多传感器信息融合综述
- 格式:pdf
- 大小:398.92 KB
- 文档页数:10
多传感器信息融合及其运用多传感器信息融合是指利用多个传感器获取的信息来提取并融合目标的各方面特征,从而实现对目标的更准确、全面的感知和认知。
随着传感器技术的不断发展和成熟,多传感器信息融合在各领域的应用越来越广泛,尤其在军事、航天、无人驾驶、智能机器人等领域具有重要的应用价值。
多传感器信息融合的基本思想是通过将多传感器获取的信息交互、互补和整合,得到比单一传感器更可靠和准确的信息。
传感器的种类很多,包括视觉传感器、声音传感器、红外传感器、雷达传感器等等。
不同传感器对同一目标的感知具有各自的特点和优势,通过将这些传感器的信息进行融合,能够弥补各自的不足,提高目标感知的准确性和鲁棒性。
多传感器信息融合的方法有很多种,常用的包括基于模型的融合方法、基于贝叶斯理论的融合方法、基于滤波器的融合方法等。
这些方法主要通过建立数学模型或概率模型,将传感器的信息进行融合,并得出目标的估计值或状态值。
基于滤波器的融合方法是一种常用且有效的方法,如卡尔曼滤波器、粒子滤波器等。
多传感器信息融合在军事领域具有重要的应用价值。
军事装备中常用多种传感器进行目标侦测、识别、跟踪等任务,如雷达、红外传感器、光学传感器等。
将这些传感器的信息进行融合,能够提高目标的识别性能、跟踪精度和抗干扰能力,提升战场态势感知的水平。
多传感器信息融合在无人驾驶领域也有广泛的应用。
无人驾驶汽车依赖于多个传感器来感知车辆周围的环境和交通状况,包括激光雷达、摄像头、超声波传感器等。
将这些传感器的信息进行融合,能够实现对交通标志、行人、车辆等的准确感知和判断,并做出相应的决策和控制,确保行驶的安全性和可靠性。
智能机器人领域也是多传感器信息融合的重要应用领域之一。
智能机器人常用多传感器来感知环境、获取目标信息和执行任务,如摄像头、声音传感器、接触传感器等。
将这些传感器的信息进行融合,能够实现对环境的三维建模、目标的感知和定位、路径规划和导航等功能,提高机器人的智能化水平和执行任务的效率。
多传感器信息融合技术概论多传感器信息融合技术(Multisensor Information Fusion Technology)是指采用多个传感器对同一物理现象进行观测,通过融合不同传感器的信息,实现对目标或环境的全面、准确、一致的认知与理解的技术方法。
其目的是通过综合多源信息获得更全面、可靠的信息,提升对目标的感知能力和环境认知能力,以支持决策和控制系统的设计和优化。
传感器选择是多传感器信息融合的第一步,涉及选择合适的传感器类型和数量。
不同类型的传感器对不同的物理性质有着不同的响应,因此在融合过程中,需要选择合适的传感器来获得目标的多个特征。
数据融合算法是多传感器信息融合的核心环节,主要包括传感器数据预处理、特征提取、融合规则设计等步骤。
传感器数据预处理主要是对传感器数据进行滤波、分段、降噪等处理,以提高数据质量。
特征提取是将传感器数据转化为描述目标状态的特征,常用的方法有统计特征提取、模式识别等。
融合规则设计是将不同传感器的信息进行融合,常用的方法有加权平均法、优先级法、神经网络等。
融合结果评估是对融合结果进行准确性和可靠性评估的过程。
评估方法包括误差分析、假设检验、判别分析等。
评估结果可以帮助选择合适的传感器和改进融合算法。
多传感器信息融合技术的应用广泛,包括智能交通系统、环境监测、军事领域、医疗诊断等。
在智能交通系统中,通过融合不同传感器的信息,可以提高交通流量的检测精度和车流预测的准确度,提升交通管理的效率。
在环境监测中,通过传感器网络对大气、水域、土壤等环境进行实时监测,并通过融合不同传感器的信息,提供更全面、可靠的环境数据,用于环境保护和资源管理。
在军事领域,通过融合雷达、卫星、无人机等不同传感器的信息,可以提高目标探测和识别能力,支持军事决策和行动。
在医疗诊断中,通过融合多种医学传感器的信息,可以提高疾病的早期诊断和治疗效果。
总之,多传感器信息融合技术在提高信息获取与处理能力、提升系统性能、降低成本等方面具有重要意义。
多传感器信息融合近年来,随着计算机技术、通讯技术的发展,特别是军事上的迫切要求,多传感器信息融合技术得到了迅速的发展。
信息融合作为一门跨学科的综合信息处理理论,涉及系统论、信息论、控制论、人工智能和计算机通信等众多的领域和科学,它被广泛应用于自动目标识别、战场监视、自动飞行器导航、机器人、遥感、医疗诊治、图像处理等领域。
