济宁市2018年小学毕业小升初考试数学全真模拟试题(1)-附答案
- 格式:doc
- 大小:859.00 KB
- 文档页数:5
2018年最新山东省济宁市邹城市小升初数学试卷一、填空题.(每空1分,共22分)1.(2分)一个九位数,最高位是最小的奇数,千万位是最大的一位数,万位最小的质数,百位数最小的合数,其余各位都是零,这个数是,省略亿后面的尾数约是.2.(4分)3÷=÷24==75%=折.3.(1分)一件商品原价200元,现打九五折销售,比原来便宜元.4.(1分)张伯伯家的一块地,去年收稻谷2800千克,今年比去年增产了三成,这块地今年收稻谷千克.5.(1分)如果某天的最低气温是﹣2度,最高气温是+5度,当天的温差是度.6.(1分)一种精密零件长25mm,把它画在比例尺是12:1的零件图上应画cm.7.(1分)一所学校男学生与女学生的比是4:5,女学生比男学生人数多%.8.(1分)车轮的半径一定,车轮所行驶的路程和转数成比例.9.(3分)公顷=平方米1时15分=时5.07m3=dm3.10.(3分)如图:(1)△ABC是以BC为底边的等腰三角形,且∠B的补角为110°,则∠B=,∠ACB=;(2)△ABC是以BC为底边的等腰三角形,如果∠A:∠B=6:5,那么∠A=,∠B=.11.(1分)羊城小学进行一次体育考试,合格的有108人,不合格的有12人,这次体育考试的合格率是.12.(2分)A=2×2×3,B=2×3×5,A和B的最大公因数是,最小公倍数是.二、判断题(对的在括号里打“√”,错的打“×”.)(共5分)13.(1分)任何两个质数积一定是合数..(判断对错)14.(1分)三角形的面积是平行四边形面积的一半..(判断对错)15.(1分)圆柱体的体积等于圆锥体的体积的3倍..(判断对错)16.(1分)周长相等的两个圆,它们的面积也一定相等..(判断对错)17.(1分)把甲班人数的调入乙班后,两班人数相等,原来甲、乙两班人数的比是3:2..(判断对错)三、选择题.(把正确答案前的序号填在括号里)(共5分)18.(1分)2008年的第一季度一共有()天.A.89 B.90 C.91 D.9219.(1分)一个冰箱的体积约220()A.立方厘米B.立方分米C.立方米20.(1分)小丽用圆规画一个周长是15.7cm的圆,圆规两脚间应量取的距离是()cm.A.15.7 B.5 C.2.521.(1分)下面图形中,()绕着中心点旋转60°后能和原图重合.A.B .C .22.(1分)下面一定会发生的事件是()A.明天要刮风B.顺风行车比逆风行车快C.你的前面是东,后面一定是西四、计算题23.(4分)直接写出得数.97+0.3 =+0.625=0.64+3.6=﹣=1÷0.05=4.2÷0.2=0.125×80=20÷=24.(15分)脱式计算.(能简算的要简算)+++15.72﹣8.84﹣1.16(++)×6025×32×1.25(﹣)÷0.5+.25.(4分)求未知数x.3x﹣0.6×4=4.8:x=:.26.(6分)列式(或方程)计算.(1)一个数的75%比它的60%多4.5,求这个数?(2)一个数的2倍比54的少3,求这个数?五、解答题(共1小题,满分6分)27.(6分)按要求画一画.(1)画出图形A向上平移4格,再向右平移5格后的图形B.(2)画出图形A绕O点顺时针旋转90°后的图形C.(3)以直线MN为对称轴作图的轴对称图形D.六、统计小专家.(8分)28.(8分)根据下面的折线统计图填空.1、这一年中,雨量最多的是月份,雨量最少的是月份.2、这是统计图,从图中可以看出月份到月份降水量逐渐增多,月份到月份降水量逐渐减少.3、最多降水量比最少降水量多毫米.4、3月份降水量比2月份多%,3月份比4月份少%.七、解决问题.(每题5分,共25分.)29.(5分)一个圆锥形的麦堆,底面半径是2米,高是1.2米,如果每立方米小麦重500千克,那么这堆小麦重多少千克?30.(5分)一只无盖的圆柱形水桶,从里面量得底面直径是4dm,高是6dm,做这只水桶至少需要铁皮多少平方分米?31.(5分)商场打折促销时,李阿姨买了一件上衣和一条裤子,共用了544元,其中上衣按标价打七折,裤子按标价打八折,上衣的标价为400元,则裤子的标价是多少元?32.(5分)一艘轮船从甲港开往乙港,去时顺水,每小时行24千米,15小时到达.返回时逆水,速度降低了25%,多少小时返回甲港?(用比例解)33.(5分)客车和货车同时从甲、乙两地的中间向相反方向行驶3小时后,客车到达甲地,货车离乙地还有42千米,已知货车和客车的速度比是5:7.甲、乙两地相距多少千米?2018年最新山东省济宁市邹城市小升初数学试卷参考答案与试题解析一、填空题.(每空1分,共22分)1.(2分)一个九位数,最高位是最小的奇数,千万位是最大的一位数,万位最小的质数,百位数最小的合数,其余各位都是零,这个数是 1 9002 0400,省略亿后面的尾数约是2亿.【分析】最小的奇数是1,最大的一位数是9,最后的质数是2,最小的合数是4,根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.【解答】解:这个数写作:1 9002 0400;1 9002 0400≈2亿.故答案为:1 9002 0400,2亿.2.(4分)3÷4=18÷24==75%=7.5折.【分析】解决此题关键在于75%,75%可改成折数7.5折,75%可改写成分数,的分母相当于被除数写成3÷4;的分母从4到24扩大6倍,3也扩大6倍是18;的分子从3到12扩大4倍,4也扩大4倍是16.据此进行改写即可【解答】解:3÷4=18÷24==75%=7.5折.故答案为:4,18,16,7.5.3.(1分)一件商品原价200元,现打九五折销售,比原来便宜10元.【分析】把原价看作单位“1”,打九五折出售,计算现价是原价的95%,现价比原价便宜的钱数占原价的(1﹣95%),根据一个数乘百分数的意义,用乘法解答.【解答】解:200×(1﹣95%)=200×0.05=10(元),答:比原来便宜10元.故答案为:10.4.(1分)张伯伯家的一块地,去年收稻谷2800千克,今年比去年增产了三成,这块地今年收稻谷3640千克.【分析】三成=30%,把去年的产量看成单位“1”,今年的产量是去年的(1+30%),由此用乘法求出今年的产量.【解答】解:2800×(1+30%)=2800×130%=3640(千克)答:这块地今年收稻谷3640千克.故答案为:3640.5.(1分)如果某天的最低气温是﹣2度,最高气温是+5度,当天的温差是7度.【分析】这是一道有关温度的正负数的运算题目,求这一天的温差是多少,即求最高气温与最低气温二者之差,列式为5﹣(﹣2),计算即可.【解答】解:5﹣(﹣2)=5+2=7(℃);答:这一天的温差是7℃.故答案为:7.6.(1分)一种精密零件长25mm,把它画在比例尺是12:1的零件图上应画30cm.【分析】要求零件的图上距离是多少厘米,根据“实际距离×比例尺=图上距离”,代入数值,计算即可.【解答】解:25×=300(毫米)=30(厘米);答:应画30厘米;故答案为:30.7.(1分)一所学校男学生与女学生的比是4:5,女学生比男学生人数多25%.【分析】假设男生有4人,则女生有5人,求女学生比男学生人数多百分之几,把男生人数看作单位“1”,根据“(大数﹣小数)÷单位“1”的量”进行解答即可.【解答】解:(5﹣4)÷4,=1÷4,=25%;故答案为:25.8.(1分)车轮的半径一定,车轮所行驶的路程和转数成正比例.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:行驶的路程÷车轮的转数=车轮的周长,车轮的半径一定,周长就一定,是比值一定,所以所行驶的路程与车轮的转数成正比例;故答案为:正.9.(3分)公顷=6000平方米1时15分= 1.25时5.07m3=5070dm3.【分析】(1)高级单位公顷化低级单位平方米乘进率10000.(2)把15分除以进率60化成0.25时再与1时相加.(3)高级单位立方米化低级单位立方分米乘进率1000.【解答】解:(1)公顷=6000平方米;(2)1时15分=1.25时;(3)5.07m3=5070dm3.故答案为:6000,1.25,5070.10.(3分)如图:(1)△ABC是以BC为底边的等腰三角形,且∠B的补角为110°,则∠B=70°,∠ACB=70°;(2)△ABC是以BC为底边的等腰三角形,如果∠A:∠B=6:5,那么∠A=67.5°,∠B= 56.25°.【分析】(1)因为∠B的邻补角是110°,根据邻补角的定义可得∠B=180°﹣110°=70°;又因为△ABC为等腰三角形,所以,∠B=∠ACB=70°;(2)因为∠B=∠ACB,∠A:∠B=6:5,可推出,∠A:∠B:∠C=6:5:5,根据三角形内角和是180°,然后求得∠A、∠B的度数分别占三角形内角和度数的几分之几,根据分数乘法的意义解决问题.【解答】解:(1)因为∠B的邻补角是110°,所以∠B=180°﹣110°=70°;因为AB=AC,所以,∠ACB=∠B=70°;(2)因为∠B=∠ACB,∠A:∠B=6:5,所以,∠A:∠B:∠C=6:5:5,∠A=180°×=180°×=67.5°,所以∠B=180°×=180°×=56.25°,故答案为:70°,70°,67.5°,56.25°.11.(1分)羊城小学进行一次体育考试,合格的有108人,不合格的有12人,这次体育考试的合格率是90%.【分析】理解合格率的意义,合格率是指合格人数占参加考试人数的百分之几,计算方法为:100%=合格率;由此解答.【解答】解:100%,=0.9×100%,=90%;答:这次体育考试的合格率是90%;故答案为:90%.12.(2分)A=2×2×3,B=2×3×5,A和B的最大公因数是6,最小公倍数是60.