电化学在制备纳米材料方面的综述

  • 格式:doc
  • 大小:252.00 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电化学在制备纳米材料方面的应用班级:09材料化学2 姓名:方泽权学号:2009274202

摘要:电化学方法制备纳米材料是近十几年来新发展起来的一项技术。近十几年来,已经发展了多种制备纳米粒子的物理方法和化学方法。本文主要对电化学方法在纳米材料制备中的应用及其研究进展做了较为全面的概述,包括了电化学沉积法、模板电化学法合成纳米材料、稳定剂保护下电化学还原法制备金属溶胶、电化学台阶边缘修饰法制备一维纳米材料以及脉冲超声电化学法制备纳米粒子,并对其应用前景做了展望。

关键词:电化学纳米材料模板应用前景

Electrochemical preparation nanometer materials in application

Abstract: the electrochemical method preparation nanometer material is the past dozens of years, developed a new technology. More than ten years, it has developed a variety of preparation of nanometer particle physics method and chemical method. This paper focuses on the electrochemical method in preparation of nanometer materials, the application and research progress in a relatively comprehensive overview of, including electrochemical deposition method, electrochemical synthesis template nanometer materials, stabilizing agent under the protection of the electrochemical reduction method for metal sol, electrochemical method for a modified steps edge nanometer material and pulse ultrasound dimension electrochemical method for nanoparticles, and its application prospect.

Keywords: electrochemical nano material template application prospect

引言:电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直

至现在电化学制备纳米金属线、金属氧化物已有几十年的研究时间。直至1963年,运用电沉积技术制备叠层膜的方法不断改进,Brenner提出了单一电解液中沉积Co-Bi多层膜的设想,由原来的多槽电沉积转变成今天的单槽电沉积,这便是当今电沉积制备纳米金属多层膜的开端。电沉积法制备纳米叠层膜逐渐成为一个比较成熟的获得纳米晶体的方法。

在电沉积领域,人们也认识到超细微粒加人镀层可以增强原金属镀层的耐磨、耐高温等性能,并且在过去的30年里它也得到了长足的发展。对于纳米微粒作为复合镀微粒在电沉积过程中影响金属沉积以及晶粒生长的文献直到近十年才出现。许多研究表明纳米微粒的加人可以抑制晶体的长大并且促进电沉积纳米晶体的形成。

生物传感器作为一门涉及化学、生物学、物理学以及电子学等领域的交叉学科,在临床医药、发酵生产、食品检验和环境保护等诸多领域有着广阔的应用前景。结合电分析技术与生物传感技术的电化学生物传感器是其中非常重要的一类。它是由生物材料作为敏感元件,

电极作为转换元件.以电势、电流或电导等作为特征检测信号的传感器。理想的生物分子的固定方法要求既能促进有效的电子转移.又能保持被固定生物分子的活性。近年来,纳米技术逐步进入电分析和生物传感器领域.引发了突破性的进展。通过将新型纳米材料修饰到电极表面,可以有效地固定生物分子.并促进其氧化还原中心与电极之间的直接电子转移.从而研制新一代的生物传感器及其它生物器件。

1、主要应用领域

1.1腐蚀与防护

电沉积纳米晶体具有优异的耐蚀性,可以广泛应用于各种防护场所。例如普通镍基合金用于核电站水蒸气发生管时常发生晶间应力腐蚀开裂,但若采用纳米晶型的镍基合金,就可以有效地抑制晶间应力腐蚀。又例如镍一铜纳米合金具有优异的耐海水、酸、碱、氧化、还原性气体腐蚀的特性,因而这类合金在工业中的应用将非常广泛。

1.2析氢电极

镍一铝合金以及其他合金具有良好的析氢电催化活性,纳米晶型的合金微粒具有高的表面能,从而使表面原子具有高的活性,析氢交换电流密度增大,析氢过电位降低。因而电沉积纳米晶型的电催化析氢电极的研究与开发具有广阔的前景。

1.3储氢燃料电池

电沉积纳米晶体的镍基以及许多稀土合金由于具有较大的比表面积,并且有良好的储氢性能,是储氢材料研究的一个不可忽略的方面。它的发展为今后燃料其他的应用与普及提供了条件,因而对于此方面的研究也具有很大的潜力。

1.4磁记录元件

电沉积纳米晶体磁性材料在磁记录方面的应用前景也很广,由于纳米晶体磁性材料具有十分特别磁学性能,即随晶粒尺寸的减小而磁饱和强度增大,因而用它制成的磁记录元件材料的音质、图像、记录密度、信噪比等均很好。

1.5膜分离

电沉积技术还可以应用于模板合成制备纳米线状金属材料(纳米线金属可以看作是一串小的纳米晶粒连接而成),如金、银、镍纳米金属线等。这些纳米线状金属既可以用于制备纳米电极,为研究非均相电子转移提供有利的手段,也可以制备出离子选择性透过膜,用于分子的分离。

1.6低温材料

电沉积技术制备的纳米金属叠层膜,例如铜一铬多层膜,不但每层金属膜厚度在纳米范围内,且每层金属均为纳米晶体,这种金属纳米晶交替排列的叠层膜在液氮的温度下具有较高的延展性,具有在低温条件下的潜在应用价值。

1.7生物传感器

在生物传感器方面,物传感技术结合了信息技术与生物技术.涉及化学、生物学、物理学以及电子学等交叉学科,在医药工业、食品检测和环境保护等诸多领域有着广阔的应用前景。

2、电化学方法制备纳米材料

根据沉积方式可以将电化学方法分为直流电沉积、交流电沉积、脉冲电沉积、复合共沉积、喷射电沉积、模板电化学法和脉冲超声电化学法等技术;根据沉积过程可以分为单槽和多槽电沉积。纳米晶体的获得,关键在于制备过程中有效地控制晶粒的成核和生长。传统的电沉积方法电流密度小,因而沉积速率低,生长的晶粒较为粗大。制备纳米晶体要求的电流密度远大于一般电沉积的电流密度,’晶核的生长速率高,晶体长大的速率小,所以晶粒的尺寸.可以控制在纳米范围内。以下分别介绍各种方法的应用实例。

2.1直流电沉积纳米晶体