信息融合技术首先应用于军事领域,包括航空目标的探测、识别和跟踪,以及战场监视、战术态势估计和威胁估计等;在地质科学领域上,信息融合应用于遥感技术,包括卫星图像和航空拍摄图像的研究;在机器人技术和智能航行器研究领域,信息融合主要被应用于机器人对周围环境的识别和自动导航;信息融合技术也被应用于医疗诊断以及一些复杂工业过程控制领域。
1多传感器信息融合的定义传感器获得的信息有3类:冗余信息、互补信息和协同信息。
冗余信息是由多个独立传感器提供的关于环境信息中同一特征的多个信息,也可以是某一传感器在一段时间内多次测量得到的信息。
在一个多传感器系统中,若每个传感器提供的环境特征是彼此独立的,即感知的是环境各个不同侧面的信息,则这些信息称为互补信息。
在一个多传感器系统中,若一个传感器信息的获得必须依赖另一个传感器的信息,或一个传感器必须与另一个传感器配合工作才能获得所需的信息时,则这两个传感器提供的信息称为协同信息。
多传感器信息融合,又称多传感器数据融合,指的是对不同知识源和多个传感器所获得的信息进行综合处理,消除多传感器信息之间可能存在的冗余和矛盾,利用信息互补,降低不确定性,以形成对系统环境相对完整一致的理解,从而提高智能系统决策和规划的科学性、反应的快速性和正确性,进而降低决策风险过程。
图1是多传感器信息融合的示意图,传感器之间的冗余信息增强了系统的可靠性,多传感器之间的互补信息扩展了单个传感器的性能。
一般而言,多传感器融合系统具有以下优点:一是提高系统的可靠性和鲁棒性,二是扩展时间上和空间上的观测范围,三是增强数据的可信任度,四是增强系统的分辨能力。
多传感器信息融合及其运用随着科技发展的不断推进,各种传感器技术被不断应用于各种领域中。
各种传感器的融合技术也越来越成熟,多传感器信息融合技术已经变得越来越受重视。
多传感器信息融合技术是指将多个传感器产生的信息进行整合和处理的方法,以获取更加准确、可靠、全面的信息。
本文将介绍多传感器信息融合技术及其运用。
一、多传感器信息融合技术的意义多传感器信息融合技术的主要意义在于将多个传感器产生的信息进行融合,以得到更加可靠、全面、准确的信息。
多传感器信息融合技术可以帮助解决传感器单一信息不够全面和准确的问题,提高信息的质量和可靠性,同时还可以使系统更加健壮。
多传感器信息融合技术的方法包括基于模型的融合、基于数据的融合和基于知识的融合。
1.基于模型的融合基于模型的融合是指利用系统模型对不同传感器的信息进行融合。
该方法需要构建出多传感器信息融合的模型,并通过模型对数据进行分析和处理。
这种方法对系统的估计和预测较为准确,并且对数据的处理和求解算法较为简单。
基于知识的融合是指利用专家系统或知识库对多传感器信息进行融合。
该方法需要根据不同传感器的信任度和权重,利用知识库中的规则和经验对信息进行融合处理,得到最佳的判断和决策结果。
这种方法适用于对信息提供的内容和形式进行深入的分析和处理的应用场景。
多传感器信息融合技术已广泛应用于诸多领域,如智能交通、机器人控制、环境监测、医疗诊断等。
以下是几个应用案例。
1. 智能交通智能交通系统通常需要综合多种传感器技术来实现,如交通流量、车辆速度、车辆位置、环境温湿度等。
这些信息可以通过多传感器信息融合技术进行分析和处理,以达到实时控制交通信号,减少交通拥堵和事故发生的目的。
2. 机器人控制在机器人控制领域,多传感器信息融合技术可用于机器人的自主导航和环境感知。
机器人通过多种传感器感知机器人周围的环境信息,如声音、图像、激光雷达等,通过多传感器信息融合技术进行分析和处理,控制机器人的移动和选择机器人的动作方案。
多传感器信息融合技术研究多传感器信息融合技术(Multi-sensor Information Fusion Technology)是一种通过整合多种传感器信息来获得更好结果的技术。
多传感器信息融合技术能够有效地解决单一传感器无法完成的任务,例如环境感知、目标检测和定位等。
本文将讨论多传感器信息融合技术的概念、应用、挑战和未来发展方向。
一、多传感器信息融合技术的概念多传感器信息融合技术是指通过整合多种类型的传感器信息,以及运用人工智能和机器学习算法等技术,将信息转换为更精确的数据和知识。
多传感器信息融合技术能够将多种数据源(如可见光、红外、声音、气体、温度等)的信息相结合,以获取丰富的信息和更完整的数据。
通过多传感器信息融合技术,可以提高传感器的工作效率和准确性。
二、多传感器信息融合技术的应用1.智能交通:多传感器信息融合技术已经在智能交通领域得到了广泛应用。
