计算公式
- 格式:doc
- 大小:266.00 KB
- 文档页数:17
简便计算公式大全在日常生活和工作中,我们经常会遇到各种各样的计算问题,有时候需要用到复杂的公式,有时候则只需要简单的计算。
本文将为大家整理一些常见的简便计算公式,希望能够帮助大家更快更准确地进行各种计算。
一、基本运算。
1. 加法,a + b = c。
2. 减法,a b = c。
3. 乘法,a × b = c。
4. 除法,a ÷ b = c。
二、百分数计算。
1. 百分数转化为小数,百分数÷ 100 = 小数。
2. 小数转化为百分数,小数× 100% = 百分数。
3. 计算百分数,已知部分÷总数× 100% = 百分数。
三、平均数计算。
1. 平均数计算公式,(数1 + 数2 + … + 数n) ÷ n = 平均数。
四、面积和体积计算。
1. 长方形面积计算,长×宽 = 面积。
2. 正方形面积计算,边长×边长 = 面积。
3. 圆形面积计算,π×半径×半径 = 面积。
4. 三角形面积计算,底×高÷ 2 = 面积。
5. 立方体体积计算,长×宽×高 = 体积。
6. 圆柱体积计算,π×半径×半径×高 = 体积。
7. 圆锥体积计算,π×半径×半径×高÷ 3 = 体积。
五、利息计算。
1. 简单利息计算,本金×利率×时间 = 利息。
2. 复利计算,复利 = 本金× (1 + 利率) ^ 年数本金。
六、代数式计算。
1. 一元一次方程,ax + b = c。
2. 二元一次方程组,{ax + by = c {dx + ey = f。
3. 一元二次方程,ax^2 + bx + c = 0。
七、三角函数计算。
1. 正弦函数计算,sinθ = 对边÷斜边。
2. 余弦函数计算,cosθ = 邻边÷斜边。
数据计算公式数据计算公式是指用于计算数据的数学公式或算法。
它们在各个领域的数据分析、科学研究和工程应用中起着重要的作用。
下面将介绍一些常见的数据计算公式及其应用。
1. 简单加减乘除公式:- 加法公式:C = A + B- 减法公式:C = A - B- 乘法公式:C = A * B- 除法公式:C = A / B这些公式用于对两个数进行加、减、乘、除运算。
在实际应用中,可以根据需要将其扩展到多个数的运算。
2. 百分比计算公式:- 百分比计算公式:C = (A / B) * 100这个公式用于计算A占B的百分比。
在市场调研、统计分析等领域中经常使用。
3. 平均值计算公式:- 算术平均值公式:C = (A1 + A2 + ... + An) / n- 加权平均值公式:C = (A1 * w1 + A2 * w2 + ... + An * wn) / (w1 + w2 + ... + wn)这些公式用于计算一组数据的平均值。
算术平均值适用于各个数据的权重相等的情况,而加权平均值适用于各个数据的权重不等的情况。
4. 标准差计算公式:- 总体标准差公式:C = sqrt(((A1 - 平均值)^2 + (A2 - 平均值)^2 + ... + (An - 平均值)^2) / n)- 样本标准差公式:C = sqrt(((A1 - 平均值)^2 + (A2 - 平均值)^2 + ... + (An - 平均值)^2) / (n - 1))这些公式用于计算一组数据的离散程度。
总体标准差适用于对整个数据集进行分析,而样本标准差适用于对部分数据进行分析。
5. 指数计算公式:- 简单指数公式:C = A * (1 + r)^n- 复合指数公式:C = A * e^(r * n)这些公式用于计算指数增长或衰减的情况。
简单指数公式适用于固定增长率的情况,而复合指数公式适用于连续变化的情况。
6. 概率计算公式:- 事件概率公式:P(A) = n(A) / n(S)- 条件概率公式:P(A|B) = P(A∩B) / P(B)这些公式用于计算事件的概率。
各类计算公式大全计算是我们生活和工作中经常用到的重要技能。
不同领域的计算需要使用各种各样的公式和方程。
本文将为您提供各类计算公式的大全,包括数学、物理、化学、经济等方面的计算公式。