【分析】求两个数的最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积,由此解决问题即可.【解答】解:A=2×2×3,B=2×3×5,因为A和B公有的质因数是2和3,A独有的质因数是2,B独有的质因数是5,所以A和B的最大公约数是:2×3=6,A和B的最小公倍数是:2×3×2×5=60.故答案为:6,60.二、判断题(对的在括号里打“√”,错的打“×”.)(共5分)13.(1分)任何两个质数积一定是合数.正确.(判断对错)【分析】合数是含有1和它本身两个因数外还含有其它因数的数,即合数含有3个以上因数,据此分析任何两个质数积的因数的个数即可判断.【解答】解:任何两个质数积一定含有:1、这两个质数、两个质数积共4个因数,所以任何两个质数积一定是合数是正确的;故答案为:正确.14.(1分)三角形的面积是平行四边形面积的一半.×.(判断对错)【分析】缺少关键条件,三角形的面积是和它等底等高的平行四边形面积的一半.【解答】解:因为三角形的面积是和它等底等高的平行四边形面积的一半.故答案为:×.15.(1分)圆柱体的体积等于圆锥体的体积的3倍.错误.(判断对错)【分析】因为等底等高的圆柱的体积等于圆锥的体积的3倍,并不是所有的圆柱体的体积等于圆锥体的体积的3倍.【解答】解:因为等底等高的圆柱的体积等于圆锥的体积的3倍,并不是所有的圆柱体的体积等于圆锥体的体积的3倍,故答案为:错误.16.(1分)周长相等的两个圆,它们的面积也一定相等.√.(判断对错)【分析】根据圆的周长公式、面积公式与半径的关系,可以得出结论.【解答】解:根据圆的周长公式:C=2πr,可以得出两个圆周长相等,则它们的半径就相等;再根据圆的面积公式:S=πr2,半径相等则面积就相等.故答案为:√.17.(1分)把甲班人数的调入乙班后,两班人数相等,原来甲、乙两班人数的比是3:2.√.(判断对错)【分析】把甲班人数的调入乙班后,两班人数相等,说明甲班人数比乙班人数多甲班人数的(×2),把甲班人数看作单位“1”,则乙班人数是甲班人数的(1﹣×2),进而根据题意,进行比即可.【解答】解:1:(1﹣×2)=1:=(1×3):(×3)=3:2;答:原来甲、乙两班人数比是3:2.故答案为:√.三、选择题.(把正确答案前的序号填在括号里)(共5分)18.(1分)2008年的第一季度一共有()天.A.89 B.90 C.91 D.92【分析】先判断2008年是平年还是闰年,平年的2月有28天,闰年的2月有29天,再根据1﹣3月份的天数求出第一季度的天数.【解答】解:2008÷4=502;2008年是闰年,这一年2月有29天;第一季度共有:31+29+31=91(天).故选:C.19.(1分)一个冰箱的体积约220()A.立方厘米B.立方分米C.立方米【分析】根据生活经验、对体积单位和数据大小的认识,可知计量冰箱的容积应用“立方分米”做单位,据此选择.【解答】解:根据生活经验、对体积单位和数据大小的认识,可知一个冰箱的体积约220立方分米;故选:B.20.(1分)小丽用圆规画一个周长是15.7cm的圆,圆规两脚间应量取的距离是()cm.A.15.7 B.5 C.2.5【分析】求圆规两脚之间的距离实际上是求这个圆的半径,圆的周长已知,则可以利用圆的周长=2πr,求出这个圆的半径.【解答】解:15.7÷(2×3.14),=15.7÷6.28,=2.5(厘米);答:圆规两脚之间的距离是2.5厘米.故选:C.21.(1分)下面图形中,()绕着中心点旋转60°后能和原图重合.A.B.C.【分析】观察各图形,是正n边形,就能被平分成n个相等的部分,那么旋转角的最小度数为360°÷n,据此进行判断.【解答】解:A、是旋转对称图形,绕旋转中心旋转120°后能与自身重合.B、是旋转对称图形,绕旋转中心旋转90°后能与自身重合;C、是旋转对称图形,绕旋转中心旋转60°后能与自身重合;所以C答案是正确的.故选:C.22.(1分)下面一定会发生的事件是()A.明天要刮风B.顺风行车比逆风行车快C.你的前面是东,后面一定是西【分析】根据事件的确定性和不确定性可知:一定发生的,即确定事件,对各题进行依次分析、进而得出结论.【解答】解:A、明天要刮风,属于可能性中的不确定性事件,可能发生,也可能不发生;B、顺风行走比逆风行走快,属于事件的不确定性,可能发生,也可能不发生;C、如果你的前面是东,那么后面一定是西,属于确定事件中的必然事件,一定会发生.故选:C.四、计算题23.(4分)直接写出得数.97+0.3 =+0.625=0.64+3.6=﹣=1÷0.05=4.2÷0.2=0.125×80=20÷=【分析】根据小数和分数加减乘除法运算的计算法则计算即可求解.【解答】解:97+0.3=9 7.3+0.625=10.64+3.6=4.24﹣=1÷0.05=204.2÷0.2=210.125×80=1020÷=20024.(15分)脱式计算.(能简算的要简算)+++15.72﹣8.84﹣1.16(++)×6025×32×1.25(﹣)÷0.5+.【分析】(1)根据加法交换律和结合律进行简算;(2)根据减法的性质进行简算;(3)根据乘法分配律进行简算;(4)根据乘法交换律和结合律进行简算;(5)先算减法,再算除法,最后算加法.【解答】解:(1)+++=(+)+(+)=1+1 =2;(2)15.72﹣8.84﹣1.16=15.72﹣(8.84+1.16)=15.72﹣10=5.72;(3)(++)×60=×60+×60+×60=20+15+12=35+12=47;(4)25×32×1.25=25×(4×8)×1.25=(25×4)×(8×1.25)=100×10=1000;(5)(﹣)÷0.5+=÷0.5+=+=1.25.(4分)求未知数x.3x﹣0.6×4=4.8:x=:.【分析】(1)根据等式的性质,方程两边同时加上2.4,再两边同时除以3求解;(2)根据比例的基本性质,原式化成x=×,再根据等式的性质,方程两边同时除以求解.【解答】解:(1)3x﹣0.6×4=4.83x﹣2.4+2.4=4.8+2.43x=7.23x÷3=7.2÷3x=2.4;(2):x=:x=×x=x=.26.(6分)列式(或方程)计算.(1)一个数的75%比它的60%多4.5,求这个数?(2)一个数的2倍比54的少3,求这个数?【分析】(1)一个数的75%比它的60%多这个数的75%﹣60%=15%,所对应的数是4.5,然后再4.5除以15%即可;(2)先算54的,所得的积再减去3,所得的差就是这个数的2倍,然后再除以2即可.【解答】解:(1)4.5÷(75%﹣60%)=4.5÷15%=30.答:这个数是30.(2)(54×﹣3)÷2=(9﹣3)÷2=6÷2=3.答:这个数是3.五、解答题(共1小题,满分6分)27.(6分)按要求画一画.(1)画出图形A向上平移4格,再向右平移5格后的图形B.(2)画出图形A绕O点顺时针旋转90°后的图形C.(3)以直线MN为对称轴作图的轴对称图形D.【分析】(1)根据平移的特征,把图形A和各顶点分别向上平移4格,首尾连结即可得到向上平移4格后的图形;用同样的方法,可把平移后的图形再向右平移5格.(2)根据旋转的特征,图形A绕点O顺时针旋转90°后,点O的位置不动,其余各部分均绕此点按相同方向旋转相同的度数,即可画出旋转后的图形.(3)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴MN的下边画出图形A的关键对称点,依次连结即可.【解答】解:(1)画出图形A向上平移4格(图中灰色部分),再向右平移5格后的图形B(下图):(2)画出图形A绕O点顺时针旋转90°后的图形C(下图产):(3)以直线MN为对称轴作图的轴对称图形D(下图):六、统计小专家.(8分)28.(8分)根据下面的折线统计图填空.1、这一年中,雨量最多的是7月份,雨量最少的是1月份.2、这是折线统计图,从图中可以看出1月份到7月份降水量逐渐增多,7月份到12月份降水量逐渐减少.3、最多降水量比最少降水量多180毫米.4、3月份降水量比2月份多25%,3月份比4月份少50%.【分析】由折线统计图可知:(1)这一年中,雨量最多的是7月份,雨量最少的是1月份,(2)这是折线统计图,从图中可以看出1月份到7月份降水量逐渐增多,7月份到12月份降水量逐渐减少,(3)用最多降水量和最少降水量进行比较即可,(4)根据题意把2月份的降水量看作单位“1”是求3月比2月增加的部分占二月的百分之几,再把4月份看作单位“1”求3月份比4月份少的部分占4月的百分之几,由此解答.【解答】解:由折线统计图可知:(1)这一年中,雨量最多的是7月份,雨量最少的是1月份,(2)这是折线统计图,从图中可以看出1月份到7月份降水量逐渐增多,7月份到12月份降水量逐渐减少,(3)210﹣30=180(毫米);答:最多降水量比最少降水量多180毫米.(4)(75﹣60)÷60×100%=25%,(150﹣75)÷150×100%=50%,答:3月份降水量比2月份多25%,3月份比4月份少50%.故答案为:7,1,折线,1,7,7,12,180,25,50.七、解决问题.(每题5分,共25分.)29.(5分)一个圆锥形的麦堆,底面半径是2米,高是1.2米,如果每立方米小麦重500千克,那么这堆小麦重多少千克?【分析】首先根据圆锥的体积公式:v=,把数据代入公式求出小麦的体积,然后用小麦的体积乘每立方米小麦的质量即可.【解答】解:==5.024×500=2512(千克),答:这堆小麦重2512千克.30.(5分)一只无盖的圆柱形水桶,从里面量得底面直径是4dm,高是6dm,做这只水桶至少需要铁皮多少平方分米?【分析】圆柱形铁皮水桶无盖,只需要计算一个底面和侧面的面积,由圆柱体侧面积和圆的面积计算方法列式解答即可.