通过整合多种类型的传感器(如雷达、视频、红外、微波、光学等),交通系统可以实时监测交通流量、车辆速度和事故等情况,并实现智能化的交通管制。
2.工业生产:在工业生产中,多传感器信息融合技术可以帮助企业检测设备故障、监测生产过程和优化生产效率。
通过整合不同类型传感器的信息,可以更精确地实现设备状态监测和故障诊断。
3.智能家居:多传感器信息融合技术可以帮助智能家居系统实现个性化的家居控制。
例如,通过整合温度、湿度、光线等传感器的信息,系统可以自动地调整室内温度和照明等环境,提供更舒适和安全的家庭环境。
三、多传感器信息融合技术的挑战多传感器信息融合技术的应用还面临一些挑战。
首先,不同类型传感器所采集的信息不一定匹配,因此需要对传感器信息进行标准化处理。
其次,传感器之间可能存在互相影响的情况,例如传感器之间的干扰或协作。
最后,多传感器信息融合技术需要用复杂的算法实现数据的整合和分析,算法的复杂度和计算量也需要考虑。
四、多传感器信息融合技术的未来发展方向未来多传感器信息融合技术的发展趋势将更加注重智能化和自主化。
多传感器数据融合技术概述一、引言- 背景介绍- 研究目的二、多传感器数据融合技术概述- 多传感器数据融合的定义- 多传感器数据融合的分类- 多传感器数据融合的优势与挑战三、多传感器数据融合的应用- 智能交通领域- 智能家居领域- 物联网领域四、多传感器数据融合实现的方法- 模型融合法- 特征融合法- 决策融合法五、多传感器数据融合技术的发展前景- 设备智能化的需求- 多传感器数据融合技术的潜在应用- 多传感器数据融合技术的发展趋势六、结论派生- 研究贡献- 不足之处- 后续研究的展望一、引言随着物联网、大数据和智能化技术的快速发展,传感器已经广泛应用于各个领域,成为重要的有益工具。
传感器通过感知环境信息,能够采集大量数据来描述事件或过程。
然而,属于同一物根的传感器它们之间可能存在的误差、不确定性等问题会引起数据不一致、低质量数据,使得数据质量不能满足精度要求。
解决此问题的有效方法是多传感器数据融合技术。
多传感器数据融合是将从不同传感器获得的数据以及其他知识结合在一起来估计系统状态。
因此多传感器数据融合技术是目前学术界和工业界关注的一项重要技术,并已经被广泛应用于科研和实际场景中。
本论文将对多传感器数据融合技术的相关内容进行综述。
论文的主要目的是介绍多传感器数据融合技术的基本概念、分类、应用、实现方法和发展前景。
本文将第1章介绍研究的背景和目的,第2章将重点介绍多传感器数据融合技术的定义、分类、优势与挑战,第3章将介绍多传感器数据融合技术的应用,第4章将介绍多传感器数据融合的实现方法,第5章将对多传感器数据融合技术的发展前景进行展望。
本文的意义在于提供了有关多传感器数据融合技术的最新资讯和科学认知,为科研人员和工程师提供了一些有用的参考。
此外,本文的结论也将为相关领域的研究提供新的思考角度。
二、多传感器数据融合技术概述2.1 多传感器数据融合的定义多传感器数据融合是指将不同传感器采集的数据以及其他知识和信息结合在一起来估计系统状态。
多传感器信息融合及其运用多传感器信息融合是指通过多个传感器收集的数据进行融合,以提高信息的准确性和可靠性。
在许多应用领域,如无人驾驶汽车、机器人导航和环境监测等,多传感器信息融合发挥着重要的作用。
在传感器网络中,每个传感器可以收集到特定的信息,例如温度、湿度、光强等。
由于各种因素的影响,每个单独的传感器可能存在一定的误差。
多传感器信息融合可以通过对多个传感器收集的数据进行融合和分析,减小误差,得到更加准确和可靠的结果。
多传感器信息融合的核心思想是将不同传感器的数据进行权衡和组合,从而得到更准确的结果。
对于每个传感器的测量结果,可以通过建立数学模型或者使用机器学习的方法来估计其误差。
然后,可以利用这些误差估计值来确定每个传感器数据的权重。
根据权重,可以将每个传感器数据进行组合,得到融合后的结果。
多传感器信息融合可以用于许多实际应用中。
在无人驾驶汽车中,通过融合多个传感器的数据,可以实时地感知车辆周围的环境,包括道路状况、障碍物等,从而提供更准确的车辆控制。
在机器人导航中,多传感器信息融合可以帮助机器人实时感知周围的环境,并进行地图构建和路径规划。
在环境监测中,多传感器信息融合可以帮助提高对环境参数的监测精度,例如空气质量监测和水质监测等。
多传感器信息融合也面临一些挑战和难题。
不同传感器之间可能存在的差异和不一致性,例如测量范围、精度和响应时间等。
