钻柱受力分析
- 格式:ppt
- 大小:2.71 MB
- 文档页数:46
第三章钻受力分析3.1 作用在钻柱上的基本载荷钻柱的受力状态与所选用的钻井方式有关,不同的位置上作用不同的载荷。
概括起来,作用在钻柱上的基本载荷有以下几种:(1)轴向力。
处于悬挂状态下的钻柱,在自重作用下,由上到下均受拉力。
最下端的拉力为零,井口处的拉力最大。
在钻井液中钻柱将受到浮力的作用,浮力使钻柱受拉减小。
起钻过程中,钻柱与井壁之间的摩擦力以及遇阻、遇卡,均会增大钻柱上的拉伸载荷。
下钻时钻柱的承载情况与起钻时相反。
循环系统在钻柱内及钻头水眼上所耗损的压力,也将使钻柱承受的拉力增大。
钻铤以自重给钻头加钻压,造成钻柱下部处于压缩状态。
(2)径向挤压力。
应用卡瓦进行起下钻作业时,由于卡瓦有一定的锥角,在钻柱上引起一定的挤压力。
中途测试时,钻柱上也要承受管外液柱的挤压力。
(3)弯曲力矩。
弯曲力矩的产生是因钻柱上有弯曲变形存在;引起钻校弯曲变形的主要因素是给定的钻压值超过了钻柱的临界值。
在转盘钻井中,钻柱在离心力的作用下,亦会造成弯曲。
由于钻柱在弯曲井眼内工作,也将产生弯曲。
在弯曲状态,钻柱如绕自身轴线旋转,则会产生交变的弯曲应力。
(4)离心力。
钻柱在钻压的作用下会产生弯曲,在一定的条件下,弯曲钻柱会围绕井眼中心线旋转而产生离心力,促使钻柱更加弯曲。
(5)扭矩。
钻头破碎岩石的功率是由转盘通过方钻杆传递给钻柱的。
出于钻柱与井壁和钻井液有摩擦阻力,因而钻柱所承受的扭矩井口比井底大。
但在使用井底动力钻具(涡轮钻具、迪纳钻具等)时,作用在钻柱上的反扭矩,井底大于井口。
(6)振动载荷。
使钻柱产生振动的干扰力也是作用在钻柱的重要载荷(图 2-1)。
在钻井过程中,用钻柱将钻头送至井眼底部并向钻头传递动力,靠钻头的牙齿、切削刃和射流破碎岩石形成井筒;通过钻柱中心的圆管向井下传递高压钻井液,靠钻井液的流动把岩石碎屑携至地面并从钻井液中除掉岩屑。
为了控制井眼钻进的方向,靠近钻头的一段钻柱外径和抗弯刚度较大,并在一定位置上安放一定规格的稳定器,下部钻柱只有稳定器和钻头接触井壁,钻柱本体则不与井壁接触。
第三章钻受力分析3.1 作用在钻柱上的根本载荷钻柱的受力状态与所选用的钻井方式有关,不同的位置上作用不同的载荷。
概括起来,作用在钻柱上的根本载荷有以下几种:〔1〕轴向力。
处于悬挂状态下的钻柱,在自重作用下,由上到下均受拉力。
最下端的拉力为零,井口处的拉力最大。
在钻井液中钻柱将受到浮力的作用,浮力使钻柱受拉减小。
起钻过程中,钻柱与井壁之间的摩擦力以及遇阻、遇卡,均会增大钻柱上的拉伸载荷。
下钻时钻柱的承载情况与起钻时相反。
循环系统在钻柱内及钻头水眼上所耗损的压力,也将使钻柱承受的拉力增大。
钻铤以自重给钻头加钻压,造成钻柱下部处于压缩状态。
〔2〕径向挤压力。
应用卡瓦进展起下钻作业时,由于卡瓦有一定的锥角,在钻柱上引起一定的挤压力。
中途测试时,钻柱上也要承受管外液柱的挤压力。
〔3〕弯曲力矩。
弯曲力矩的产生是因钻柱上有弯曲变形存在;引起钻校弯曲变形的主要因素是给定的钻压值超过了钻柱的临界值。
在转盘钻井中,钻柱在离心力的作用下,亦会造成弯曲。
由于钻柱在弯曲井眼内工作,也将产生弯曲。
在弯曲状态,钻柱如绕自身轴线旋转,那么会产生交变的弯曲应力。
〔4〕离心力。
钻柱在钻压的作用下会产生弯曲,在一定的条件下,弯曲钻柱会围绕井眼中心线旋转而产生离心力,促使钻柱更加弯曲。
〔5〕扭矩。
钻头破碎岩石的功率是由转盘通过方钻杆传递给钻柱的。
出于钻柱与井壁和钻井液有摩擦阻力,因此钻柱所承受的扭矩井口比井底大。
但在使用井底动力钻具〔涡轮钻具、迪纳钻具等〕时,作用在钻柱上的反扭矩,井底大于井口。
〔6〕振动载荷。
使钻柱产生振动的干扰力也是作用在钻柱的重要载荷〔图 2-1〕。
在钻井过程中,用钻柱将钻头送至井眼底部并向钻头传递动力,靠钻头的牙齿、切削刃和射流破碎岩石形成井筒;通过钻柱中心的圆管向井下传递高压钻井液,靠钻井液的流动把岩石碎屑携至地面并从钻井液中除掉岩屑。
为了控制井眼钻进的方向,靠近钻头的一段钻柱外径和抗弯刚度较大,并在一定位置上安放一定规格的稳定器,下部钻柱只有稳定器和钻头接触井壁,钻柱本体那么不与井壁接触。
钻柱力学分析读者朋友,欢迎你来到这篇文章,这篇文章将为你提供一个深入的分析,关于叫做钻柱力学(Drilling Column Mechanics)的话题。
