、电压表
二、实验步骤:
1、连接主机与实验模块的电源和传感器接口,观察湿敏电阻结构,转换电
端接电压表。
路输出V
2、开启主机电源,按图(14)接好测试线路,音频信号1KHZ、幅度≦2V,低通滤波器输出端接电压表,示波器接相敏检波器③端。
3、调节电桥WD电位器及移相器,使电压表指示为零,差动放大器增益可根据系统输出大小调节。
4、轻轻用嘴对湿敏电阻吹气,观察相敏检波器③端波形及低通滤波器输出电压的变化。
5、近距离对传感器呵气,观察系统输出最大时相敏检波器③端的波形及恢复过程,由此大致判断传感器的吸湿和脱湿时间。
6、试将湿敏电阻接入湿敏电容模块做实验二十六内容,比较两种实验结果。
注意事项:
给传感器表面不能直接接触水分,不能用硬物碰擦,以免损伤感湿膜。
激励信号必须从音频180°端口接入,信号幅度严格限定≦VP-P2V。
避免用直流信号作为激励源,以免传感器极化。
实验二十七湿敏传感器实验一、实验目的:了解湿敏传感器的原理及应用范围。
二、实验仪器:湿敏传感器、湿敏座、干燥剂、棉球。
三、实验原理:湿度是指大气中水份的含量,通常采用绝对湿度和相对湿度两种方法表示,湿度是指单位窨体积中所含水蒸汽的含量或浓度,用符号AH 表示,相对湿度是指被测气体中的水蒸汽压和该气体在相同温度下饱和水蒸汽压的百分比,用符号%RH 表示。
湿度给出大气的潮湿程度,因此它是一个无量纲的值。
实验使用中多用相对湿度概念。
湿敏传感器种类较多,根据水分子易于吸附在固体表面渗透到固体内部的这种特性(称水分子亲和力),湿敏传感器可以分为水分子亲和力型和非水分子亲和力型,本实验所采用的属水分子亲和力型中的高分子材料湿敏元件。
高分子电容式湿敏元件是利用元件的电容值随湿度变化的原理。
具有感湿功能的高分子聚合物,例如,乙酸-丁酸纤维素和乙酸-丙酸比纤维素等,做成薄膜,它们具有迅速吸湿和脱湿的能力,感湿薄膜覆在金箔电极(下电极)上,然后在感湿薄膜上再镀一层多孔金属膜(上电极),这样形成的一个平行板电容器就可以通过测量电容的变化来感觉空气湿度的变化。
四、实验内容与步骤1.湿敏传感器实验装置如图27-1 所示,红色接线端接+5V 电源,黑色接线端接地,蓝色接线端和黑色接线端分别接频率/转速表输入端。
频率/转速表选择频率档。
记下此时频率/转速表的读数。
图27-12.将湿棉球放入湿敏腔内。
并插上湿敏传感器探头,观察频率/转速表的变化。
3.取出湿纱布,待数显表示值下降回复到原示值时,在干湿腔内被放入部分干燥剂,同样将湿度传感器置于湿敏腔孔上,观察数显表头读数变化。
五、实验报告输出频率f 与相对湿度RH 值对应如下,参考下表,计算以上三种状态下空气相对湿度。
0102030405060708090 RH(%)7351722471006976685367286600646863306186 Fre(Hz)。
实验三十七湿敏传感器实验
一、实验目的:认识湿敏传感器的原理及特征。
二、基来源理:湿度是指空气中所含有的水蒸肚量。
空气的湿润程度,一般多用相对湿度
观点,即在必定温度下,空气中实质水蒸气压与饱和水蒸气压的
比值
(用百分比表示),称为相对湿度(用RH表示)。
其单位为%RH。
湿敏传感器种类许多,依据水分子易于吸附在固体
表面浸透到固体内部的这类特征(称水分子亲和
力),湿敏传感器能够分为水分子亲和力型和非水分子亲和力型,本实验采纳的是集成湿度传感器。
该传感器的敏感元件采纳的属水分
子亲和力型中的高分子资料湿敏元件(湿敏电阻)。
它的原理是采纳拥有感湿功能的高分子
聚
合物(高分子膜)涂敷在带有导电电极的陶瓷衬底上,导电机理为水分子的存在影响高分子膜
内部导电离子的迁徙率,形成阻抗随相对湿度变化成对数变化的敏感零
件。
因为湿敏元件阻抗随相对湿度变化成对数变化,一般应用时都经放大变换电路办理将对数变化变换成相应的
线性电压信号输出以制成湿度传感器模块形式。
湿敏传感器实物、原理框图如图37—1所示。
当传感器的工作电源为+5V±5%时,湿度与传感器输出电压对应曲线如图37—2所示。
图37—1湿敏传感器实物、原理框图
图37—2湿度—输出电压曲线
三、需用器件与单元:主机箱电压表、+5V直流稳压电源;湿敏传感器、湿敏座、湿润
小棉球(自备)、干燥剂(自备)。
四、实验步骤:
1、按图37—3表示接线(湿敏座中不听任何东西),注意传感器的引线号码。
图37—3湿敏传器实验接线表示图
2、将电压表量程切换到20V档,检查接线无误后,合上主机箱电源开关,传感器通电
先预热5分钟以上,待电压表显示稳固后即为环境湿度所对应的电压值(查湿度—输出电压曲线得环境湿度
)。
3、往湿敏座中加入若干量干燥剂(不放干燥剂为环境湿度),放上传感器,察看电压表
显示值的变化。
1、倒出湿敏座中的干燥剂加入湿润小棉球,放上传感器,等到电压表显示值稳固后记
录显示值,查湿度—输出电压曲线获得相应湿度值。
实验完成,封闭全部电源。