这些差异需要通过校准和校正等方法来解决。
数据融合的过程涉及到大量的计算和处理,对计算资源要求较高。
多传感器信息融合还需要考虑数据的时序特性和时延问题,以保证实时性和准确性。
多传感器信息融合是一门重要的技术,可以提高信息的准确性和可靠性。
通过合理设计和优化算法,可以克服各种挑战和困难,实现多传感器信息融合的目标。
随着传感器技术的不断发展和应用的扩大,多传感器信息融合将在更多的领域发挥作用,并为人类社会带来更多的便利和发展机遇。
简述机器人多传感器信息融合发展趋势篇一:机器人是一种能够自主感知、操作和解决问题的计算机辅助设备,通常由多个传感器和执行器组成,如视觉传感器、听觉传感器、触觉传感器、运动传感器等,通过感知周围环境,自主决策并执行任务。
随着人工智能技术的快速发展,机器人的感知、决策、运动和执行任务的能力不断提高,并在许多领域取得了广泛的应用。
多传感器信息融合发展是机器人领域的一个重要趋势。
随着传感器技术的不断进步,机器人的感知能力得到了大幅提升,能够更好地感知和理解周围环境。
同时,随着计算机视觉、语音识别、自然语言处理等人工智能技术的不断发展,机器人的决策能力也得到了进一步提高,能够更准确地做出决策和执行任务。
在机器人多传感器信息融合发展的趋势中,传感器的选择和组合也在不断变化。
现在,机器人通常使用多个传感器来获取周围环境的信息,如视觉传感器、听觉传感器、触觉传感器、运动传感器等。
通过组合这些传感器,机器人能够更全面地感知周围环境,并更准确地进行决策和执行任务。
除了传感器的选择和组合,机器人多传感器信息融合发展的另一个重要趋势是数据的收集和处理。
现在,机器人通常使用各种传感器来收集周围环境的信息,这些数据通常需要进行预处理、存储和分析。
通过这些数据的处理,机器人能够更好地理解周围环境,并更准确地进行决策和执行任务。
在机器人多传感器信息融合发展的趋势中,还需要注意信息安全和隐私保护。
由于机器人在执行任务时可能会涉及到敏感信息,如人权数据、财务数据等,因此需要采取相应的安全措施来保护这些信息。
同时,也需要对机器人采集到的传感器数据进行分析和处理,以确保数据的安全和准确性。
机器人多传感器信息融合发展是一个不断演进的趋势,它为机器人的应用带来了更高的效率和更准确的能力。
篇二:机器人是一种能够自主执行任务的智能机械设备,通常由传感器、执行器和控制器组成。
传感器用于感知环境,执行器用于控制机器人的动作,控制器用于管理机器人的状态和任务。
多传感器信息融合的研究现状和发展趋势
现代技术的发展已经越来越快,多传感器信息融合是近年来的一大热
门话题,研究其发展现状和发展趋势能够帮助我们更深入地了解市场
变化。
多传感器信息融合技术是一种将多种传感器信息数据通过深度学习和
机器学习方法结合起来,从而提取出更多有用信息的技术手段。
该技
术可用于对地面实物的实时监测,以及遥感图像的分析与精确识别等,具有广泛的应用前景和巨大的市场潜力。
近几年来,多传感器信息融合技术发展迅速,其中的深度学习与机器
学习的应用不断拓展,各种大数据分析技术得到了更多的应用,有力
推动了多传感器信息融合技术的发展。
近年来,许多企业和机构积极
投入到多传感器信息融合技术的研究中,开发出了多种多样的算法,
为多传感器信息融合技术的应用提供了可行性方案。
随着人工智能和机器学习技术的进一步发展,多传感器信息融合技术
的发展将会更加迅速。
预计在未来,多传感器信息融合技术将会发挥
更大的作用,可能会被用于自动驾驶、农业智能化、交通安全监控等
领域,给人类社会带来更多的便利。
总的来说,多传感器信息融合技术的发展现状十分乐观,未来的发展
趋势将会更加美好。
只要我们在技术研发方面继续努力,就能够进一
步拓展多传感器信息融合技术的应用范围,实现更好的信息融合效果。
多传感器信息融合及其运用随着传感技术的不断发展和进步,传感器在各行各业的应用日益广泛。
传感器是一种能够感知和测量某些特定物理量,并将其转化为可供人们理解的信号或数据的设备。
而多传感器信息融合则是指在多个传感器的基础上,通过合理的方法和技术将各个传感器获取的信息进行整合和融合,从而得到更加全面、准确和可靠的信息。
多传感器信息融合已经成为了当前研究和应用的热点之一,它在机器人、智能交通、军事领域等各个领域都有着重要的应用价值。
多传感器信息融合的概念最早可以追溯到20世纪70年代,当时美国军方开始将多个传感器的信息进行整合,以提高对敌方目标的侦察和监测能力。
随着科技的不断进步和应用的不断拓展,多传感器信息融合的技术得到了快速的发展。