【解答】解:3.14×4×6+3.14×(4÷2)2=75.36+3.14×4=75.36+12.56=87.92(平方分米),答:至少需要铁皮87.92平方分米.31.(5分)商场打折促销时,李阿姨买了一件上衣和一条裤子,共用了544元,其中上衣按标价打七折,裤子按标价打八折,上衣的标价为400元,则裤子的标价是多少元?【分析】上衣是打七折,那么上衣的现价就是标价的70%,把上衣的标价看成单位“1”,用乘法求出它的70%,就是上衣的现价;再用544元减去上衣的现价就是裤子的现价;裤子是按照八折出售,那么裤子的现价就是标价的80%,由此再用除法求出裤子的标价.【解答】解:544﹣400×70%,=544﹣280,=264(元);264÷80%=330(元);答:裤子的标价是330元.32.(5分)一艘轮船从甲港开往乙港,去时顺水,每小时行24千米,15小时到达.返回时逆水,速度降低了25%,多少小时返回甲港?(用比例解)【分析】设x小时返回甲港.往返的路程是相同的,行使的路程相等,运用逆水速度比上顺水的速度等于顺水的时间比上逆水的时间由此列比例进行解答即可.【解答】解:设x小时返回甲港.24×(1﹣25%):24=15:x24×(1﹣25%)×x=24×15,2×0.75x=24×15,0.75x=15,x=20;答:20小时返回甲港.33.(5分)客车和货车同时从甲、乙两地的中间向相反方向行驶3小时后,客车到达甲地,货车离乙地还有42千米,已知货车和客车的速度比是5:7.甲、乙两地相距多少千米?【分析】根据货车与客车的速度比5:7,那么相同时间内货车与客车所行路程的比也是5:7,即货车行的是客车的,把客车行的路程看作单位“1”,那么42千米的对应分率是1﹣,用除法即可求出全程的一半,再求全程即可【解答】解:42÷(1﹣)=42÷=147(千米)147×2=294(千米)答:甲、乙两地相距294千米.。
2018--2019学年度小升初数学模拟试卷及答案(1)班级姓名成绩1.(1分)把两个完全一样的圆柱,拼成一个长30厘米的圆柱,则表面积减少25.12平方厘米,原来每个圆柱的体积是立方厘米.2.(1分)李明买了4000元国库券,定期三年,年利率为2.89%,到期后,他把利息捐给“希望工程”支援贫困儿童.李明可以捐元给“希望工程”.3.(1分)学校合唱队人数在40至60人之间,男生与女生的人数比是7:6,合唱队共有人.4.(2分)一个底面直径和高都是3分米的圆锥,它的体积是立方分米,一个与它等底等高的圆柱的体积比它大立方分米.(3分)一个数由3个亿,6个千万,4个千,8个一组成,这个数写作,5.改写成以“万”作单位的数是万,省略“亿”后面的尾数是亿.6.(3分)=25%= (填小数)= :16.7.(1分))小华身高1.6米,在照片上她的身高是5厘米,这张照片的比例尺是.8.(2分)陈明今年上半年每个月的零花钱如下表:月份一月二月三月四月五月六月钱数(元)10090120100125150他平均每个季度的零花钱是元.三月份比四月份度多用%.9.(1分)小明说:“我表妹是1998年2月29日出生的..(判断对错)10.(1分)圆锥的底面积一定,高和体积成反比例.(判断对错)11.(1分)任何质数加1都成为偶数..(判断对错)12.(1分)一个圆柱的底面半径是8厘米,它的侧面展开正好是一个正方形,这个圆柱的高是16厘米..(判断对错)13.(1分))甲乙两个圆的半径之比是1:3,它们的面积比也是1:3..14.(2分)在同时同地测得的杆高和影长()15.(2分)请你估计一下()最接近你自己现在的年龄.A.600分B.600周C.600时D.600月16.(2分)下列说法正确的是()A.分子一定,分数值和分母成正比例B.互质的两个数没有公因数C.圆锥的体积等于圆柱体积的D.采用24时记时法,凌晨2时就是2时,下午2时28分就是14时28分17.(2分)在某市举行的青年歌手大奖赛中,十一位评委给一位歌手的打分如下:9.8,9.7,9.7,9.6,9.6,9.6,9.6,9.5,9.4,9.4,9.1这组数据的中位数和众数分别为()A.9.6和9.6B.9.6和9.55C.9.8和9.118.(2分)某班有学生52人,那么这个班男女生人数的比可能是()A.8:7 B.7:6 C.6:5 D.5:419.(8分)直接写出得数.8.7﹣7= ÷=4﹣﹣= 7×÷7×=44÷= 75÷10%=0.9+99×0.9= 93=20.(9分)解方程.(1)x÷=(2)4x+3×0.9=24.7(3)6÷﹣3.5x=6.21.(15分)怎样算简便就怎样算.1.28+9.8+7.72+10.2 ×+×÷(﹣)××[﹣(+)] (80﹣9.8)×0.6﹣2.1 (﹣)×45.22.(8分)操作题:街心花园的直径是5米,现在在它的周围修一条1米宽的环形路,请按1:10的比例尺画好设计图,并求出路面的实际面积.23.(5分)六年级同学植树98棵,五年级比六年级植树棵数的2倍多6棵.五年级植树多少棵?24.(5分)小高家和学校大约相距4144米.一辆自行车的车轮直径大约66厘米,按车轮每分转100圈计算,小高骑这辆车从家到学校大约需要多少分?25.(5分)某布料加工厂5天缝制衬衣1600件.照这样计算,缝制2400件衬衣需要多少天?26.(5分)六一儿童节学校买回的苹果比桔子多150千克,已知桔子占苹果重量的40%,学校买回苹果多少千克?27.(10分)如图是小明和小东家到学校的路线图.(1)量一量:小东和小明家到学校的图上距离分别是厘米和厘米.(量得的结果取整厘米数)(2)如果小东家到学校的实际距离是1000米,请算出这幅图的比例尺,并填在图中相应的括号里.(3)小明家到学校实际距离是米.(4)某天他们两人同时从家里出发上学,同时到达学校,已知小东每分走50米,那么小明每分走多少米?(列式解答)参考答案1.188.4.【解析】试题分析:由题意可知,两个完全一样的圆柱拼成一个圆柱后,高是原来的2倍,可求出原来每个圆柱的高;表面积减少了2个底面,因表面积减少25.12平方厘米,即可求出圆柱的一个底面积,再根据圆柱的体积=底面积×高,即可列式解决问题.解:25.12÷2×(30÷2)=12.56×15,=188.4(立方厘米);答:原来每个圆柱的体积是188.4立方厘米.故答案为:188.4.点评:此题主要根据圆柱的体积=底面积×高,本题关键是弄清表面积减少了几个面,是什么样的面.2.346.8元【解析】试题分析:此题应根据公式:利息=本金×利率×时间,算出即可.解:4000×2.89%×3,=115.6×3,=346.8(元).答:李明可以捐 346.8元给“希望工程”.点评:此题主要考查利息公式的应用.3.52.【解析】试题分析:由“男生与女生的人数比是7:6”可知,总人数相当于7+6=13份,也就是说总人数是13的倍数,那么在“40﹣60”之间只有52符合题意,由此可知总人数就是52.解:由男女生人数的比是7:6可知:总人数是7+6=13(份),即总人数是13的倍数;又因为合唱队人数在40至60人之间,那么合唱队的人数就应是52;故答案为:52.点评:此题是考查比的应用,要把比理解为几份和几份的比.4.7.065;14.13.【解析】试题分析:(1)利用圆锥的体积=πr2×h,代入数据即可解决问题;(2)等底等高的圆柱的体积是圆锥的体积的3倍,所以与它等底等高的圆柱就比这个圆锥大了它的2倍,由此即可解决问题.解: 3.14××3,=×3.14××3,=7.065(立方分米),7.065×2=14.13(立方分米),答:它的体积是7.065立方分米,一个与它等底等高的圆柱的体积比它大 14.13立方分米.故答案为:7.065;14.13.点评:此题考查了圆锥的体积公式以及等底等高的圆柱与圆锥的体积的3倍关系的灵活应用.5.360004008,36000.4008,4.【解析】试题分析:(1)本题可以用数位顺序表来写出这个数,有几个计数单位,这一位上就是几,没有的就写0;(2)改写成以万为单位的方法:在万位数字的后面点上小数点,前面的数字就是整数部分,后面的就是小数部分,化简后在最后加上单位万.(3)省略亿后面的尾数就是四舍五入到亿位,看它的千万位数,利用四舍五入后把亿位后面的数省略写上单位“亿”.解:(1)3在亿位,6在千万位,4在千位,8在个位,其它数位为0,这个数写作:360004008;(2)360004008=36000.4008万;(3)360004008≈4亿.故答案为:360004008,36000.4008,4.点评:此题考查写数、求近似数:写数要先分级并依次写出各位上的数;求近似数要省略“谁”后面的尾数,就把“谁”下一位上的数字进行四舍五入,还要带上计数单位.6.1,0.25,4.【解析】试题分析:解决此题关键在于25%,25%去掉百分号,小数点向左移动两位可化成0.25;0.25可化成分数,的分子和分母同时除以25可化成最简分数;用分子1做比的前项,分母4做比的后项可化成1:4,1:4的前项和后项同时乘上4可化成4:16;由此进行转化并填空.解:=25%=0.25=4:16.故答案为:1,0.25,4.点评:此题考查比、分数、百分数和小数之间的转化,根据它们之间的关系和性质进行转化即可.7.1:32.【解析】试题分析:根据比例尺=照片上的身高:实际小华身高,可直接求得这张照片的比例尺.解:1.6米=160厘米,5:160=1:32,这张照片的比例尺为1:32.故答案为:1:32.点评:考查了比例尺的概念,表示比例尺的时候,注意统一单位长度.8.342.5,20.【解析】试题分析:上半年有两个季度,先求出上半年的总钱数,即可求出平均每个季度的钱数;要求三月份比四月份多用百分之几,只要用多用的钱数除以四月份的钱数即可.解:(100+90+120+100+125+150)÷2=685÷2=342.5(元),(120﹣100)÷100=20%;故答案为:342.5,20.点评:此题主要考查求一个数比另一个数多百分之几的解答方法以及求平均数的方法.9.