一、数学公式1. 代数公式:- 二次方程求根公式:对于二次方程ax^2 + bx + c = 0,求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)- 四则运算规则:加法、减法、乘法和除法的运算规则- 求平方根公式:√a = b,等价于a = b^22. 几何公式:- 长方形面积公式:面积A = 长L ×宽W- 圆的面积公式:面积A = πr^2,其中π≈3.14159,r为半径- 三角形面积公式:面积A = 1/2 ×底边长度 ×高3. 统计学公式:- 平均数计算:平均数 = 所有数据之和 / 数据个数- 标准差计算:标准差= √(每个数据值与平均数之差的平方和 / 数据个数)二、物理公式1. 运动学公式:- 匀速直线运动公式:位移s = 速度v ×时间t- 匀加速直线运动公式:位移s = 初速度v0 ×时间t + 1/2 ×加速度a ×时间t的平方2. 力学公式:- 牛顿第二定律:力F = 质量m ×加速度a- 功公式:功W = 力F ×位移s × cosθ,其中θ是力F和位移s之间的夹角三、化学公式1. 相对原子质量计算:相对原子质量 = 各同位素质量 ×各同位素的丰度之和2. 摩尔浓度计算:摩尔浓度 = 溶质的摩尔数 / 溶液的体积四、经济学公式1. 利息计算:利息 = 本金 ×年利率 ×时间2. 折现现金流量计算:现值 = 现金流量 / (1 + 折现率)^时间以上仅是各类计算公式的一小部分示例,实际应用中还有各种综合计算的公式。
在实际使用过程中,我们要根据具体情况选择合适的公式进行计算,并注意单位的转换和精度的保留。
常用的数学计算公式数学计算公式是数学中的重要工具,能够帮助我们解决各种实际问题。
本文将介绍一些常用的数学计算公式,包括代数、几何和统计学等方面的公式。
一、代数公式1. 一次方程解法:一次方程通常采用求根公式来解决,即:对于方程ax + b = 0,其解为x = -b/a。
2. 二次方程解法:二次方程的一般形式为ax^2 + bx + c = 0,其解法为:x = (-b ± √(b^2 - 4ac))/(2a)。
3. 乘法公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2(a + b)(a - b) = a^2 - b^24. 平方差公式:a^2 - b^2 = (a + b)(a - b)二、几何公式1. 长方形面积公式:长方形的面积可以通过长度l和宽度w来计算,公式为A = l ×w。
2. 圆的面积和周长公式:圆的面积可以通过半径r来计算,公式为A = πr^2。
圆的周长可以通过直径d或者半径r来计算,公式为C = πd或C= 2πr。
3. 三角形面积公式:三角形的面积可以通过底边b和高h来计算,公式为A = 0.5bh。
4. 直角三角形勾股定理:直角三角形的斜边c的长度可以通过两个直角边a和b的长度来计算,公式为c = √(a^2 + b^2)。
三、统计学公式1. 平均数的计算:给定n个数据的平均数可以通过这些数据的和S除以n来计算,公式为平均数 = S/n。
2. 标准差的计算:给定n个数据的标准差可以通过计算每个数据与平均数之差的平方和的平均值再取其平方根来计算,公式为标准差= √[(Σ(x-μ)^2)/n],其中Σ表示对所有数据求和,x表示每个数据,μ表示平均数。
3. 正态分布的概率密度函数:标准正态分布的概率密度函数可以通过公式f(x) = (1/√(2π))e^(-x^2/2)来计算,其中e表示自然对数的底。
常用计算公式大全常用计算公式大全在数学和物理领域,有许多常用的计算公式,这些公式能够帮助我们解决各种数值计算问题。
下面是一些常见的计算公式的大全。
1. 代数公式:- 一次方程:ax + b = 0,其中a和b是常量,x是未知数。
- 二次方程:ax^2 + bx + c = 0,其中a、b和c是常量,x是未知数。
- 二次根式:√(a^2 + b^2) = c,其中a和b是常量,c是两个数的平方根。
2. 几何公式:- 矩形的面积:A = l * w,其中l是矩形的长度,w是矩形的宽度。
- 圆的面积:A = π * r^2,其中π是圆周率,r是圆的半径。
- 三角形的面积:A = 1/2 * b * h,其中b是三角形的底边长,h 是三角形的高。
3. 物理公式:- 速度公式:v = d/t,其中v是速度,d是距离,t是时间。
- 动能公式:E = 1/2 * m * v^2,其中E是动能,m是物体的质量,v是物体的速度。