目前,多传感器信息融合已经成为了各种智能系统和设备的重要组成部分,为人们的生产生活带来了诸多便利和益处。
在机器人领域,多传感器信息融合技术被广泛应用于各类自动导航和控制系统中。
通过多传感器信息融合,机器人能够更加准确、快速地感知和识别周围环境,从而更好地执行各种任务。
在智能家居中,通过多传感器信息融合技术,可以实现对家居环境的实时监测和智能控制,从而提高生活的舒适度和便利性。
在工业生产中,多传感器信息融合技术也能够帮助机器人更加精准地执行各种生产任务,提高生产效率和产品质量。
在智能交通领域,多传感器信息融合技术的应用也日益广泛。
通过整合车载传感器、道路感知器、信号灯控制系统等多种传感器信息,交通管理者可以更准确地监测和控制交通流量,提高道路交通的安全性和效率。
多传感器信息融合技术还可以帮助车辆在复杂的交通环境下更好地实现自动驾驶,大大减少交通事故的发生率。
在军事领域,多传感器信息融合技术的应用也是至关重要的。
通过整合多种不同类型的传感器信息,军方能够更全面地了解战场态势,提高对敌方目标的侦察和监测能力,提高作战效率和战场优势。
多传感器信息融合技术还可以为战术决策提供更为准确和可靠的信息支持,提高作战的成功率和生存率。
多传感器信息融合技术概述摘要:传感器信息融合,是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。
单一传感器只能获得环境或被测对象的部分信息段,而多传感器信息经过融合后能够完善地、准确地反映环境的特征。
信息融合技术已经广泛应用于信息电子学、计算机科学、自动化等领域,下面从五个方面做概述。
关键词:多传感器;信息融合1 多传感器信息融合基本原理多传感器信息融合是人类和其他生物系统中普遍存在的一种基本功能。
人类本能地具有将身体上的各种功能器官所探测到的信息(景物、声音、气味和触觉等)与先验知识进行综合的能力,以便对他周围的环境和正在发生的事件作出估计。
多传感器信息融合的基本原理就像人脑综合处理信息的过程一样,它充分地利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。
信息融合的目标是基于各传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。
它的最终目的是利用多个传感器共同或联合操作的优势,来提高整个传感器系统的有效性。
2 多传感器信息融合的几种方法2.1 卡尔曼滤波(KF)该方法用测量模型的统计特性,递推决定统计意义下最优融合数据合计。
如果系统具有线性动力学模型,且系统噪声和传感器噪声可用高斯分布的白噪声模型来表示,则KF 为融合数据提供惟一的统计意义下的最优估计,它的递推特性使系统数据处理不需大量的存储和计算。
KF分为分散卡尔曼滤波(DKF)和扩展卡尔曼滤波(EKF)。
DKF可实现多传感器数据融合完全分散化,其优点是,单个传感器节点失效不会导致整个系统失效。
而EKF 的优点是,可有效克服数据处理不稳定性或系统模型线性程度的误差对融合过程产生的影响。
2.2 人工神经网络法这种方法通过模仿人脑的结构和工作原理,设计和建立相应的机器和模型并完成一定的智能任务。
神经网络根据当前系统所接收到的样本的相似性,确定分类标准。
简述多传感器信息融合技术的特点多传感器信息融合技术是指将来自不同传感器的信息进行集成和处理,以获取更准确、全面和可靠的信息的一种技术。
它利用多个传感器的互补性和协同作用,提高了感知系统的性能和可靠性,广泛应用于各个领域,如机器人导航、无人驾驶、智能交通等。
多传感器信息融合技术的特点主要体现在以下几个方面:1. 互补性:不同传感器之间具有互补性,可以提供不同角度、不同尺度、不同物理量的信息。
通过融合这些信息,可以获取更全面、准确的环境认知和目标检测结果。
2. 冗余性:多传感器系统中的传感器往往可以提供相同或相似的信息,当某个传感器出现故障或信号质量较差时,可以通过其他传感器提供的信息进行补偿,保证系统的可靠性和稳定性。
3. 容错性:多传感器系统可以通过检测和排除异常传感器的数据,提高系统的容错性。
当某个传感器的输出与其他传感器的输出存在较大差异时,可以将其识别为异常值,并进行相应的处理,避免其对整个系统的影响。
4. 实时性:多传感器信息融合技术可以通过并行处理和分布式计算等方式,提高信息处理的速度和实时性。
将不同传感器的数据进行时间同步和数据对齐,可以实时获取环境和目标的状态信息,满足实时控制和决策的需求。
