生物催化剂(Biocatalysts)
- 格式:ppt
- 大小:1.36 MB
- 文档页数:81
生物催化剂的研究进展生物催化剂(biocatalysts)是一类能够加速化学反应的生物体或者生物体中含有的酶。
由于其高效、环境友好、可再生等特点,近年来,生物催化剂成为了当今工业领域的研究热点。
在各大学校和研究机构内,各种类型的生物催化剂及其应用领域也在不断地被探索和发展。
实际上,生物催化剂不是什么新鲜事物。
早在100多年前的1897年,这个概念就已经被科学家 Harold Arthur Barker 提出。
然而当时的医学和化学技术极其落后,无法有效利用生物催化剂完成有效的化学反应。
随着科学技术的不断发展,生物催化剂的重要性逐渐凸显出来。
生物催化剂存在的意义不仅仅是在于能够极大地提高生产效率,更在于其与化学催化剂相比有更为明显的环保优势。
传统的工业生产往往会产生大量的污染物和副产物,同时工艺和废料处理工作也极为麻烦。
相比之下,生物催化剂的使用极为环保,无有害副产物的产生,并且形成的废料也能被很好地回收运用。
这也解释了为什么越来越多的人将注意力投向了生物催化剂研究。
其实,生物催化剂的应用非常广泛。
它们既能在医药领域中发挥作用,又能够促进食品加工的发展,同时也在新能源领域有广泛发展前景。
例如,过去在医学领域中研制药品大量使用有机溶剂,无论是在反应过程中还是产品纯化过程中,都会产生大量的有机溶剂废物。
而现在,人们可以使用生物催化剂来加速药物合成,避免大量有机污染物的产生,同时医药品的效果也大大提高。
在食品加工中,一些食品添加剂可能会对人体产生不良影响,此时可以选择使用生物催化剂中的脂肪酶和木糖酶等对食品进行改良,比如把不易溶解的脂肪分解成更小的分子。
在新能源领域中,生物催化剂也有广泛的应用。
比如在生物质发酵过程中,通过生物催化剂的催化作用可以将生物材料转化为生物燃料,这种方式无需使用石油等化石燃料,具有较为明显的能源节约效益。
此外,通过研究生物催化剂还可开发出更为高效的太阳能电池,使得电能的获取无需依赖化石能源,从而更为环保和可持续。
生物催化剂名词解释
生物催化剂是一种生物化学分子,它可以促进,加速或诱导化学反应发生。
它可以有助于减少体内所需能量的消耗,或者减少体内缺失或抑制化学反应所需的能量。
生物催化剂可以用来调控影响有机生物体的生命过程,包括代谢和表观遗传学等。
生物催化剂可以分为水溶性和非水溶性催化剂。
水溶性生物催化剂是最常见的类型,主要改变有机物在水中的行为,从而加速其特定的催化反应。
例如,水溶性酶可以帮助细胞内的发酵细菌把糖分解成乙酸,生成能量供细胞生长繁殖所需。
此外,水溶性酶也可以帮助细胞分解脂肪、肽等。
非水溶性生物催化剂是一种非常重要的工具,可以改变有机物在油中的行为,从而加快反应速度。
例如,非水溶性酶可以帮助细胞分解油脂,并把油脂的碳氢键分解成氢和碳。
另外,非水溶性酶还能帮助细胞把烃变成供某些特定反应所需的特定的氢碳结构。
总的来说,生物催化剂拥有不同的功能,可以加速有机物的反应,并且会减少体内所需的能量消耗。
尤其是在体内缺失或抑制化学反应时,生物催化剂可以起到最大的作用,把反应推向正确的道路,帮助维持细胞的正常运作,促进健康的生命过程。
生物催化剂的制备及应用生物催化剂是利用微生物、酵母或酶等生物体制备的能够催化特定反应的生物化学物质。
这种催化剂在化学合成、医学、食品加工等领域中应用广泛,对于提高反应效率、降低成本、减少环境污染等方面都有显著的意义。
本文将介绍生物催化剂的制备及其应用情况。
一、生物催化剂的制备生物催化剂的制备过程包括酵母或微生物的筛选、酵母或微生物培养、提取酵母或微生物、氨基酸序列分析和确定其结构、分类、纯化,而且每个阶段都需要精心设计和控制条件。
下面将详细介绍。
1.酵母或微生物筛选酵母或微生物筛选是制备生物催化剂的第一步,对于提高催化效率和纯度至关重要。
一般来说,在筛选时常采用筛选营养少寡的微生物或酵母以避免竞争影响效率,也常采用分离纯化法进行鉴定。
2.酵母或微生物培养酵母或微生物培养是制备生物催化剂的基础,是为提取酵母或微生物催化剂做好准备,可采用高密度培养、发酵法等方法进行。
3.提取酵母或微生物提取酵母或微生物是制备生物催化剂必不可少的步骤,其目的是提取催化剂所在的细胞质或胞外产物。