错误【解析】试题分析:根据平年的2月有28天,闰年的2月有29天,只要推算出1998年是闰年还是平年即可.解:1998÷4=499…2,1998年是平年2月只有28天,没有2月29日.故答案为:错误.点评:判断闰年和平年可以根据:四年一闰,百年不闰,四百年再闰来判断.10.错误【解析】试题分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆锥的体积=×底面积×高,则=×底面积(定值),所以圆锥的体积和高成正比例;故答案为:×.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.11.错误【解析】试题分析:根据质数的定义,2为最小的质数,但是2+1=3,3为质数.解:由于2为最小的质数,2+1=3,3为奇数.所以任何质数加1都成为偶数的说法是错误的.故答案为:错误.点评:除了2之外,任何质数加1都成为偶数的说法是正确的.12.错误【解析】试题分析:根据圆柱的侧面展开是一个长方形,其长为底面周长,宽为高来计算后判断即可.解:侧面展开后长方形的长(底面周长)=2πr=2×3.14×8=50.24(厘米);又因为侧面展开后是正方形所以:宽=长=50.24厘米;侧面展开后长方形的宽又是圆柱的高,即高=50.24厘米;故答案为:×.点评:此题重点考查圆柱的侧面展开图.13.错误【解析】试题分析:设甲圆的半径是r,则乙圆的半径为3r,根据“圆的面积=πr2”分别求出甲、乙两个圆的面积,然后根据题意进行比即可.解:设甲圆的半径是r,则乙圆的半径为3r,则:(πr2):[π(3r)2],=(πr2):[9πr2],=1:9;故答案为:错误.点评:解答此题用到的知识点:(1)比的意义;(2)圆的面积的计算公式;注意:圆的半径比,即直径比、周长比;圆的面积比等于半径的平方的比.14.B【解析】试题分析:根据正比例的意义及关系式:,在同时同地测得的杆高和影长的比值一定,由此即可得答案.解:因为在同时同地测得的杆高和影长的比值一定,所以杆高和影长成正比例.故选:B.点评:此题主要考查判断正、反比例的方法,根据它们的关系式判断即可.15.B【解析】试题分析:此题用到时间单位分、时、日、星期、月、年之间的换算,用到的进率有1时=60分、1日=24时、1年=12个月、1年≈52个星期,据此将每个选项分别换算成比较接近人的年龄的单位,即600分=10时,600时=25日,600周≈12年,600月=50年,由此做出选择.解:600月÷12=50(岁);600周÷52≈12(岁);600时÷24时=25(天);600分=10时;所以只有600周符合学生的年龄.故选:B.点评:此题考查对时间单位时、分,日、星期、月、年之间的换算,并根据具体情况进行选择.16.D【解析】试题分析:逐项分析后,再选出正确的选项.解:A、分数值×分母=分子(一定),是乘积一定,分数值和分母成反比例,原句错误;B、互质的两个数的公因数是1,原句错误;C、等底等高的圆锥的体积等于圆柱体积的,原句错误;D、采用24时计时法,凌晨2时就是2时,下午2时28分就是14时28分,原句正确.故选:D.点评:此题考查的知识点较多,解答此题关键是根据相关的知识逐项进行分析,再做出选择.17.A【解析】试题分析:(1)中位数:将数据按照大小顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据个数是偶数,则中间两个数据的平均数是这组数据的中位数;(2)众数:是指在一组数据中出现次数最多的那个数;据此解答.解:(1)将数据按照从大到小的顺序排列为:9.8,9.7,9.7,9.6,9.6,9.6,9.6,9.5,9.4,9.4,9.1因为数据个数是11,是奇数,所以中位数是9.6;(2)这组数据中出现次数最多的数是9.6,所以9.6是这组数据的众数;故选:A.点评:此题考查一组数据的中位数和众数的意义和求解方法,按照各自的方法分别求出即可.18.B【解析】试题分析:学生总数和男女生人数的比已知,看哪个比的前项与后项的和能整除全班人数,那个比就是正确答案.解:选项A,52÷(8+7)=3…7,故不符合要求;选项B,52÷(7+6)=4,故符合要求;选项C,52÷(6+5)=4…8,故不符合要求;选项D,52÷(5+4)=5…7,故不符合要求;故选:B.点评:解答此题的关键是:看比的前项与后项的和能否整除全班人数,从而选出正确答案.19.1.7;;3;;40;750;90;729.【解析】试题分析:根据分数、小数四则运算的计算法则,直接进行口算,其中4,根据减法的运算性质进行简算,0.9+99×0.9,运用乘法分配律进行简算.解:8.7﹣7=1.7;÷=;4﹣﹣=3;7×÷7×=;44÷=40;75÷10%=750;0.9+99×0.9=90; 93=729.点评:此题考查的目的是牢固掌握分数、小数四则运算的计算法则,并且能够灵活整数的运算定律和运算性质进行简便计算.20.2;5.5;.【解析】试题分析:(1)题根据等式的性质,方程两边同时乘来解;(2)题先计算3×0.9的值,再根据等式的性质,方程两边同时减去2.7,然后同时除以4来解;(3)题先计算6÷的值,再根据等式的性质,方程两边同时加上3.5x,再同时减去6,然后同时除以3.5来解.(1)x÷=x÷×=×,x=2;(2)4x+3×0.9=24.74x+2.7=24.7,4x+2.7﹣2.7=24.7﹣2.7,4x=22,4x÷4=22÷4,x=5.5;(3)6÷﹣3.5x=69﹣3.5x=6,9﹣3.5x+3.5x=6+3.5x,3.5x+6=9,3.5x+6﹣6=9﹣6,3.5x=3,3.5x÷3.5=3÷3.5,x=.点评:根据等式的性质“等式两边同时加上、减去、乘上或除以同一个不为零的数,等式仍然成立”进行解答;注意等号对齐.21.29;;;;40.02;6;【解析】试题分析:(1)运用加法结合律简算;(2)运用乘法分配律简算;(3)先算小括号里面的减法,再算括号外除法,最后算乘法;(4)先算小括号里面的加法,再算中括号里面的减法,最后算括号外的乘法;(5)先算小括号里面的减法,再算括号外的乘法,最后算括号外的减法;(6)运用乘法分配律简算.解:(1)1.28+9.8+7.72+10.2,=(1.28+7.72)+(9.8+10.2),=9+20,=29;(2)×+×,=×(+),=×,=;(3)÷(﹣)×,=÷×,=××,=×,=;(4)×[﹣(+)],=×[﹣],=×,=;(5)(80﹣9.8)×0.6﹣2.1,=70.2×0.6﹣2.1,=42.12﹣2.1,=40.02;(6)(﹣)×45,=×45﹣×45,=15﹣9,=6.点评:此题主要考查分数、整数、小数的四则混合运算的运算顺序和应用运算定律进行简便计算.22.路面的实际面积18.84m2.设计图如下:【解析】试题分析:先根据比例尺求出街心花园的直径和1米宽的环形路在图形上的长度,再在设计图上画出图形;根据圆环的面积公式即可求出路面的实际面积.解:5米=500厘米,1米=100厘米,500×=50(厘米)100×=10(厘米)所以内圆半径为:50÷2=25(厘米)外圆半径为:25+10=35(厘米)于是以点O为圆心,分别以25厘米和35厘米为半径画圆如下:路面的实际面积为:3.14×[(5÷2+1)2﹣(5÷2)2]=3.14×(12.25﹣6.25)=3.14×6=18.84(m2).答路面的实际面积18.84m2.点评:考查了应用比例尺画图,圆环的面积.能够根据比例尺正确进行计算,注意单位的统一.23.202棵【解析】试题分析:根据题意,五年级比六年级植树棵数的2倍多6棵,因为六年级同学植树98棵,可知六年级植树棵数的2倍再加上6棵就是五年级植树棵数,列出算式解答即可.解:五年级植树的棵数是:98×2+6=202(棵);答:五年级植树202棵.点评:根据题意,分析两个年级植树棵数之间的关系,列式计算即可.24.20分.【解析】试题分析:根据自行车的车轮直径大约66厘米,按车轮每分转100圈,可先求每圈长度,再求出100圈的路程,然后求出自行车的速度,然后根据关系式:路程÷速度=时间即可列式解答.解:66厘米=0.66米,0.66×100×3.14=207.24(米),4144÷207.24≈20(分);答:小高骑这辆车从家到学校大约需要20分.点评:此题主要考查基本关系式:时间=路程÷速度,列式解答即可.解答时注意单位的换算.25.7.5天.【解析】试题分析:由题意知道工作效率一定,工作时间和工作量成正比例.由此列式解答即可.解:设缝制2400件衬衣需要x天,1600:5=2400:x1600x=5×2400x=7.5;答:缝制2400件衬衣需要7.5天.点评:解答此题的关键是,要先判断题中的两种相关联的量成何比例,并找准对应量.26.250千克.【解析】试题分析:已知桔子占苹果重量的40%,根据分数减法的意义,桔子比苹果重量少1﹣40%,买回的苹果比桔子多150千克,即这150千克占苹果重量的1﹣40%,根据分数除法的意义,苹果有150÷(1﹣40%)千克.解:150÷(1﹣40%)=150÷60%=250(千克)答:苹果有250千克.点评:首先根据分数减法的意义求出150千克占苹果重量的分率是完成本题的关键.27.(1) 5; 6;(2)比例尺为:1:20000;填图如下:(3)1200;(4)60米.【解析】试题分析:(1)用尺子直接测量即可得到小东和小明家到学校的图上距离;(2)根据比例尺=图上距离;实际距离即可求得比例尺;(3)实际距离=图上距离÷比例尺,据此求得小明家到学校实际距离;(4)他俩的时间一样,先用小东家到学校的路程÷小东的速度求出时间,然后用小明家到学校路程÷时间即可.解:(1)小东和小明家到学校的图上距离分别是 5厘米和 6厘米;(2)5厘米:1000米,=5厘米:100000厘米,=1:20000;填图如下:(3)6÷=120000(厘米),120000厘米=1200米,答:小明家到学校实际距离是1200米.(4)1000÷50=20(分钟),1200÷20=60(米),答:小明每分走60米.点评:解答图上距离的测量时,注意测量的方法;解答比例尺的意义及求法时,注意掌握比例尺的公式及应用;解答行程问题时,注意掌握基本的关系式:速度×时间=路程.。