本文将概述钻柱力学的基本原理和它的在石油钻探中的应用,还将分析钻柱力学的可行性以及它在钻探方面的发展前景。
一、钻柱力学的基本原理钻柱力学的主要原理来自于两个优秀的物理原理:力的平衡和圆柱曲线力学。
力的平衡是指钻柱的各种力,如系统重力、钻柱扭矩、钻柱圆柱曲线力学及系统抗拉力,需要相互抵消,以维持力学稳定。
而圆柱曲线力学是指圆柱形轴向力的力学行为,可以用来计算钻柱的截面变形情况。
二、钻柱力学在石油钻探中的应用现代石油钻探技术中,钻柱力学是一个重要的因素,可以帮助工程师理解钻探过程中钻柱受力和变形的情况,以及如何确定在钻探过程中采取正确的措施。
此外,钻柱力学还可以用来估计井壁收敛变形,以及确定最佳钻柱尺寸,以减少钻井时间和成本。
三、钻柱力学的可行性在钻探过程中,钻柱受到各种不同的力,这些力会促使钻柱产生微小的变形,并在时间的推移中不断影响钻探过程的进展。
因此,利用钻柱力学可以有效地控制钻柱的受力状态,从而帮助钻探工程师在短时间内完成钻井。
此外,钻柱力学可以帮助建立仿真模型,以便工程师可以在实际钻探之前模拟出不同情况下的钻井受力和变形状况。
四、钻柱力学的发展前景由于石油钻探技术不断进步,钻柱力学在钻井过程中也将变得越来越重要。
目前,钻柱力学已经被广泛应用于石油钻探,但未来仍有很多空间可以改进和优化,如研发新型工具和材料,以及提高力学分析技术。
此外,研究人员正在尝试用钻柱力学来优化钻探布线,以减少钻探过程中的受力和变形。
总结以上是关于钻柱力学的详细介绍。
从上面可以看出,钻柱力学是一个非常重要的概念,它可以帮助工程师在短时间内完成钻井,而且在未来也会越来越受重视。
因此,为了提高石油钻探的效率,应该加强对钻柱力学的研究,以提升钻探技术水平。
第二节钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与作用(一)钻柱的组成钻柱(Drilling String)是水龙头以下、钻头以上钢管柱的总称。
它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。
(一)钻柱组成(一)钻柱的组成钻柱是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆、钻杆、钻挺、各种接头(Joint)及稳定器等井下工具。
(二)钻柱的作用(见动画)(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深;(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试(Drill-Stem Testing),又称中途测试。
1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。
(2)结构:管体+接头,由无缝钢管制成。
1. 钻杆(3)连接方式及现状:a.细丝扣连接,对应钻杆为有细扣钻杆。
b.对焊连接,对应钻杆为对焊钻杆。
1. 钻杆(4)管体两端加厚方式:常用的加厚形式有内加厚(a)、外加厚(b)、内外加厚(c)三种.(a) (b) (c)(5)规范壁厚:9 ~11mm 外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:"21,"21 ,"21,"87 ,835139.70 ,500.127 430.1144101.60390.88 273.00 230.60第一类 5.486~6.706米(18~22英尺);第二类8.230~9.144米(27~30英尺); 第三类11.582~13.716米(38~45英尺)。
常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12(6)钢级与强度钻 杆 钢 级物 理 性 能D E95(X)105(G)135(S)MPa379.21517.11655.00723.95930.70最小屈服强度lb/in2550007500095000105000135000 MPa586.05723.95861.85930.791137.64最大屈服强度lb/in285000105000125000135000165000 MPa655.00689.48723.95792.90999.74最小抗拉强度lb/in295000100000105000115000145000钢级:钻杆钢材等级,由钻杆最小屈服强度决定。