浅埋软弱围岩隧道变形与受力现场监测研究
- 格式:pdf
- 大小:254.08 KB
- 文档页数:2
浅埋软弱围岩隧道变形控制摘要:本文以宁安铁路钟鸣2#隧道为例,重点阐述在浅埋软弱围岩隧道施工,通过各种技术措施对围岩变形进行控制的方法。
关键词:隧道,浅埋,软弱围岩,变形控制abstract: this article to ning an railway chiming 2 # tunnel as an example, focuses on the shallow buried tunnel in weak rock construction, through various technical measures to control surrounding rock deformation method.key words: tunnel, shallow buried and weak surrounding rock, deformation control.中图分类号:u452.1+2 文献标识码:a文章编号:2095-2104(2013)引言在高铁建设过程中,出现了越来越多的地质条件复杂,浅埋软弱围岩的高风险隧道。
由于这些浅埋地层的埋藏比较浅,大多是强风化破碎的围岩,地质条件变化较大,围岩应力分布复杂,且开挖断面大,造成了隧道施工过程中,施工难度增大,初支变形复杂和隧道整体稳定难以控制的情况,隐含着很多坍塌等安全隐患。
本文以钟鸣2#隧道为研究对象,阐述在浅埋软弱围岩隧道施工过程中如何采取对策减小初支变形,确保施工安全的方法。
1 工程概况钟鸣2#隧道位于宁安铁路铜陵境内,双线全长798m,施工里程为dk140+830~dk141+628。
隧道穿越地层主要为含砾粉质黏土及泥质粉砂岩,围岩较破碎全风化,进出口均为偏压地段,全隧道属ⅴ级围岩。
地表水不发育,地下水主要为孔隙水和基岩风化层空隙水,隧道洞身位于地下水位以下,地质条件非常复杂,属宁安铁路高风险隧道。
钟鸣2#隧道采用中隔壁(crd)法开挖施工,全隧道为复合式衬砌支护结构,初期支护使用钢筋网、锚杆、钢架、喷射混凝土联合支护,二衬采用整体式移动台车一次施工完成。
隧道软弱围岩变形施工控制探讨隧道施工是一项复杂且有挑战性的工程,涉及各种地质条件和地形地貌。
隧道软弱围岩变形是隧道施工中常见的问题,会导致隧道的失稳和塌陷。
因此,对于隧道软弱围岩的变形进行有效的控制是非常重要的。
本文将讨论隧道软弱围岩变形施工控制的几个方面。
首先,介绍隧道软弱围岩变形的原因和类型。
然后,探讨如何选择合适的控制方法,包括地质预测和地质处理等。
最后,阐述应该如何建立有效的监测和控制体系,来持续地跟踪和管理隧道施工过程中的变形情况。
隧道软弱围岩变形的原因和类型隧道软弱围岩变形有几种原因,比如地质构造、水文地质、岩性等。
地质构造可能是引起软弱围岩变形的主要原因之一。
如断层、褶皱、岩片等都会造成软弱围岩的变形。
水文条件也是造成软弱围岩变形的一个重要因素。
地下水的压力和沉积物含水层的渗透都可能影响围岩的质量和稳定性。
岩性也会影响围岩的变形,一些类似泥岩和软岩结构比较松散,容易发生压缩、膨胀或采空塌陷等问题。
隧道软弱围岩变形的类型有: 挤压、膨胀、产生裂缝等。
挤压是软弱围岩在隧道施工过程中被挤压变形;膨胀是围岩在水分施工过程中产生的隆起变形。
产生裂缝会使软弱围岩失去强度,进而导致塌陷。
如何选择合适的控制方法为了控制隧道软弱围岩的变形,需要选用合适的控制方法。
在选择控制方法时,需要考虑一系列因素,如地质条件、施工方式和控制效果等方面。
地质预测是确保隧道施工安全的重要步骤。
预测地质条件的变化可以让工程团队准备好相应的措施。
例如,可以使用地震波传播、地球物理勘探等技术法来预测隧道遇到的地质情况。
预测后,可以灵活调整施工方案,以保证施工的正常进行。
地质处理是控制隧道软弱围岩变形的重要措施。
有许多种方法可以处理隧道围岩,如钻孔注浆、集料注浆、冻结法、加固墙等。
不同的地质条件和施工方式需要采用不同的方法。
例如,钻孔注浆和集料注浆适用于软土和黏土地层,冻结法和加固墙适用于较为坚固的地层。
应该如何建立有效的监测和控制体系建立有效的监测和控制体系是持续跟踪和管理隧道施工过程中的变形情况的重要手段。