小升初数学综合模拟试卷19一、填空题:2.用1,2,3,4,5,6,7这七个数字组成三个两位数,一个一位数,并且使这四个数的和等于100,如果要求最小的两位数尽可能小,那么其中最大的两位数是______.3.小红和小明参加一个联欢会,在联欢会中,小红看到不戴眼镜的同联欢会的共有_______名同学.4.一次数学测验,六(1)班全班平均90分,男生平均88.5分,女生平均92分,这个班女生有18人,男生有______人.5.如图,M、N分别为平行四边形相邻两边的中点,若平行四边形面6.一个六位数□1997□能被33整除,这样的数是______.7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,……,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.二、解答题:1.计算:2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?3.少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:答案一、填空题:1.102.47要使最小的两位数尽可能小,最好十位是1,个位是2,此时四个数的个位之和应等于20,可找到这样的四个数2、5、6、7.在余下的数3、4中取4,可组成最大的两位数47.3.16如果小红和小明都戴眼镜或都不戴眼镜,那么他们看到的戴眼镜的比例应当相同,由于小明看到的戴眼镜的比例高,所以小红戴眼镜,小明不戴眼镜,因此总人数为4.24(92-90)×18÷(90-88.5)=24(人)5.6六个.6.919974,619971,219978a+b+1+9+9+7=a+b+26是3的倍数,因此a+b=1,4,7,10,13,16.(a+9+7)-(1+9+b)=a-b+6是11的倍数,因此a-b=5或b-a=6.因为a、b是整数,所以a+b与a-b同奇同偶,经试验,可找到以下三组解:7.51.2作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14-a=10+aa=2设空白部分面积为x,将上图转化为正方形盒子的面积为12+20+12+7.2=51.28.126因为棋子数是200多,且是一个平方数,所以行数n可能是15,16,17.若n=15,15×15=225,即共有225枚棋子.由于是甲先取10枚,乙再取10枚,因此第225枚棋子被甲取走,不合题意.若n=16,16×16=256,即共有256枚棋子,根据规则可知,第256枚被乙取走.若n=17,17×17=289,即共有289枚棋子.根据规则可知,第289枚被甲取走,不合题意.所以满足条件的棋子数是256枚,乙共取走260÷2-4=126(枚)9.35,51因为15606=2×3×3×3×17×17,且船长是50多岁,所以有2×3×3×3=54和3×17=51两种情况.若船长54岁,则男女工作人员各17名,不合题意,所以船长只能是51岁.此时男女工作人员的乘积为2×3×3×17,男女工作人员的人数分配有下面五种:(153,2),(102,3)(51,60),(34,9),(18,17).根据工作人员共有30多名和男多女少的条件可知,男有18人,女有17名满足.所以工作人员共有35名.因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的.所以设车速为x,有两车之间的距离为发车的时间间隔为二、解答题:1.0原式=a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ba+ca-cb=02.73天分类按月计算1月、2月、10月分别有5天;3月、4月、6月分别有10天;5月、8月分别有11天;12月有6天;7月、9月没有.5×3+10×3+11×2+6=733.9.28分.10名设裁判员有x名,那么(1)总分为9.64x;(2)去掉最高分后的总分为9.60(x-1),由此可知最高分为:9.64x-9.60(x-1)=0.04x+9.6(3)去掉最低分后的总分为9.68(x-1),由此可知最低分为:9.64x-9.68(x-1)=9.68-0.04x因为最高分不超过10,所以0.04x+9.6不超过10,也就是0.04x不超过0.4,由此可知x不超过10.当x取10时,最低分有最小值,是9.68-0.04×10=9.28(分)所以最低分是9.28分,裁判员有10名4.1至10题的正确答案是×、×、√、√、√、√、√、×、√、×观察A与B的答案可知,A、B有4道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道.由此可知第1、3、4、10题的答案分别是×、√、√、×.同理,B、C有4题答案相同,根据每人都是70分,所以4道答案相同的题都答对了,即第2、3、5、7题的答案分别是×、√、√、√.同理,A、C也有4题答案相同,这4道题都答对了,即第3、6、8、9题的答案分别是√、√、×、√.由此可知,1至10题的答案分别是×、×、√、√、√、√、√、×、√、×.小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.。
小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。
小升初数学综合模拟试卷29一、填空题:2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.3.比较下面两个积的大小:A=9.5876×1.23456,B=9.5875×1.23457,则A______B.第______个分数.5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.二、解答题:1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.2.分母是964的最简真分数共有多少个?3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?答案一、填空题:2.1.8由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元(56- 18)支圆珠笔=83.3-33.91支圆珠笔= 1.3元所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.3.>A=9.5875×1.23456+0.0001×1.23456B=9.5875×1.23456+9.5875×0.00001因为 0.0001×1.23456>9.5875×0.00001所以A>B.将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,和倒数第6个分数,在这串数中是5.1000每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.1997÷16=124 (13)把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即1,2,3,4, (16)17, 18, 19, 20,…, 32;33,34,35,36, (48)…1969,1967,1968, (1984)1985,1986, (1997)每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.6.954、873、6211+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.所以这三个数分别是954、873、621.7.14因为AD= DE= EC,所以又因为BF=FC,所以由于FG=GC,所以S阴影面积=S△ABD+S△DFE+S△GCE=8+4+2=14(平方厘米)8.97E得分是:90 × 5-96 × 2-92.5 × 2=73(分);C得分是:(92.5×2-15)÷2=85(分);D得分是:85+15=100(分);A得分是:97.5×2-100=95(分);B得分是:96×2-95=97(分).9.233人被4除余1的自然数有5,9,13,17,21,25,…,其中被5除余3的自然数有13,33,53,73,…,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:n=3,60×3+53=233(人)10.14.412、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:36×2÷(2+3)=14.4(元)二、解答题:1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:90×3-3×3×3×2=216(立方厘米)所以穿孔后木块的体积是:10×10×10-216=784(立方厘米)2.分母是964的最简真分数有480个.因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:963-481-3+1=480(个)3.