提取方法一般有机和无机两种方法,前者常采用三氯乙酸和甲醇,后者常用浓盐酸和氨水。
4.氨基酸序列分析和确定其结构氨基酸序列分析和确定其结构是制备生物催化剂的关键步骤,可采用一些高科技手段如核磁共振、X射线衍射等进行分析和判定催化活性,从而确定其最佳的应用范畴。
5.分类、纯化和鉴定生物催化剂分为很多类,常用技术有分子筛法、凝胶过滤层析法和高效液相色谱法等,纯化后的生物催化剂可以通过质谱、核磁共振等方法进行鉴定。
二、生物催化剂的应用生物催化剂的应用非常广泛,下面将介绍它在化学合成、医学和食品加工等领域中的应用情况。
1.化学合成中的应用生物催化剂在化学合成中的应用很广泛,比如可以用于高纯度酰胺的生产,还可用于环糊精、荧光素等有机化合物的合成反应,通过这种催化反应,不仅大大提高了产品纯度和产量,而且减少了环境污染。
2.医学领域中的应用在医学领域,生物催化剂用于制备生物医药和抗体等生物制品,还能用于开发高效、无害和容易选择的药物,如酶替代治疗、基因治疗等,这些都为医疗预防提供了便利。
生物催化名词解释生物催化是一种对环境中能量转换过程起调控作用的过程,它在能源、资源的利用以及污染治理等方面都有重要意义。
生物催化剂(biocatalyst)是指一些由细菌、古菌等微生物产生的具有催化功能的物质。
生物催化所催化的反应可以是可逆的,也可以是不可逆的。
生物催化一般有3种类型:第一种是基于酶的催化,这些酶是专一性的催化剂,使一些需要高浓度底物或受热易分解的化合物转化为产物,这类催化剂广泛存在于大多数生物中,如植物中的蔗糖酶;动物体内的多种脱氢酶等。
这类酶是自催化过程,即只要反应条件满足,酶便可一直催化下去。
第二种是生物催化剂与金属配合物催化,它们是非专一性催化剂,有着与酶相同的性质,可在反应中逐步降低活性而被代替。
金属离子是反应过程中的重要组成部分,随着有机物的分解而还原成为无害的形式并被除去。
这类催化剂包括铁、钴、镍、铜等金属的氧化物。
这类催化剂称为微生物或古生物催化剂。
第三种是金属酶催化。
金属酶催化剂与无机金属的氧化物形成复合物,其中酶起催化作用,金属离子仅作载体。
当金属氧化物催化剂存在时,无机金属以离子状态存在,当加入金属酶后,金属酶成为活性中心,其中催化剂起着催化作用。
如镍-铁-锰合金酶,以镍为催化剂,将铁氧化成为铁离子;铬-铁-锌-铜合金酶,以铬为催化剂,将铁氧化成为铁离子。
此外,由天然金属离子如金、银、铁、锌、铜、钼和钨等与氨基酸的羧酸盐结合而成的金属酶,也可催化有机化合物的化学反应。
生物催化的另外两个特点是快速性和选择性。
酶催化的反应速率很快,大约在100~1000min,最适宜于进行选择性较强的化学反应。
生物催化剂常常能在常温常压下催化大多数不稳定化合物发生化学反应,尤其适宜于微生物催化。
生物催化剂既可催化相对分子质量比较大的化学反应,又可催化相对分子质量比较小的化学反应。
生物催化剂在光、热和水等外界条件的影响下,能够降低活性。
例如,热处理对酶蛋白的变性就是一种很好的改性方法。
生物催化剂名词解释生物催化剂是指在生物体内或由生物体所产生的能够促进化学反应进行的特定蛋白质分子,也被称为酶(enzyme)。
酶通过降低反应能垒来提高化学反应速率,从而具有催化作用。
生物催化剂具有高度的专一性,只会催化特定的底物分子进行化学反应。
这是因为酶的活性部位与底物分子之间存在特定的空间结构和相互作用,只有与活性部位的结构适配的底物才能与酶形成稳定的酶底物复合物,进而进行化学反应。
生物催化剂在生物体内发挥着重要的功能。
例如,消化系统中的酶可以催化食物中的营养物质的消化和吸收,保证机体正常运作。
在代谢过程中,酶也起到了关键的作用,催化有机物的合成和降解反应,维持机体内部物质的平衡。
与化学催化剂相比,生物催化剂具有一系列优点。
首先,生物催化剂具有高度的选择性,可以在温和的条件下进行反应,避免了高温和强酸碱等条件对底物和产物的不可逆损伤。
此外,生物催化剂也可以调节反应的速率,使底物在一定的时间范围内被转化为产物,避免了产生副反应和过量物质的浪费。
在工业生产中,生物催化剂被广泛应用。
例如,在食品工业中,酶被用于葡萄糖酸盐的制备、果汁澄清和面糊发酵等过程中。
在制药工业中,酶可以催化合成药物的步骤,提高合成效率和产品质量。
在生物燃料领域,酶可以催化生物质的降解和发酵,转化为可再生能源。
然而,生物催化剂也存在一些限制和挑战。