《隧道软弱围岩变形机制与控制技术研究》篇一一、引言随着我国隧道建设技术的不断发展,面对复杂的岩体地质条件,尤其是软弱围岩地区,其围岩变形控制成为了一项极具挑战性的任务。
本论文以“隧道软弱围岩变形机制与控制技术”为研究对象,旨在深入探讨其变形机制,并研究有效的控制技术。
二、软弱围岩的变形机制1. 地质背景与软弱围岩特性软弱围岩通常指那些强度低、稳定性差的岩体,如泥岩、砂岩和破碎带等。
在隧道施工中,软弱围岩由于受到工程活动的影响,其内部应力场和边界条件发生变化,进而引发围岩的变形和破坏。
2. 变形机制分析软弱围岩的变形机制主要受两方面影响:一是围岩本身的物理力学性质,如强度、弹性模量等;二是工程活动引起的应力场变化。
在隧道开挖过程中,由于空间效应和应力重分布,软弱围岩容易发生剪切、挤压和隆起等变形。
三、控制技术研究1. 支护结构优化设计针对软弱围岩的变形特性,支护结构的设计至关重要。
通过优化支护结构的形式、材料和参数,如采用钢筋混凝土支护、钢拱架支护等,可有效提高支护结构的承载能力和稳定性。
同时,结合数值模拟和现场试验,对支护结构进行优化设计,确保其适应不同地质条件和施工需求。
2. 施工方法与技术改进针对软弱围岩的施工方法和技术进行改进,如采用分步开挖、预留变形量等施工方法,以减小对围岩的扰动和破坏。
同时,引入新型施工技术和设备,如盾构机、TBM等,提高施工效率和安全性。
3. 监测与反馈控制技术在隧道施工过程中,对围岩变形进行实时监测,通过监测数据反馈控制技术,及时调整支护结构和施工参数。
采用地质雷达、位移计等监测设备,对围岩的变形进行实时监测和预警,确保隧道施工安全。
四、案例分析以某隧道软弱围岩工程为例,通过应用上述控制技术,有效控制了围岩的变形和破坏。
在施工过程中,结合地质条件和施工需求,优化了支护结构设计、改进了施工方法和技术、并实施了严格的监测与反馈控制措施。
经过实践验证,该控制技术有效地提高了隧道施工的安全性和稳定性。
软弱围岩隧道大变形机理及控制措施研究摘要: 软弱围岩大变形是隧道修建过程中常见的灾害。
本文结合青峰隧道工程,对软弱围岩隧道大变形施工处治技术进行分析,在分析大变形产生原因的基础上,提出合理的施工方法和处治措施,对软弱围岩隧道施工具有参考意义。
关键词:隧道、处理措施、大变形、软弱围岩Study on Mechanism and Treating Methods of Large Deformation of Tunnel in Soft Surrounding RockAbstract:The large deformationof soft rock tunnelconstructionisa commongeologicaldisasters. Combined with the Qingfeng tunnel, the reasons of large deformation were analysed. Feasible construction methods and techniques for soft rock tunnels are suggested which can be taken for reference by soft rock tunnel construction.Keywords: tunnel; treating methods; large deformation; soft rock1 引言随着我国高速公路的建设的快速发展,在山岭地区修建的公路隧道越来越多,我国在复杂的地质条件下的隧道修建技术也得到了飞速发展。
当隧道穿越高地应力、浅埋偏压区域以及软弱破碎围岩体时,易产生围岩大变形等相关地质灾害。
大变形的危害程度大,处治费用高且方法复杂,因此,针对实际工程准确分析大变形发生的机理,控制变形的进一步扩大,采取合适的处理方案解决初期支护变形过大的问题就显得尤为重要。
某隧道浅埋偏压软弱围岩客运专线隧道施工技术研究【摘要】文章针对某隧道施工特点和变形原因进行了分析,提出了一些整治应急措施,并对这些问题解决情况进行了探讨分析。
【关键词】客运专线;隧道;施工技术目前随着铁路隧道的不断发展,施工过程中遇到的复杂地质条件给施工带来越来越严峻考验。
如高速铁路隧道空气动力学问题、防排水问题、消防和防灾救援问题、大断面和超大断面隧道施工设计及施工技术等问题都需要进一步研究和完善。