- 引力公式:F = G * (m1 * m2) / r^2,其中F是引力,G是万有引力常数,m1和m2是两个物体的质量,r是两个物体之间的距离。
4. 统计学公式:- 平均值:(x1 + x2 + ... + xn) / n,其中x1到xn是一组数据,n是数据的个数。
- 方差:(1/n) * Σ(xi - x)^2,其中xi是数据的每个观测值,x是数据的平均值,n是数据的个数。
- 标准差:√(1/n) * Σ(xi - x)^2,其中xi是数据的每个观测值,x是数据的平均值,n是数据的个数。
这只是一小部分常用计算公式的大全,实际上还有很多其他的公式可供使用。
掌握这些公式可以帮助我们更高效地解决各种数学和物理问题。
计算公式大全在数学领域中,计算公式是一种非常重要的工具,它们可以帮助我们解决各种复杂的问题,简化计算过程,提高工作效率。
本文将为大家整理一些常见的计算公式,希望能够对大家的学习和工作有所帮助。
一、基本运算公式。
1. 加法公式,a + b = b + a。
2. 减法公式,a b ≠ b a。
3. 乘法公式,a × b = b × a。
4. 除法公式,a ÷ b ≠ b ÷ a。
二、代数运算公式。
1. 平方公式,(a + b)² = a² + 2ab + b²。
2. 平方差公式,a² b² = (a + b)(a b)。
3. 三角形面积公式,S = 1/2 ×底×高。
4. 二次方程求根公式,x = (-b ±√(b² 4ac)) / 2a。
三、几何运算公式。
1. 圆的面积公式,S = πr²。
2. 圆的周长公式,C = 2πr。
3. 矩形的面积公式,S = 长×宽。
4. 三角形的面积公式,S = 1/2 ×底×高。
四、概率统计公式。
1. 概率公式,P(A) = n(A) / n(S)。
2. 期望公式,E(X) = Σ(x p(x))。
3. 方差公式,Var(X) = E(X²) (E(X))²。
4. 标准差公式,σ = √Var(X)。
五、微积分公式。
1. 导数公式,f'(x) = lim(h→0)[f(x + h) f(x)] / h。
2. 积分公式,∫f(x)dx = F(x) + C。
3. 泰勒展开公式,f(x) = f(a) + f'(a)(x a) + f''(a)(x a)²/2! + ...六、物理学公式。
1. 力的计算公式,F = m a。
2. 功的计算公式,W = F s cosθ。
计算公式1、关系式:速度×时间=路程路程÷速度=时间路程÷时间=速度工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率2、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数3、和倍公式和÷(倍数-1)=小数小数×倍数=大数4、差倍问题差÷(倍数-1)=小数小数×倍数=大数5、植树问题⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数(3)如果在非封闭线路的两端都不要植树,那么?株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)(4)封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数6、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数。
(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数7、相遇问题总路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间8、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追击距离÷追及时间9、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷210、浓度问题溶质的重量+溶剂的重量=溶液重量溶质的重量÷浓度=溶液的重量溶质的重量÷溶液的重量×10%=浓度溶液的重量×浓度=溶质的重量11、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%12、正方形周长=边长×4=C=4a面积=边长×边长=S=a×a体积=边长×边长×边长=V=a×a×a13、长方形周=(长+宽)×2 =C =(a+b)×2面=长×宽=S=a×b体=长×宽×高=V=a×b×h14、三角形面积=底×高÷2=S=a×h÷215、平行四边行面积=底×高=S=a×h16、梯形面积=(上底+下底)×高÷2S=(a+b)×h÷217、圆直径=半径×2=d=2r半径=直径÷2=r=d÷2周长=圆周率×直径C=πd=2πr面积=半径×半径×πS=πrr18、圆柱侧面积=底面的周长×高S=ch=πdh=2πrh表面积=底面周长×高+两头的圆的面积=S=ch+2S=ch+2πr2总体积=底面积×高=V=Sh19、圆锥总体积=底面积×高×1/3=V1/3Sh三角形内角和=180度等边三角形的锐角为60度利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)利息=本金×利率×时间互质数:公约数只有1的两个数叫做互质数个数:叫做互质数通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
计算公式大全在数学中,我们经常会遇到各种各样的计算公式,它们可以帮助我们解决各种问题,简化复杂的计算过程。
本文将为大家介绍一些常见的计算公式,希望能够对大家有所帮助。
一、代数公式。
1. 一次函数的一般式,y=ax+b。
其中,a为斜率,b为截距。
2. 二次函数的一般式,y=ax^2+bx+c。
其中,a、b、c为常数,且a≠0。
3. 二次方程的求根公式,x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}。
对于二次方程ax^2+bx+c=0,其根可以通过这个公式求得。
4. 两点间距离公式,d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}。
对于平面直角坐标系中的两点A(x1, y1)和B(x2, y2),它们之间的距离可以通过这个公式计算得出。
5. 等差数列通项公式,a_n=a_1+(n-1)d。
对于等差数列1, 3, 5, 7, ...,其中a1为首项,d为公差,a_n为第n项。
二、几何公式。
1. 矩形面积公式,S=a\times b。
其中,a为矩形的长,b为矩形的宽。
2. 圆的面积公式,S=\pi r^2。
其中,r为圆的半径,π为圆周率。
3. 圆的周长公式,C=2\pi r。
对于圆来说,周长就是圆的边界长度。
4. 直角三角形斜边长公式,c=\sqrt{a^2+b^2}。
对于直角三角形,斜边的长度可以通过直角边的平方和开平方得到。
5. 三角形面积公式,S=\frac{1}{2}bh。
对于任意三角形,其面积可以通过底边和高的乘积再除以2得到。
三、微积分公式。
1. 导数的定义,f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}。
这是函数在某一点的导数的定义式。
2. 不定积分的线性性质,\int[af(x)+bg(x)]dx=a\int f(x)dx+b\int g(x)dx。
对于不定积分,具有线性性质,可以将常数提取出来。
数学计算公式表大全一、小学数学计算公式。
1. 加法交换律。
- 公式:a + b=b + a- 示例:3+5 = 5+3=82. 加法结合律。
- 公式:(a + b)+c=a+(b + c)- 示例:(2 + 3)+4=2+(3 + 4)=93. 乘法交换律。
- 公式:a× b = b× a- 示例:2×3=3×2 = 64. 乘法结合律。
- 公式:(a× b)× c=a×(b× c)- 示例:(2×3)×4=2×(3×4)=245. 乘法分配律。
- 公式:a×(b + c)=a× b+a× c- 示例:2×(3 + 4)=2×3+2×4 = 6 + 8=146. 减法的性质。
- 公式:a - b - c=a-(b + c)- 示例:10-3 - 2=10-(3 + 2)=57. 除法的性质。
- 公式:a÷ b÷ c=a÷(b× c)(b≠0,c≠0)- 示例:12÷2÷3 = 12÷(2×3)=28. 长方形的周长公式。