从A到F的最短路程是13千米从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:7+1+5+2=15(千米)沿ABCEF路线走,它的长度是.5+2+5+2=14(千米)沿AJKGF路线走,它的长度是:5+4+2+2=13(千米)所以从A到F的最短路程是13千米.4.10分钟内共相遇20次甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).小升初数学综合模拟试卷30一、填空题:3.37□5□能被72整除,这个数除以72的商是______.4.一列火车以每小时60千米的速度通过一座200米长的桥,用了21秒,则火车的车长是______米.7.有两支蜡烛,第一支5小时燃尽,第二支4小时燃尽.如果同时点燃这两支蜡烛,并且蜡烛燃烧的速度不变,在点燃______小时后,第一支蜡烛的长度是第二支蜡烛的3倍.9.恰有8个约数的两位数有______个.10.某小学组织六年级学生春游,学校买了182瓶汽水分给每个学生.如果每5个空瓶又可换得1瓶汽水,那么这些汽水瓶最多可换得______瓶汽水.二、解答题:1.如果1个小正方体木块的表面积是24平方厘米,那么由512个这样的小正方体木块所组成的一个大正方体的体积是多少立方厘米?3.有6对夫妻参加一次聚会,每个男士与每一个人握手(但不包括自己的妻子),女士之间相互不握手,那么这12个人共握手多少次?4.甲、乙、丙三人同时从A地出发,到离A地18千米的B地,当甲到达B地时,乙、丙两人离B地分别还有3千米和4千米,那么当乙到达B地时,丙离B地还有多少千米?答案一、填空题:2.余2连续6个1能被7整除,说明每6个1除以7是一个循环.由于1997÷6=332 (5)这表明1997个1除以7的余数等于5个1除以7的余数,因为5个1除以7余数是2,所以1997个1除以7余数是2.3.答案有2个,是516和523因为72=8×9,8与9互质,所以这个五位数既是9的倍数,又是8的倍数.由于这个五位数是9的倍数,所以其各个数位上的数字之和应是9的倍数,不妨设五位数的个位是x,百位是y,则3+7+y+5+x=15+y+x是9的倍数,所以x+y可能是3或12;若x+y=3,3=1+2,由于这个五位数又能被8整除,因此这个五位数的末三位数字组成的数能被8整除,且个位必是偶数,但152不能被8整除,所以x+y不可能是3.若x+y=12,12=4+8=6+6,但458,854均不能被8整除,只有656能这个五位数除以72的商是523.4.150米火车通过一座桥是指火车头在桥一端算起到火车尾在桥的另一端为止.因此火车通过一座桥所行的路程实际是桥长加上火车的车长.并且计算时注意换算单位要一致,这样可以求出火车的车长是:60×1000÷3600×21-200=350-200=150(米).5.10平方厘米根据等底等高的三角形面积相等,由于D是BC的中点,△ABD的面积等于△ADC的面积,有S△ABD=S△ADC=120÷2=60(平方厘米)S△AED=S△ABD÷4=60÷4=15(平方厘米)S△AFD=S△AED×2/3=15×2/3=10(平方厘米)6.末尾有3996个0.7.3.5小时把两支蜡烛燃烧的速度看作每小时燃烧1个单位长,则第一支蜡烛长为5个单位长,第二支蜡烛长为4个单位长.设点燃x小时后,第一支蜡烛是第二支蜡烛的长度的3倍,列方程为:5-x=3(4-x)5-x=12-3x2x=7x=3.5(小时)先求出这499个数的和,然后求出这499个数中的所有整数之和,它们的差即为所求,所以9. 10个因为8=1×8=2×4=2×2×2,根据约数与质因数的关系知,含有8个约数的数N可以表示成:N=a7或N=a×b3或N=a×b×c其中a、b、c是N的质因数.下面采用枚举法得:N=27=128,超过两位数,舍去;N=2×33=54, N=3×23=24, N=5×23=40,N=7×23=56, N=11×23=88,N=2×3×5=30,N=2×3×7=42,N=2×3×11=66,N=2×3×13=78,N=2×5×7=70恰有8个约数的两位数有10个.10. 45瓶先用182个空瓶可换得汽水是:182÷5=36 (2)36瓶,还余2个空瓶.喝完这36瓶汽水连同余下的2个空瓶,又可换得汽水是(36+2)÷5=7…3为7瓶,还余3个空瓶.再喝完这7瓶汽水连同余下的3个空瓶,又可换得汽水是:(7+3)÷5=为2瓶,所以这些汽水瓶最多可换得汽水:36+ 7+ 2= 45(瓶).二、解答题:1. 4096立方厘米.小正方体的每个面的面积是:24÷6= 4(平方厘米)小正方体的棱长是2厘米,由于512= 8×8×8所以大正方体的棱长为8个小正方体的棱长,因此大正方体的棱长是:2×8=16(厘米)大正方体的体积是:16×16×16=4096(立方厘米).2.45(人)订《儿童故事画报》的人数是:订《好儿童》的人数是:两种都订的人数是:81+72-108=45(人).3.45次由于女士之间相互不握手,因此这12个人握手的情况分为两类:一类是男士之间相互握手,另一类是男士与女士握手,但每个男士不与自己的妻子握手.6个男士之间两两握手,每个男士与其余5个男士握手一次,共握手 5× 6= 30次,但这 30次握手有重复计算,如甲、乙两个握手,把甲与乙握手和乙与甲握手算成两次不同的握手,所以6个男士相互握手,共握手:5×6÷2=15(次)男士与女士握手的情况共有:6×5=30(次)所以这12个人共握手:15+30=45(次)当甲行了18千米时,乙行了18-3=15千米,丙行了18-4=14千米,甲、。
济宁市小学数学六年级小升初模拟试卷详细答案(5套)精选小升初数学综合模拟试卷一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B 的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).小升初数学综合模拟试卷一、填空题:2.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是______.3.在图中所示的方格中适当地填上1、2、3、4、5、6、7、8,使它的和为153.此时所有“个位数字”之和与所有“十位数字”之和相差_______.4.A、B两只青蛙玩跳跃游戏,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始.在比赛途中,每隔12厘米有一陷阱,当它们中第一只掉进陷阱时,另一只距离最近的陷阱有______厘米.5.如图所示,按一定规律用火柴棍摆放图案:一层的图案用火柴棍2支,二层的图案用火柴棍7支,三层的图案用火柴棍15支,……,二十层的图案用火柴棍______支.6.图中ABCD是梯形,AECD是平行四边形,则阴影部分的面积是______平方厘米(图中单位:厘米).7.用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有______平方厘米是黑色的.8.甲、乙、丙三人射击,每人打5发子弹,中靶的位置在图中用点表示.计算成绩时发现三人得分相同.甲说:“我头两发共打了8环.”乙说:“我头两发共打了9环.”那么唯一的10环是______打的.9.有三堆棋子,每堆棋子一样多,并且都有黑白两色棋子.第一堆里黑棋子和第二堆里白棋子的数目相等,第三堆里的黑棋_______分之_______.10.若干名战士排成八列长方形队列,若增加120人或减少120人都能组成一个新的正方形队列.那么,原有战士_______名.二、解答题:1.计算:2.甲有桌子若干张,乙有椅子若干把,如果乙用全部椅子换回数量同样多的桌子,则乙需补给甲320元,如乙不补钱,就要少换回5张桌子.已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?3.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成1分到1元之间的币值有多少种?4.快、中、慢三辆车同时从A地沿同一公路开往B地,途中有一骑车人也同方向行进.这三辆车分别用7分、8分、14分追上骑车人.已知快车每分行800米,慢车每分行600米,求中速车的速度.答案一、填空题:1.102.902×32×5=903.10所有“个位数字”之和=23,所有“十位数字”之和=13,所以23-13=10.4.410与12的最小公倍数是60,15和12的最小公倍数也是60.当第一只掉进陷阱时,第二只跳到10×(60÷15)=40厘米处,此时距离最近的陷阱有40-12×3=4(厘米).第一层:1×2第二层:1×2+1+2×2第三层:1×2+1+2×2+2+3×2第二十层:1×2+1+2×2+2+3×2+…+19+20×2=(1+2+…+19)+1×2+2×2+…+20×2=190+21×20=6106.60阴影部分的面积等于以12为底以10为高的平行四边形面积的一半,即12×10÷2=60(平方厘米).7.50八个顶点用去8个黑色小立方体,还剩13个黑色小立方体放在棱上,所以大立方体上黑色的面积为3×8+2×(21-8)=24+26=50(平方厘米)8.丙.从图中可以看出,总环数为1×2+2×6+4×3+7×3+10×1=57(环),每人五发子弹打(57÷3=)19环.从图中还可看出2+6+3+3+1=15,即每人五发子弹均中靶.因为甲、乙头两发子弹总成绩已分别为8环、9环,所以后三发中不可能有10环,否则总成绩将大于19环.由此可知,10环是丙打的.根据条件可知,第一、二堆中,白色棋子与黑色棋子数目相同,所以第一、二堆中的白棋子也可分成同样的3份,因为三堆棋子数相同,所以每堆棋子数相当于3份.根据第三堆中黑棋子占2份,可知第三堆中白棋子占1份.因为增加120人可构成大正方形(设边长为a),减少120人可构成小正方形(设边长为b),所以大、小正方形的面积差为240.利用弦图求大、小正方形的边长(只求其中一个即可),如右图所示,可知每个小长方形的面积为(240÷4)=60.根据60=2×30=3×20=4×15=5×12=6×10,试验.①长=30,宽=2,则b=30-2=28.原有人数=28×28+120=904(人),经检验是8的倍数(原有8列纵队),满足条件.②长=20,宽=3,则b=20-3=17.原有人数为奇数,不能排成8列纵队,舍。