酶在特定的温度和pH条件下才能发挥最佳的催化活性,超出这些条件可能导致酶变性失活。
酶的稳定性和储存也是一个问题,酶易于受到环境的影响,需要适当的保存条件和辅助剂。
此外,生物催化剂的制备和纯化也是一个挑战,需要耗费大量的时间和资源。
总而言之,生物催化剂是一类具有催化活性的蛋白质分子,能够在温和的条件下促进化学反应。
它具有高度的专一性、选择性和调节能力,在生物体内和工业生产中发挥着重要的作用。
虽然存在一些限制和挑战,但随着生技技术和基因工程等的发展,生物催化剂在未来的应用前景仍然广阔。
第四章酶Enzymes本章主要内容(9学时)一.酶的概念(重点)二.维生素与辅酶(重点)三.酶促反应动力学(重点)四.酶的结构和催化作用机制(重点)五.酶的调控(重点)六.人工酶与酶工程(自学为主)一、酶的概念⏹生物机体的一切生理活动,都是由无数复杂的化学变化(反应)来实现的。
⏹生物体内进行的所有这些化学变化都在酶的催化下进行的。
⏹Much of the history of biochemistry is the history of enzyme research.一、酶的概念⏹In the late 1700s, biological catalysis was first recognized.⏹1897年,E. Büchner,首次从酵母细胞中提取出酶,实现无细胞生醇发酵。
一、酶的概念⏹1926年,James Sumner,结晶出第一个蛋白酶---脲酶。
⏹pepsin, trypsin, andother digestive enzymesAll enzymes are proteins.一、酶的概念⏹J. B. S. Haldane⏹A paper entitled “Enzymes”.weak bonding interactions between an enzyme and its substrate might be used to catalyze a reaction.一、酶的概念⏹1989年,推翻“酶都是蛋白质”这一传统概念。
⏹In 1982,Thomas Cech,RNA spliced itselfaccurately without anyprotein enzymes fromTetrahymena(四膜虫).Most Enzymes Are Proteins.一、酶的概念酶是生物催化剂⏹生物催化剂(Biocatalysts):活细胞产生的一类具有催化功能的生物分子。
生物催化剂发展史简述以生物催化剂发展史为题,本文将从不同时间段的发展阶段来描述生物催化剂的演变过程。
生物催化剂是一种可以促进化学反应的生物大分子,具有高效、选择性和环境友好等优点,被广泛应用于化学合成、药物生产、环境保护等领域。
一、起源和发展初期生物催化剂的起源可以追溯到远古时期。
早在公元前6000年,人们就开始利用酵母菌发酵来制作面包和酒。
这是人类最早的生物催化剂应用实例。
然而,在这个阶段,人们并不了解酵母菌的具体作用机制,只是将其应用于食品加工中。
二、酶的发现和应用19世纪末,酶的概念被正式提出,并且开始对酶进行系统的研究。
1897年,德国化学家布哈纳发现了第一个纯化的酶--酵母菌的葡萄糖氧化酶。
他发现这种酶可以将葡萄糖氧化为葡萄糖酸,并用这种酶来测定葡萄糖的含量。
随着对酶的进一步研究,人们逐渐认识到酶是一种具有高效催化作用的生物催化剂。
20世纪初,酶开始在工业生产中得到应用。
比如,制糖工业中使用淀粉酶将淀粉转化为葡萄糖,制酒工业中使用酵母菌发酵葡萄糖制取乙醇等。
三、酶的纯化和改良在20世纪初至中期,科学家们开始开展对酶的纯化和改良研究。
通过纯化酶,科学家们可以更好地了解酶的结构和功能。
同时,通过改良酶的性质,使其更适用于特定的反应条件。
研究者们通过改变酶的pH值、温度和离子浓度等条件,使酶具有更广泛的适应性。
此外,还通过酶的基因工程方法,将目标基因转入宿主生物中,使其产生特定酶,从而改变酶的催化性质。
这些改良方法的出现,进一步推动了生物催化剂的应用。
四、生物催化剂的工业化应用随着对酶的研究和改良,生物催化剂开始在工业上得到广泛应用。
20世纪60年代,丹麦的诺沃酶公司首次将酶应用于洗涤剂生产中,取代了传统的化学洗涤剂中的磷酸盐成分。
这不仅提高了洗涤剂的效果,还减少了对环境的污染。