5. 融合算法:多传感器信息融合技术需要设计和实现相应的融合算法,将不同传感器的信息进行融合和集成。
常用的融合算法包括加权平均法、最大似然法、卡尔曼滤波等。
这些算法可以根据传感器的特点和系统的需求,对传感器数据进行滤波、校正、估计和预测,提高信息的准确性和可靠性。
6. 系统集成:多传感器信息融合技术需要将不同传感器的硬件和软件系统进行集成。
传感器之间的数据传输和通信、数据格式的统一和标准化、传感器位置的安装和校准等都是系统集成的重要内容。
只有完成了这些工作,才能实现多传感器信息的无缝融合和集成。
7. 鲁棒性:多传感器信息融合技术可以通过融合多个传感器提供的信息,降低对单个传感器的依赖,提高系统的鲁棒性。
多传感器信息融合技术在当今科技飞速发展的时代,多传感器信息融合技术正逐渐成为众多领域的关键技术之一。
从智能交通系统到医疗诊断,从工业自动化到环境监测,它的应用无处不在,为我们的生活和社会带来了诸多便利和进步。
那么,什么是多传感器信息融合技术呢?简单来说,它是将来自多个不同传感器的数据进行综合处理和分析,以获取更全面、更准确、更可靠的信息。
这些传感器可以是各种各样的,比如摄像头、雷达、激光传感器、温度传感器、湿度传感器等等。
每个传感器都有其独特的性能和特点,能够测量不同的物理量或参数,但单独使用时往往存在局限性。
想象一下,在自动驾驶汽车中,仅仅依靠一个摄像头来感知周围环境是远远不够的。
摄像头在光线良好的情况下能够提供清晰的图像,但在恶劣天气或光线昏暗时可能就会失效。
而雷达则不受光线影响,能够在各种天气条件下探测到物体的距离和速度。
将摄像头和雷达所获取的数据融合在一起,就能够更全面地了解车辆周围的情况,从而做出更准确的驾驶决策。
多传感器信息融合技术的实现并非易事,它需要解决一系列的关键问题。
首先是数据的校准和同步。
由于不同传感器的工作原理和精度不同,所采集到的数据可能存在偏差和时间上的不一致。
因此,在进行融合之前,需要对这些数据进行校准和同步,以确保它们在时间和空间上的一致性。
其次是数据的关联和匹配。
不同传感器所获取的数据可能描述的是同一个对象,但由于测量角度和精度的不同,数据的表现形式可能会有所差异。
如何准确地将这些相关的数据关联和匹配起来,是信息融合的重要环节。
再者是融合算法的选择和优化。
目前,常用的融合算法包括加权平均法、卡尔曼滤波、贝叶斯估计等等。
不同的算法适用于不同的场景和数据特点,需要根据具体情况进行选择和优化,以达到最佳的融合效果。
多传感器信息融合技术的优势是显而易见的。
它能够提高系统的可靠性和稳定性。
当某个传感器出现故障或受到干扰时,其他传感器的数据仍然能够为系统提供支持,从而保证系统的正常运行。
1.多传感器信息融合概念多传感器信息融合是指综合来自多个传感器的感知数据, 以产生更可靠、更准确或更精确的信息。
经过融合的多传感器系统能完善地、精确地反映检测对象特性, 消除信息的不确定性, 提高传感器的可靠性。
经过融合的多传感器信息具有以下特性: 信息的冗余性、信息的互补性、信息的实时性和信息的低成本性。
2. 多传感器信息融合分类按融合判断方式分类(1) 硬判决方式硬判决方式设置有确定的预置判决门限。
只有当数据样本特征量达到或超过预置门限时,系统才做出判决断言;只有当系统做出了确定的断言时,系统才向更高层次系统传送“确定无疑”的判决结论。
这种判决方式以经典的数理逻辑为基础,是确定性的。
(2) 软判决方式软判决方式不设置确定不变的判决门限。
无论系统何时收到观测数据都要执行相应分析,都要做出适当评价,也都向更高层次系统传送评判结论意见及其有关信息,包括评判结果的置信度。
这种评判不一定是确定无疑的,但它可以更充分地发挥所有有用信息的效用,使信息融合结论更可靠更合理。
按传感器组合方式分类(1) 同类传感器组合同类传感器组合只处理来自同一类传感器的环境信息,其数据格式、信息内容都完全相同,因而处理方式相对比较简单。
(2) 异类传感器组合异类传感器组合同时处理来自各种不同类型传感器采集的数据。
优点是信息内容广泛,可以互相取长补短,实现全源信息相关,因而分析结论更准确、更全面、更可靠,但处理难度则高很多。
3.信息融合的系统结构信息融合的系统结构研究包含两部分, 即信息融合的层次问题和信息融合的体系结构。
融合的层次结构主要从信息的角度来分析融合系统, 信息融合的体系结构则主要是从硬件的角度来分析融合系统。
(1)信息融合的层次信息融合系统可以按照层次划分, 对于层次划分问题存在着较多的看法。