1、工程简介某隧道属于大跨隧道,隧道附近无连续水源,主要由大气降水补给,水位季节性波动比较大。
施工过程中围岩及结构受力复杂,加上埋深浅、围岩软弱,如果施工措施不当,势必引起隧道变形过大或边坡失稳,该段施工方法的选择必须慎重。
2、隧道施工情况根据隧道沿程地形条件和埋深分布,在实际施工过程中,洞顶在洞内变形后出现裂缝,裂缝纵向有主裂缝3~4条,小裂缝密布,最大缝宽15~20 cm,并拌有明显坍陷台阶。
靠左侧较大,至右侧悬空处依次减弱。
根据现场施工情况以及施工过程中对地表的调查分析结果,经多次专家组现场讨论研究认为,该段发生显著大变形的主要原因体现在以下几方面:(1)浅埋、偏压、软弱地层是大变形发生的内在原因。
根据地质勘察结果,该段隧道埋深仅20m左右,约为1.5 倍洞跨,属于典型浅埋隧道,隧道上覆地层主要为粉质粘土和全风化泥岩、页岩。
经现场取样和室内试验,岩样性质接近粘土。
该区段地表横坡明显,隧道一侧山体覆盖厚度过薄,属显著偏压地层,因此,施工中坡体向山体外侧发生水平位移不可避免。
(2)连续大雨的天气情况是大变形发生的客观原因。
在施工过程中,从2007 年2月14日开始,施工现场连降大雨,持续时间达1 个月之久。
此时,正值隧道偏压段开挖施工,由于隧道埋深相对较浅,加之上覆泥岩、页岩地层风化严重、裂隙发育并彼此连通,为地表水的渗入提供了有利条件,这种岩性地层遇水后软化势必导致隧道开挖变形加剧和影响边坡稳定。
浅埋软弱围岩隧道变形与受力现场监测研究
发表时间:2019-08-30T11:49:00.463Z 来源:《建筑模拟》2019年第29期作者:李乐乐1,2 闫飞亚1,2 李源禛1,2 [导读] 通过对韶山一号工程隧道进行研究发现隧道围岩总体处于稳定状态,但在上下台阶的开挖施工中,由于受到施工振动的影响,地表会出现一定程度的沉降问题,但在二次衬砌,混凝土强度达到设计要求之后,其沉降会逐渐趋于稳定。
李乐乐1,2 闫飞亚1,2 李源禛1,2
1.武汉港湾工程质量检测有限公司湖北武汉 430040
2.海工结构新材料及维护加固技术湖北省重点实验室湖北武汉 430040
摘要:通过对韶山一号工程隧道进行研究发现隧道围岩总体处于稳定状态,但在上下台阶的开挖施工中,由于受到施工振动的影响,地表会出现一定程度的沉降问题,但在二次衬砌,混凝土强度达到设计要求之后,其沉降会逐渐趋于稳定。
而钢支撑的应力值随时间变化曲线经历急剧增大缓慢增大趋于平缓这三个阶段,在拱部承受较大的土压力,为钢支撑的最不利部位;拱顶的压力比拱腰两测点的压力值明显偏大,在浅埋情况下拱顶部位为最不利位置。
关键词:隧道工程;软弱围岩;浅埋;现场监测;变形与受力 1 浅埋软弱围岩隧道现场监控量测技术 1.1 隧道监控量测方法
(1)周边位移监测法,不同的施工方法,运用周边位移监测法时,在对测点进行布置的过程中需要按照不同的位置。
(2)地表下沉监测,在此类隧道施工过程中,避免不了会出现地表下沉情况,因此,为了避免其对施工造成影响,就需要对地表下沉进行监测。
(3)围岩压力量测。
在围岩压力量测中,每一级围岩需要选择 3 监测断面,并在其中沿隧道周边埋设三个压力盒,以保证量测的准确性。
2 隧道沉降与变形监测结果 2.1 收敛变形分析
通过对工程中的实际情况进行分析可以发现,在施工的过程中,所产生的水平收敛主要表现在支护强度上。
通常情况下,在支护结束之后,由于混凝土还没有达到设计中的强度要求,这个时候就会发生快速的收敛,而当混凝土强度达到要求,支护结构开始发挥作用之后,收敛就不会再继续发生。
另外,在施工过程中还发现,如果在开挖过程中所发生的振动比较大,或者是隧道受到山体两侧的压力比较大,所产生的收敛情况就会比较明显,反之,则不会出现明显收敛,也不会发生太大程度变形问题。
2.2 地表下沉分析
在本文所研究的隧道施工中,在开挖工作时,由于受到开挖施工的影响,在掌子面的附近,约7 m左右的范围内,分别出现不均匀沉降的情况。
在下台阶开挖的过程中,由于上台阶的洞室地表会受到开挖振动的影响,所以也会出现沉降情况;同时,在整体开挖施工结束之后,在进行二次衬砌时,在混凝土没有达到设计强度之前,也会出现一定的沉降这些在施工中都需要进行针对性控制。