- 公式:C=(a + b)×2(a为长,b为宽)- 示例:长为5厘米,宽为3厘米的长方形,周长C=(5 + 3)×2=16厘米。
9. 长方形的面积公式。
- 公式:S = a× b- 示例:长为6厘米,宽为4厘米的长方形,面积S=6×4 = 24平方厘米。
10. 正方形的周长公式。
- 公式:C = 4× a(a为边长)- 示例:边长为5厘米的正方形,周长C=4×5=20厘米。
11. 正方形的面积公式。
- 公式:S=a^2- 示例:边长为4厘米的正方形,面积S = 4^2=16平方厘米。
数学运算常用公式大全1.加法和减法公式:-加法交换律:a+b=b+a-加法结合律:(a+b)+c=a+(b+c)-加法逆元(减法):a+(-a)=0-加法消去律:a+b=a+c,则b=c2.乘法和除法公式:-乘法交换律:a×b=b×a-乘法结合律:(a×b)×c=a×(b×c)-乘法逆元(倒数):a×(1/a)=1,其中a≠0-乘法消去律:a×b=a×c,则b=c3.指数公式:-幂的乘法:a^m×a^n=a^(m+n)-幂的除法:a^m÷a^n=a^(m-n)-幂的乘方:(a^m)^n=a^(m×n)-幂的零次方:a^0=1,其中a≠04.对数公式:- 对数的乘法:loga (xy) = loga x + loga y- 对数的除法:loga (x/y) = loga x - loga y- 对数的幂:loga (x^n) = n loga x5.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc cosA- 正切定理:tanA = sinA/cosA- 和差化积公式:sin(A ± B) = sinA cosB ± cosA sinB6.二次方程公式:- 一元二次方程:ax^2 + bx + c = 0,其中a≠0- 解的公式:x = (-b ± √(b^2 - 4ac)) / 2a- 判别式:Δ = b^2 - 4ac,若Δ > 0,则有两个不相等的实根;若Δ = 0,则有两个相等的实根;若Δ < 0,则没有实根。
7.统计学公式:-平均数:平均数=总和/数据个数-中位数:将数据从小到大排列,如果数据个数为奇数,中位数为中间的那个数;如果数据个数为偶数,中位数为中间两个数的平均数。
4.3.2 单筋矩形截面承载能力计算矩形截面通常分为单筋矩形截面和双筋矩截面两种形式。
只在截面的受拉区配有纵向受力钢筋的矩形截面,称为单筋矩形截面(图4-10)。
不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形截面,称为双筋矩形截面。
需要说明的是,为了构造上的原因(例如为了形成钢筋骨架),受压区通常也需要配置纵向钢筋。
这种纵向钢筋称为架立钢筋。
架立钢筋与受力钢筋的区别是:架立钢筋是根据构造要求设置,通常直径较细、根数较少;而受力钢筋则是根据受力要求按计算设置,通常直径较粗、根数较多。
受压区配有架立钢筋的截面,不是双筋截面。
图4-10 单筋矩形截面根据4.3.1的基本假定,单筋矩形截面的计算简图如图4-11所示。
图4-11 单筋矩形截面计算简图为了简化计算,受压区混凝土的应力图形可进一步用一个等效的矩形应力图代替。
矩形应力图的应力取为α1f c(图4-12),f c为混凝土轴心抗压强度设计值。
所谓“等效”,是指这两个图不但压应力合力的大小相等,而且合力的作用位置完全相同。
图4-12 受压区混凝土等效矩形应力图按等效矩形应力计算的受压区高度x与按平截面假定确定的受压区高度x o之间的关系为:(4-7)系数α1和β1的取值见表4-2。
系数α1和β1的取值表表4-2◆基本计算公式由于截面在破坏前的一瞬间处于静力平衡状态,所以,对于图4-12 的受力状态可建立两个平衡方程:一个是所有各力的水平轴方向上的合力为零,即(4-8)式中b——矩形截面宽度;A s——受拉区纵向受力钢筋的截面面积。
另一个是所有各力对截面上任何一点的合力矩为零,当对受拉区纵向受力钢筋的合力作用点取矩时,有:(4-9a)当对受压区混凝土压应力合力的作用点取矩时,有:(4-9b)式中M——荷载在该截面上产生的弯矩设计值;h o——截面的有效高度,按下计算h o=h-a s。
h为截面高度,a s为受拉区边缘到受拉钢筋合力作用点的距离。