目前较为普遍接受的是层次融合结构, 即数据层、特征层和决策层。
数据层融合是指将全部传感器的观测数据直接进行融合, 然后从融合的数据中提取特征向量, 并进行判断识别。
这便要求传感器是同质的, 如果传感器是异质的, 则数据只能在特征层或者决策层进行融合。
数据层融合的优点是保持了尽可能多的原始信息,缺点是处理的信息量大, 因而处理实时性较差。
特征层融合是指将每个传感器的观测数据进行特征抽取以得到一个特征向量, 然后把这些特征向量融合起来, 并根据融合后得到的特征向量进行身份判定。
特征层融合对通信带宽的要求较低, 但由于数据丢失使其准确性有所下降。
决策层融合是指每个传感器执行一个对目标的识别, 将来自每个传感器的识别结果进行融合。
该层次融合对通信带宽要求最低, 但产生的结果相对来说最不准确。
信息融合的层次结构是按照信息抽象程度来划分的。
在多传感器融合系统的实际工程应用中, 应综合考虑传感器的性能、系统的计算能力、通信的带宽、期望的准确率以及现有资金的能力, 以确定采用哪种层次化系统结构模型或者混合的层次模型。
而基于信息的层次结构的确定, 可以为系统硬件体系结构的确定打好基础。
(2)信息融合的体系结构信息融合的硬件体系结构大致分为三类:集中式、分布式和混合式。
集中式是将各传感器结点的数据都送到中央处理器进行融合处理。
该方法可以实现实时融合, 其数据处理的精度高、解法灵活, 缺点是对处理器要求高、可靠性较低、数据量大, 故难于实现。
分布式是各传感器利用自己的量测单独跟踪目标, 将估计结果送到总站, 总站再将子站的估计合成为目标的联合估计。
该方法对通信带宽要求低、计算速度快、可靠性和延续性好, 但跟踪精度没有集中式高。
混合式是将以上两种形式进行组合,它可以在速度、带宽、跟踪精度和可靠性等相互影响的各种制约因素之间取得平衡, 因此目前的研究着重于混合式结构。
采用何种体系结构完全是为了满足各种不同的实际需要, 在设计数据融合体系结构时, 应根据确定的系统层次结构来确定相应的体系结构, 同时还必须考虑数据通信、数据库管理、人机接口、传感器管理等许多支撑技术。
4. 多传感器信息融合的一般方法信息融合的方法是多传感器信息融合的最重要的部分, 由于其应用上的复杂性和多样性, 决定了信息融合的研究内容极其丰富, 涉及的基础理论较多。
多传感器信息融合算法可以分为以下四类: 估计方法、分类方法、推理方法和人工智能方法, 如图1 所示。
估计方法中加权平均法是信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。
卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。
该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。
如果系统具有线性动力学模型,且系统与传感器的误差符合高斯白噪声模型,则卡尔曼滤波将为融合数据提供唯一统计意义下的最优估计。
卡尔曼滤波的递推特性使系统处理不需要大量的数据存储和计算。
但是,采用单一的卡尔曼滤波器对多传感器组合系统进行数据统计时,存在很多严重的问题,例如: (1)在组合信息大量冗余的情况下,计算量将以滤波器维数的三次方剧增,实时性不能满足; (2)传感器子系统的增加使故障随之增加,在某一系统出现故障而没有来得及被检测出时,故障会污染整个系统,使可靠性降低。
分类方法主要有参数模板法和聚类分析。
无监督或自组织学习算法诸如学习向量量化法( learning vector quant izat ion, LVQ ) , K - 均值聚类( K-means clustering ) , Kohonen 特性图( Kohonen feature map) 也常用作多传感器数据的分类。
K-均值聚类算法是最常用的无监督学习算法之一, 而自适应K- 均值方法的更新规则形成了Kohonen特性图的基础。
此外自适应共振理论( ART) 、自适应共振理论映射( ARTMAP) 和模糊自适应共振理论网络( fuzzy-ART netw ork) 以自适应的方法进行传感器融合。
它们能够自动调整权值并且能在环境变化和输入漂移的情况下保持稳定。
图1 多传感器融合算法分类推理方法。
多贝叶斯估计法为数据融合提供了一种手段,是融合静态环境中多传感器高层信息的常用方法。