另外,在开挖初期阶段,在接近和进人监测断面的时候,地表都会出现一定程度的沉降,而当开挖施工越过监测断面之后,沉降就会逐渐减轻,等到越过断面约 100 m 时,地表沉降基本上就已经固定,不会再继续沉降。
3 隧道受力监测结果 3.1 钢支撑内力计算方法
在对内力进行计算的过程中,首先采用 ZX—210T 表面型钢筋应变计测试钢支撑上下翼缘的应变,然后再利用虎克定律对测点处的应力进行计算,最后根据截面应力分布换算出钢支撑的实际内力。
3.2 结果分析
钢支撑应力值随时间的变化示意图,通过该图能够看出,应力值一共经历了从急剧增大到缓慢增大再到逐渐平稳的过程。
第一阶段,为上台阶开挖阶段,该阶段受影响较大,所以应力值变化较快;第二阶段为下台阶开挖阶段,该阶段的应力值扩大速度便逐渐降低了下来;而到了第三阶段,也就是从仰拱施工做到二次衬砌结束,应力值的变化逐渐趋于平稳,并最终稳定。
在本工程中,钢支撑的轴力较大值为297.4kN,分布在隧道拱顶,而拱腰处两测点仅为23.5kN和21.8kN,着说明拱部承受的土压力比较大,在支护过程中应该加强对该部分的控制。
另外,通过对钢支撑所承受的弯矩进行分析可发现,其呈对称分布,因此,在对支护进行设计的过程中,一定要确保其拥有足够强的刚度。
4 软弱围岩隧道变形控制技术研究 4.1 控制理念
软弱围岩变形控制理念,主要可归纳为减轻作用在支护结构上的荷载并允许支护结构产生较大变形的方法和为了控制围岩松弛而尽可能早地控制支护变形的方法,即所谓的柔性控制和刚性控制,两者的设计理念是完全不同的。
4.1.1 刚性控制理念
大范围围岩加固:在浅埋地层、地层自重或围岩压力小、地层松软条件下,为减少地面沉降变形或隧道变形,着力改善并加固地层。
采用深孔大范围超前注浆或刚性较大的水平旋喷或大管棚超前支护、掌子面超前长锚管加固、提高围岩强度和刚度。
4.1.2 柔性控制理念
该理念是允许围岩变形,但控制围岩产生有害的变形。
其结构形式分为多重支护法、可缩式支护法和分阶段综合控制法。
它们的基木理念相同,都是容许围岩变形,释放地应力,减低支护压力,同时又能约束围岩松弛和过分变形,保持隧道稳定。
但在技术手段上又有各自差异,经济、工期上具有较大差距。
多重支护方法:预留足够允许变形量,在超前锚管或锚杆支护下,开挖后先设置第一层支护,约束围岩的初期变形;而后在距掌子面后方适当位置设置第二层支护,使隧道稳定、从而控制围岩大变形。
本方法的概念是允许一次支护发生屈服,设置二次支护后,地压和支护反力应得到平衡。
可缩式支护方法:预设足够预留变形,在超前锚管或锚杆支护下,隧道开挖后及时架设可缩式钢架等支护体系,允许产生较大变形,释放围岩压力,但要保持支护结构完整条件下的围岩压力与支护抗力平衡,防止围岩过度松弛,导致隧道围岩压力增大。
可缩式支护结构工艺复杂,技术要求高,施工工期较长。
4.2 软弱围岩隧道变形控制技术体系
铁路系统的隧道技术水平一直走在全国各行业同类工程的前列,事实上在引领着隧道技术领域的发展;经过三十多年的快速发展,某些方面已达到国际先进水平,但仍面临理念性和技术性难题:由于传统习惯对初期支护的作用认识不足,很多工程的技术措施难以可靠地控制围岩稳定性,部分工序质量难以保证;施工装备水平急需提高,多数隧道施工工序以手工作业为主;隧道施工现场的管理水平不高等。
而面对软弱围岩大变形问题,往往认识不足:常有增加支护厚度、增大支护钢架就可控制大变形的错误思想,缺乏综合治理、随机应变的观念;施工中缺乏科学性、安全性、高效化和经济性的协调与统一;施工技术参数优化意识不强,多台阶工作面平行作业,导致支护封闭距离过大;工期编排不合理,遇软弱围岩大变形问题仍然希望实现快速施工,施工安全与施工质量得不到有效保证。
5 结论
工程的实际案例进行研究和分析可知,在浅埋软弱围岩隧道的施工过程中,从上下台阶的开挖,一直到二次衬砌结束之前,地表都会出现沉降问题,隧道也都会出现变形问题,因此,在施工中要对其量测工作应引起足够重视,尽可能将因为地表下降所带来的影响控制在最小范围内,尽可能将变形控制在最小范围内。
参考文献:
[1]杨松,刘晓明.浅埋软弱围岩隧道变形与受力现场监测研究[J].黑龙江交通科技,2017,40(07):157+159.
[2]刘诚,丁文其,谈识,冯宗朝,郭洪雨.基于软弱围岩变形控制工法的浅埋隧道变形现场监测分析[J].公路隧道,2016(03):1-5.。