此后,生物催化剂在食品加工、制药、化工等领域的应用逐渐扩大。
特别是在制药行业,酶作为生物催化剂已经成为药物合成的重要工具。
1.蛋白质( protein ) :由许多不同的α-氨基酸按一定的序列通过酰胺键(蛋白质化学中专称为肽键)缩合而成的,具有较稳定的构象并具有一定生物功能的生物大分子。
2. 两性离子:同一个氨基酸分子上带有能放出质子的-NH3+正离子和能接受质子的-COO-负离子。
3. 氨基酸:是含有一个碱性氨基和一个酸性羧基的有机化合物,是蛋白质的基本结构单位,构成蛋白质的氨基酸有20种。
4. 氨基酸等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
在电场中既不向阳极移动,也不向阴极移动,此时溶液的pH值称为该氨基酸的等电点。
5.茚三酮反应:茚三酮在弱酸溶液中与α-氨基酸共热,引起氨基酸氧化脱氨、脱羧反应,最后茚三酮与反应产物(氨和还原茚三酮)发生作用,生成紫色物质(570nm);两个亚氨基酸──脯氨酸和羟脯氨酸与茚三酮反应形成黄色化合物(440nm)。
6.肽平面:肽键中-C-N-键,具有部分双键的性质,不能旋转,使形成肽键的六个原子固定在一个平面之内。
7. 构型(configuration)是指在立体异构体中取代原子或基团在空间的取向。
8.构象(conformation):在化学结构和configuration相同的分子中,其原子由于单键的旋转而在空间形成的不同的构象体可以相互转化。
其空间位置的改变不涉及共价键的破裂。
9.α-螺旋:α-螺旋是一个棒状结构;骨干结构为锯齿形肽链。
紧密卷曲的多肽链形成棒的内部;链中的C=O和N-H基团在同一平面内,但是分布在锯齿链的两侧。
侧链以螺旋式的排布向外伸展。
10.β-折叠(β-pleated sheet):β-折叠或β -折叠片也称β-结构或β-构象,它是蛋白质中第二种最常见的二级结构。
β-折叠是由两条或多条几乎完全伸展的多肽链平行排列,通过链间的氢键进行交联而形成的,或一条肽链内的不同肽段间靠氢键而形成的。
肽链的主链呈锯齿状折叠构象。
扬州大学2017年攻读硕士学位研究生入学考试试题重要知识点汇编(食品生物化学)第一章生物化学的的概念生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,是研究生命的化学本质的科学。
它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展1.静态生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面1.生物体的物质组成、结构与功能:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
通过对生物大分子结构的理解,揭示结构与功能之间的关系。
2.物质代谢与调控:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程在细胞内进行的,是最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
5.遗传信息的传递与表达:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
四、学习生物化学的方法第二章蛋白的结构与功能重点:蛋白质的性质与结构难点:蛋白质的空间结构教法::课件第一节蛋白质是生命的物质基础一蛋白质是构成生命的物质基础二蛋白质的生物学功能1.生物催化作用2.代谢调控作用3.免疫防御作用4.运输及储存作用5.运动作用6.生物膜功能及受体作用7.其它作用三:蛋白质的分类1根据生物学功能分:酶、抗体、运输蛋白、激素等2:根据化学组成成分分类:简单蛋白:仅由aa构成结合蛋白:简单蛋白与其它生物分子的结合物,糖蛋白(共价)、脂蛋白(非共价)3:根据分子形状分类:球蛋白:长/宽≤3~4,血红蛋白纤维蛋白:长/宽>10,血纤蛋白、丝蛋白第二节蛋白质的分子组成一、蛋白质的元素组成:C (50%-56%) H (6%-8%) O (19%-24%) N (13%-19%)S (0%-4%)其中氮的含量稳定15%-17%,平均为16%,通过测定物质的含氮量可测蛋白质的含量。