它使传感器信息依据概率原则进行组合,测量不确定性以条件概率表示,当传感器组的观测坐标一致时,可以直接对传感器的数据进行融合,但大多数情况下,传感器测量数据要以间接方式采用贝叶斯估计进行数据融合。
多贝叶斯估计将每一个传感器作为一个贝叶斯估计,将各个单独物体的关联概率分布合成一个联合的后验的概率分布函数,通过使用联合分布函数的似然函数为最小,提供多传感器信息的最终融合值,融合信息与环境的一个先验模型提供整个环境的一个特征描述。
D-S证据推理是贝叶斯推理的扩充,其3个基本要点是:基本概率赋值函数、信任函数和似然函数。
D-S方法的推理结构是自上而下的,分三级。
第1级为目标合成,其作用是把来自独立传感器的观测结果合成为一个总的输出结果( ID) ;第2级为推断,其作用是获得传感器的观测结果并进行推断,将传感器观测结果扩展成目标报告。
这种推理的基础是:一定的传感器报告以某种可信度在逻辑上会产生可信的某些目标报告;第3级为更新,各种传感器一般都存在随机误差,所以,在时间上充分独立地来自同一传感器的一组连续报告比任何单一报告可靠。
因此,在推理和多传感器合成之前,要先组合(更新)传感器的观测数据。
人工智能方法对融合大量的传感器信息, 用以非线性和不确定的场合颇有优势。
可分为专家系统、神经网络和模糊逻辑。
专家系统是一种基于人工智能的计算机信息系统。
神经网络是一个具有高度非线性的超大规模连续时间自适应信息处理系统。
在多传感器系统中,各信息源提供的环境信息都具有一定程度的不确定性, 对这些不确定信息的融合过程实质上是一个不确定性推理过程。
神经网络可根据当前系统所接受的样本的相似性, 确定分类标准。
同时可以采用特定的学习算法来获取知识, 得到不确定性推理机制。
模糊逻辑是多值逻辑, 它允许将传感器信息融合过程中的不确定性直接表示在推理过程中。
由于模糊集表达了一个不确定概念, 应用模糊理论并结合其它手段, 如神经网络, 可以取得更好的融合结果。
表1 常用的数据融合方法比较5. 多传感器在机器人中的应用5.1在工业机器人中的应用在工业机器人中,除采用传统的位置、速度和加速度传感器外,装配、焊接机器人还应用了视觉、力觉和超声波等传感器。
表2给出了多传感器信息融合技术在工业机器人领域应用的典型实例。
表2 多传感器信息融合技术在工业机器人领域应用5.2 在机器手爪中的应用美国的Utah/MIT灵巧手、日本的ARH智能手爪以及我国的HIT/DLR机器人灵巧手、BH-3灵巧手都配有多种传感器,主要包括视觉传感器、接近觉传感器、力/力矩传感器、位姿/姿态传感器、速度/加速度传感器、温度传感器以及触觉/滑觉传感器等。
Bayes算法和D-S论据常用于机器人手爪的信息融合。
罗志增等人将这2种算法综合运用到一个装有6种传感器的机器手爪中,并进行了工件识别、抓取实验,正确率达96.7%。
美国的Luo在由PUMA 560机器手臂控制的夹持型手爪的平台上提出了基于视觉、接近觉、触觉、位置、力/力矩及滑觉等传感器信息融合新方法,整个过程分为3步:1)采集多传感器的原始数据,并用Fisher模型进行局部估计;2)对统一格式的传感器数据进行比较,发现可能存在误差的传感器,进行置信距离测试,从而建立距离矩阵和相关矩阵,得到最接近最一致的传感器数据;3)运用Bayes推理算法进行全局估计,融合多传感器数据,同时,对其他不确定的传感器数据进行误差检测,修正传感器的误差。
5.3 在移动机器人中的应用HILARE是第一个应用多传感器信息融合技术来构建未知环境实物模型的可移动机器人,其由法国LAAS实验室研制而成,该机器人配有16只超声波传感器、2只二维激光测距仪、1只视觉传感器和1只黑白相机。
超声波和视觉传感器用来产生一个被层次化坐标所分割的图,视觉和激光测距传感器用来感知环境中的三维区域格,并通过约束来提出无关的特征。
在此机器人上设定每只传感器的不确定性为高斯分布且所有传感器测量值的标准偏差相同,采用加权平均法作为系统信息融合的算法。
多传感器信息融合技术的运用使得HILARE机器人具有较强的环境适应能力,可在非结构环境中稳定的工作。
当前,信息融合技术在移动机器人中最成功的应用是美国的火星探测机器人Sojourner 。
该机器人是一个高度集成的多传感器平台,配有黑白和彩色成像系统数套。
其大量地使用了信息融合技术,利用融合后的信息,实现了自主导航、定位、土壤和岩石成分分析等操作。
对于Sojourner的状态估计,使用了里程表、速度传感器、加速度传感器、航向传感器、测距仪和立体CCD摄像机,融合算法运用了航位推测法和扩展卡尔曼滤波技术。