小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.。
小升初数学综合模拟试卷29一、填空题:2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.3.比较下面两个积的大小:A=9.5876×1.23456,B=9.5875×1.23457,则A______B.第______个分数.5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.二、解答题:1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.2.分母是964的最简真分数共有多少个?3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?答案一、填空题:2.1.8由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元(56- 18)支圆珠笔=83.3-33.91支圆珠笔= 1.3元所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.3.>A=9.5875×1.23456+0.0001×1.23456B=9.5875×1.23456+9.5875×0.00001因为 0.0001×1.23456>9.5875×0.00001所以A>B.将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,和倒数第6个分数,在这串数中是5.1000每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.1997÷16=124 (13)把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即1,2,3,4, (16)17, 18, 19, 20,…, 32;33,34,35,36, (48)…1969,1967,1968, (1984)1985,1986, (1997)每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.6.954、873、6211+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.所以这三个数分别是954、873、621.7.14因为AD= DE= EC,所以又因为BF=FC,所以由于FG=GC,所以S阴影面积=S△ABD+S△DFE+S△GCE=8+4+2=14(平方厘米)8.97E得分是:90 × 5-96 × 2-92.5 × 2=73(分);C得分是:(92.5×2-15)÷2=85(分);D得分是:85+15=100(分);A得分是:97.5×2-100=95(分);B得分是:96×2-95=97(分).9.233人被4除余1的自然数有5,9,13,17,21,25,…,其中被5除余3的自然数有13,33,53,73,…,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:n=3,60×3+53=233(人)10.14.412、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:36×2÷(2+3)=14.4(元)二、解答题:1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:90×3-3×3×3×2=216(立方厘米)所以穿孔后木块的体积是:10×10×10-216=784(立方厘米)2.分母是964的最简真分数有480个.因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:963-481-3+1=480(个)3.从A到F的最短路程是13千米从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:7+1+5+2=15(千米)沿ABCEF路线走,它的长度是.5+2+5+2=14(千米)沿AJKGF路线走,它的长度是:5+4+2+2=13(千米)所以从A到F的最短路程是13千米.4.10分钟内共相遇20次甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).小升初数学综合模拟试卷30一、填空题:3.37□5□能被72整除,这个数除以72的商是______.4.一列火车以每小时60千米的速度通过一座200米长的桥,用了21秒,则火车的车长是______米.7.有两支蜡烛,第一支5小时燃尽,第二支4小时燃尽.如果同时点燃这两支蜡烛,并且蜡烛燃烧的速度不变,在点燃______小时后,第一支蜡烛的长度是第二支蜡烛的3倍.9.恰有8个约数的两位数有______个.10.某小学组织六年级学生春游,学校买了182瓶汽水分给每个学生.如果每5个空瓶又可换得1瓶汽水,那么这些汽水瓶最多可换得______瓶汽水.二、解答题:1.如果1个小正方体木块的表面积是24平方厘米,那么由512个这样的小正方体木块所组成的一个大正方体的体积是多少立方厘米?3.有6对夫妻参加一次聚会,每个男士与每一个人握手(但不包括自己的妻子),女士之间相互不握手,那么这12个人共握手多少次?4.甲、乙、丙三人同时从A地出发,到离A地18千米的B地,当甲到达B地时,乙、丙两人离B地分别还有3千米和4千米,那么当乙到达B地时,丙离B地还有多少千米?答案一、填空题:2.余2连续6个1能被7整除,说明每6个1除以7是一个循环.由于1997÷6=332 (5)这表明1997个1除以7的余数等于5个1除以7的余数,因为5个1除以7余数是2,所以1997个1除以7余数是2.3.答案有2个,是516和523因为72=8×9,8与9互质,所以这个五位数既是9的倍数,又是8的倍数.由于这个五位数是9的倍数,所以其各个数位上的数字之和应是9的倍数,不妨设五位数的个位是x,百位是y,则3+7+y+5+x=15+y+x是9的倍数,所以x+y可能是3或12;若x+y=3,3=1+2,由于这个五位数又能被8整除,因此这个五位数的末三位数字组成的数能被8整除,且个位必是偶数,但152不能被8整除,所以x+y不可能是3.若x+y=12,12=4+8=6+6,但458,854均不能被8整除,只有656能这个五位数除以72的商是523.4.150米火车通过一座桥是指火车头在桥一端算起到火车尾在桥的另一端为止.因此火车通过一座桥所行的路程实际是桥长加上火车的车长.并且计算时注意换算单位要一致,这样可以求出火车的车长是:60×1000÷3600×21-200=350-200=150(米).5.10平方厘米根据等底等高的三角形面积相等,由于D是BC的中点,△ABD的面积等于△ADC的面积,有S△ABD=S△ADC=120÷2=60(平方厘米)S△AED=S△ABD÷4=60÷4=15(平方厘米)S△AFD=S△AED×2/3=15×2/3=10(平方厘米)6.末尾有3996个0.7.3.5小时把两支蜡烛燃烧的速度看作每小时燃烧1个单位长,则第一支蜡烛长为5个单位长,第二支蜡烛长为4个单位长.设点燃x小时后,第一支蜡烛是第二支蜡烛的长度的3倍,列方程为:5-x=3(4-x)5-x=12-3x2x=7x=3.5(小时)先求出这499个数的和,然后求出这499个数中的所有整数之和,它们的差即为所求,所以9. 10个因为8=1×8=2×4=2×2×2,根据约数与质因数的关系知,含有8个约数的数N可以表示成:N=a7或N=a×b3或N=a×b×c其中a、b、c是N的质因数.下面采用枚举法得:N=27=128,超过两位数,舍去;N=2×33=54, N=3×23=24, N=5×23=40,N=7×23=56, N=11×23=88,N=2×3×5=30,N=2×3×7=42,N=2×3×11=66,N=2×3×13=78,N=2×5×7=70恰有8个约数的两位数有10个.10. 45瓶先用182个空瓶可换得汽水是:182÷5=36 (2)36瓶,还余2个空瓶.喝完这36瓶汽水连同余下的2个空瓶,又可换得汽水是(36+2)÷5=7…3为7瓶,还余3个空瓶.再喝完这7瓶汽水连同余下的3个空瓶,又可换得汽水是:(7+3)÷5=为2瓶,所以这些汽水瓶最多可换得汽水:36+ 7+ 2= 45(瓶).二、解答题:1. 4096立方厘米.小正方体的每个面的面积是:24÷6= 4(平方厘米)小正方体的棱长是2厘米,由于512= 8×8×8所以大正方体的棱长为8个小正方体的棱长,因此大正方体的棱长是:2×8=16(厘米)大正方体的体积是:16×16×16=4096(立方厘米).2.45(人)订《儿童故事画报》的人数是:订《好儿童》的人数是:两种都订的人数是:81+72-108=45(人).3.45次由于女士之间相互不握手,因此这12个人握手的情况分为两类:一类是男士之间相互握手,另一类是男士与女士握手,但每个男士不与自己的妻子握手.6个男士之间两两握手,每个男士与其余5个男士握手一次,共握手 5× 6= 30次,但这 30次握手有重复计算,如甲、乙两个握手,把甲与乙握手和乙与甲握手算成两次不同的握手,所以6个男士相互握手,共握手:5×6÷2=15(次)男士与女士握手的情况共有:6×5=30(次)所以这12个人共握手:15+30=45(次)当甲行了18千米时,乙行了18-3=15千米,丙行了18-4=14千米,甲、小升初数学综合模拟试卷31一、填空题:2.123×5.67+8.77×567=______.3.