按构造要求,对于处于室内正常使用环境的梁和板,当混凝土的强度等级不低于C20时,梁内钢筋的混凝土保护层最小厚度(指从构件边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝土保护层不得小于15mm(当混凝土的强度等级小于和等于C20时,梁和板的混凝保护层最小厚度分别为30mm和20mm)。
因此,截面的有效高度在构件设计时一般可按下面方法估算(图4-13)。
图4-13 梁板的计算高度梁的纵向受力钢筋按一排布置时,h o=h-35 mm ;梁的纵向受力钢筋按两排布置时,h o=h-60 mm ;板的截面有效高度h o=h-20mm。
对于处于其它使用环境的梁和板,保护层的厚度见表4-8。
式(4-8)和式(4-9)是单筋矩形截面受弯构件正截面承载力的基本计算公式。
但是应该注意,图4-12b的受力情况只能列两个独立方程,式(4-9a)和式(4-9b)不是相互独立的,只能任意选用其中一个与式(4-8)一起进行计算。
◆基本计算公式的适用条件式(4-8)和式(4-9)是根据筋构件的破坏简图推导出的。
它们只适用于适筋构件计算,不适用于少筋构件和超筋构件计算。
在前面的讨论中已经指出,少筋构件和超筋构件的破坏都属于脆性破坏,设计时应避免将构件设计成这两类构件。
为此,任何设计的受弯构件必须满足下列两个适用条件:▲为了防止将构件设计成少筋构件,要求构件的配筋率不得低于其最小配筋率最小配率是少筋构件与适筋构件的界限配筋率,它是根据受弯构件的破坏弯矩等于其开裂弯矩确定的。
受弯构件的最小配筋率ρmin按构件全截面面积扣除位于受压边的翼缘面积(b f'-b)h f'后的截面面积计算,即(4-10)式中 A ——构件全截面面积;b f',h f' ---- 分别为截面受压边缘的宽度和翼缘高度;A s,min——按最小配筋率计算的钢筋面积。
ρmin 取0.2%和45f t /f y (%)中的较大值。
ρmin (%)的值如表4-3所示。
建筑工程受弯构件最小配筋率ρmin 值(%) 表4-3▲为了防止将构件设计成超筋构件,要求构件截面的相对受压区高度ξ不得超过其相对界限受压区高度ξb 即(4-11)相对界限受压区高度ξb 是适筋构件与超筋构件相对受压区高度的界限值,它需要根据截面平面变形等假定求出。
下面分别推导有明显屈服点钢筋和无明显屈服点钢筋配筋受弯构件相对界限受压区高度ξb 的计算公式。
※有明显屈服点钢筋配筋的受弯构件破坏时,受拉钢筋的应变等于钢筋的抗拉强度设计值f y 与钢筋弹性量E s 之比值,即ξs =f y /E s ,由受压区边缘混凝土的应变为ξcu 与受拉钢筋应变ξs 的几何关系(图4-14)。
可推得其相对界限受压区高度ξb 的计算公式为(4-12)图4-14 截面应变分布为了方便使用,对于常用的有明显屈服点的HPB235、HRB335、HRB400和RRB400钢筋,将其抗拉强度设计值f y和弹性模量E s代入式(4-12)中,可算得它们的相对界限受压区高度ξb如表4-4所示,设计时可直接查用。
当ξ≤ξb时,受拉钢筋必定屈服,为适筋构件。
当ξ>ξb时,受拉钢筋不屈服,为超筋构件。
建筑工程受弯构件有屈服点钢筋配筋时的ξb值表4-4※无明显屈服点钢筋配筋受弯构件的相对界限受压区高度ξb对于碳素钢丝、钢绞线、热处理钢筋以及冷轧带肋钢筋等无明显屈服点的钢筋,取对应于残余应变为0.2%时的应力σ0.2作为条件屈服点,并以此作为这类钢筋的抗拉强度设计值。
对应于条件屈服点σ0.2时的钢筋应变为(图4-15):图4-15 无明显屈服点钢筋的应力—应变曲线(4-13)式中 f y ——无明显屈服点钢筋的抗拉强度设计值;E s ——无明显屈服点钢筋的弹性模量。
根据截面平面变形等假设,可以求得无明显屈服点钢筋受弯构件相对界限受压区高度ξb 的计算公式为:(4-14)截面相对受压区高度ξ与截面配筋率ρ之间存在对应关系。
ξb 求出后,可以求出适筋受弯构件截面最大配筋率的计算公式。
由式(4-8)可写出:(4-15)(4-16)式(4-16)即为受弯构件最大配筋率的计算公式。
为了使用上的方便起见,将常用的具有明显屈服点钢筋配筋的普通钢筋混凝土受弯构件的最大配筋率ρmax 列在表4-5中。
建筑工程受弯构件的截面最大配筋率ρmax (%) 表4-5当构件按最大配筋率配筋时,由(4-9a )可以求出适筋受弯构件所能承受的最大弯矩为:(4-17)式中 αsb ——截面最大的抵抗矩系数,αsb =ξb (1-ξb /2) 。
对于具有明显屈服点钢筋配筋的受弯构件,其截面最大的抵抗矩系数见表4-6。
建筑工程受弯构件截面最大的抵抗矩系数αsb 表4-6由上面的讨论可知,为了防止将构件设计成超筋构件,既可以用式(4-11)进行控制,也可以用:(4-18)(4-19)进行控制。
式(4-11 )、式(4-18)和式(4-19)对应于同一配筋和受力状况,因而三者是等效的。
设计经验表明,当梁、板的配筋率为:实心板:ρ=0.4%~0.8%矩形梁:ρ=0.6%~1.5%T形梁: ρ=0.9%~1.8%时,构件的用钢量和造价都较经济,施工比较方便,受力性能也比较好。
因此,常将梁、板的配筋率设计在上述范围之内。
梁、板的上述配筋率称为常用配筋率,也有人称它们为经济配筋率。
由于不考虑混凝土抵抗拉力的作用,因此,只要受压区为矩形而受拉区为其它形状的受弯构件(如倒T形受弯构件),均可按矩形截面计算。
◆计算例题在受弯构件设计中,通常会遇见下列两类问题:一类是截面选择问题,即假定构件的截面尺寸、混凝土的强度等级、钢筋的品种以及构件上作用的荷载或截面上的内力等都是已知的(或各种因素虽然暂时未知,但可根据实际情况和设计经验假定),要求计算受拉区纵向受力钢筋所需的面积,并且参照构造要求,选择钢筋的根数和直径。
另一类是承载能力校核问题,即构件的尺寸、混凝土的强度等级、钢筋的品种、数量和配筋方式等都已确定,要求验算截面是否能够承受某一已知的荷载或内力设计值。
利用式(4-8)、式(4-9)以及它们的适用条件式,便可以求得上述两类问题的答案。
例[4-1]现浇简支板计算例[4-2]矩形简支梁计算例[4-3]预制走道板计算◆计算表格的制作及使用▲计算表格的制作由上面的例题可见,利用计算公式进行截面选择时,需要解算二次方程式和联立方程式,还要验算适用条件,颇为麻烦。
如果将计算公式制成表格,便可以使计算工作得到简化。
计算表格的形式有两种:一种是对于各种混凝土强度等级以及各种钢筋配筋的梁板都适用的表格,另一种是对某种混凝土强度等级和某种钢筋的梁板专门制作的表格。
前一种表格通用性好,后一种表格使用上较简便。
下面只介绍通用表格的制作及使用方法。
式(4-9a)可写成:(4-20)令(4-21)则式(4-20)可写成:(4-22)式中,αs bh2o可以认为是截面在极限状态时的抵抗矩,因此可以将αs称为截面抵抗矩系数。
同样,式(4-9b)可写成:(4-23)令(4-24)则式(4-23)可写成:(4-25)式中γs——内力臂系数。
由式(4-21)可得:(4-26)代入式(4-24)可得:(4-27)因此,单筋矩形截面受弯构件正截面的配筋计算可以按照图4-16的框图进行。
图4-16 单筋矩形截面受弯构件正截面配筋计算框图式(4-26)和式(4-27)表明,ξ和γs与αs之间存在一一对应的关系,给定一个αs值,便有一个ξ值和一个γs值与之对应。
因此,可以事先给出一串αs值,算出与它们对应的ξ值和γs值,并且将它们列成表格(见附表4-1和附表4-2),设计时查用这个表格,既可以避免解算二次方程式和联立方程式,又不必按式(4-26)或(4-27)计算ξ或γs,一般情况下还不必验算构件是少筋还是超筋,因而使计算工作得到简化。
单筋矩形截面受弯构件的截面选择和承载力校核还可以用图4-17的框图表示。
对于学习过算法语言的读者来说,按照这个框图,不难编写出相应的计算机程序。
▲计算表格的使用下面通过一个例题来说明计算表格的使用方法。
例[4-4]4.3.3 双筋矩形截面承载力计算如前所述,不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形截面,称为双筋矩形截面。
双筋矩形截面适用于下面几种情况:※结构或构件承受某种交变的作用(如地震),使截面上的弯矩改变方向;※截面承受的弯矩设计值大于单筋截面所能承受的最大弯矩,而截面尺寸和材料品种等由于某些原因又不能改变;※结构或构件的截面由于某种原因,在截面的受压区预先已经布置了一定数量的受力钢筋(如连续梁的某些支座截面)。
应该说明,双筋截面的用钢量比单筋截面的多,因此,为了节约钢材,应尽可能地不要将截面设计成双筋截面。