如图,有三个同心半圆,它们的直径分别为2,6,10,用线段分割成9块,如果每块字母代表这一块的面积并且相同的字母代表相同的面积,那么(A+B):C=______.等于______.5.小刚,小强两人骑车的速度之比是15∶13,如果小刚,小强分别由甲、乙两地同时出发,相向而行,半小时后相遇;如果他们同向而行,那么小刚追上小强需要_______小时.6.5个正方体的六个面上分别写着1、2、3、4、5、6六个数,并且它们任意两个相对的面上所写的两个数的和都等于7.现在把五个这样的正方体一个挨着一个地连接起来(如图),在紧挨着的两个面上的两个数之和都等于8,那么,图中打“?”的这个面上所写的数是______.7.先任意指定7个整数,然后将它们按任意顺序填入2×7方格表第一行的七个方格中,再将它们按任意顺序填入方格表第二行的方格中,最后,将所有同一列的两个数之和相乘.那么,积是______数(填奇或偶).8.有两组数,第一组数的平均数是13.6,第二组数的平均数是10.8,而这两组数总的平均数是12.4,那么,第一组数的个数与第二组数的个数的比值是______.9.有四个数,每次选取其中三个数,算出它们的平均数,再加上另外一个数,用这种方法计算了四次,分别得到以下四个数:72,98,136,142,那么,原来四个数的平均数是______.10.体育组有一筐球,其中足球占45%,如果再放入5个篮球,足球就只占36%,那么,这筐球中,足球有______个.二、解答题:1.松鼠妈妈采松籽,晴天每天可以采20个,有雨的天每天只能采12个.它一连几天采了112个松籽,平均每天采14个.那么,这几天中有几天有雨?2.有6块岩石标本,它们的重量分别是8.5千克、6千克、4千克、4千克、3千克、2千克,要把它们分别装在3个背包里,要求最重的一个背包尽可能轻一些.请写出最重的背包里装的岩石标本是多少千克?3.上午8时8分,小明骑自行车从家里出发,8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家.到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几时几分?4.70个数排成一行,除了两头的两个数以外,每个数的三倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,l,3,8,21,….问最右边一个数被6除余几?答案,仅供参考。
小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。
已知乙分到的题比甲多1倍,丙分到的题最少,却是个两位数,且个位不是0.甲分到______道题,乙分到______道题,丙分到______道题.8.如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是______.数超过了试题总数的一半,则他们都答对的题有______道.10.有一水果店一天之中共进了6筐水果,分别装着香蕉和桔子,重量分别为8、9、16、20、22、27千克.当天只卖出了一筐桔子.在剩下的五筐水果中香蕉的重量是桔子重量的2倍,那么当天共进了______筐香蕉.二、解答题:1.甲、乙、丙、丁四人共同购买一只价值4200元的游艇,甲支付的现的现金是多少元?2.如图,九个小长方形组成一个大长方形,按图中编号,则1号长方形的面积恰好是1平方厘米,2号恰好是2平方厘米,3号恰好是3平方厘米,4号恰好是4平方厘米,5号恰好是5平方厘米,6号的面积是多少平方厘米?3.某人连续打工24天,挣了190元。
星期一到星期五全天工作,日工资10元;星期六半天工作,发半资5元;星期日不工作,无工资.已知他打工是从3月下旬的某一天开始的,这个月的1日是星期日,那么他打工结束的那一天是4月几日?4.有甲、乙、丙三组工人,甲组4人的工作,乙组需5人完成;乙组3人的工作,丙组需8人完成.一项工作,需甲组13人、乙组15人合作3天完成.如果让丙组10人去做,需要多少天完成?答案一、填空题:1.1002.2如果三个顶点全取正方形顶点,则无论怎样套,三角形面积都是正方形面积的一半;如果一个顶点取在正方形的中心,则无论怎样套,三角形的面积都是正所以面积不同的三角形共有2种.3.196根据题设可知,参观人数应在(60×3+1=)181人到200人之间.又因为人数是一个平方数,且181至200之间只有196是平方数,所以196为所求.4.168根据题设可知,生产上衣与生产裤子的工人人数之比为7∶4,所以生产上衣的人数为:66÷(7+4)×7=42(人)共生产服装4×42=168(套)5.a=8,b=0,c=61+3+a+b+4+5+6是9的倍数,即19+a+b是9的倍数,由此推出 a+b=8或a+b=17.当a+b=17时,只有8+9=17,而1389456、1398456均不被11整除,舍去.又(1+a+4+6)-(3+b+5)是11的倍数,即3+a-b是11的倍数,由此推出a-b=8或b-a=3.因为a+b与a-b是同奇、同偶,所以只有a+b=8与 a-b=8有解,此时a=8,b=0.6.630因为两车在相距中点10千米处相遇,所以客车比货车多行(10×2=)20千米.又因为货车先开出(60÷60×5=)5千米,因此在相同的时间内客车比货车多行(20+5=) 25千米.甲、乙两地相距(65+60)×25÷(65-60)+5=630(千米)7.14,28,13根据题设可知,甲、乙分到的题数之和是3的倍数,将55拆分,可得到符合条件的分法:55=14×3+13所以甲分得14道题,乙分得(14×2=)28道题,丙分得13道题.8.40解方程,有:x=10所以S△ADG=10×(1+3)=40.9.17根据题设可知,题目总数是4、6的公倍数.9+7-(12-2)=6(道)没有超过总题数的一半,不合题意.18+19-(24-4)=17(道)超过总题数的一半,符合题意.若共有36题,则两人都答错的有当总数大于36时,均不合题意.10.3根据题意可知,剩下的五筐水果总重量是3的倍数.8+9+16+20+22+27=102(千克)是3的倍数,故卖掉的一筐重量也是3的倍数.若卖掉9千克的一筐,则桔子重量为(102-9)÷3=31(千克)但在剩下的五个数中没有几个数的和是31,不合题意.所以只能卖掉27千克的一筐,此时桔子重量为(102-27)÷3=25(千克)根据条件可知,9千克、16千克重的是桔子,剩下的是香蕉,所以当天共进了3筐香蕉.二、解答题:1.910丁应支付现金2.7.5为叙述方便,给长方形标上字母,如图所示.根据条件可知: AB×FG=1, AB×EF=2,CD×FG=3,BC×EF=4,BC×DE=5,所以CD×DE3.18日这个人每星期挣(10×5+5=)55元,根据55×3+25=190(元)和7×3+3=24(天)可知,他干了三个星期零三天,且在多干的三天中挣了25元.根据条件可知,多的三天中有两个上全工日,一个半工日,因此他打工的第一天是星期四.由于这个月的1日是星期日,因此星期四分别为5日、12日、19日和26日.由于从三月下旬开始打工,所以打工的第一天是3月26日.因为31-26+1+18=24,所以打工的最后一天是4月18日.4.25天这项工作的总工作量为丙组10人需干小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。
2018年小升初数学考试卷与答案(完整版)基础教育一直是最受学校和家长关注的,最为基础教育重中之重的初等教育,更是得到更多的重视。
查字典数学网小升初频道为大家准备了2018年小升初数学试题与答案,希望能帮助大家做好小升初的复习备考,考入重点初中院校!2018年小升初数学试题与答案(完整版)一、填空:1.一个数由5个亿,24个万和375个一组成,这个数写作( ),读作( ).2.在712 、34 、58 、1924 中,分数值最大的是( ),分数单位最大的是( ).3.如果,那么()=( ),=( ).4.甲8天的工作量正好与乙10天的工作量相等,甲乙工效之最简整数比( ).5.把227 、3.14、、3320 按从大到小的顺序排列是:( )﹥( )﹥( )﹥( ).6.生产一批零件,甲乙合作10天可以完成,若甲独做18天可以完成,若乙独做要( )天才能完成.7. 227 的分数单位是( ),去掉( )个这样的分数单位后,结果是1.8.把甲班人数的16 调到乙班,则两班人数相等,原来甲班人数与乙班人数的比是( ).9.三个连续自然数的和是105,其中最小的自然数是( ),最大的自然数是( ).10.甲、乙两数的最大公因数是5,最小公倍数是60,如果甲数是20,则乙数是( );如果甲数是60,则乙数是( ).11.一件工作,计划5天完成,实际只用4天完成,工作效率提高了( )%.12.一个最简分数,把它的分子扩大2倍,分母缩小2倍,等于212 ,这个最简分数是( ).二、判断(对的打,错的打)1.延长一个角的两边,可以使这个角变大。
( )2.三角形的高一定,底和面积成正比例。
( )3.甲比乙多25%,乙就比甲少25%. ( )4. 38 即是一个分数,又是一个比。
( )5.给一个自然数添上百分号,这个自然数就扩大100倍。
( )6.圆心确定圆的位置,半径决定圆的大小。
( )7.所有自然数的公因数都是1. ( )三、选择题。