第4章 基于遗传算法的随机优化搜索
- 格式:ppt
- 大小:686.00 KB
- 文档页数:79
基于遗传算法的多目标优化问题求解方法研究随着科技的不断发展,优化算法在工程和科学领域中的应用越来越广泛。
遗传算法作为进化计算的代表,已经成为了解决多种优化问题的有效工具之一。
然而,在实际应用中,由于多目标优化问题存在多个决策变量和目标函数,因此如何有效地求解这类问题成为了研究的热点。
本文将介绍基于遗传算法的多目标优化问题求解方法的研究现状和进展。
一、遗传算法简介遗传算法(Genetic Algorithm, GA)是一种基于生物进化理论的优化算法,它通过模拟遗传和进化的过程来搜索最优解。
遗传算法通常包括初始化种群、选择算子、交叉算子和变异算子四个主要部分。
首先,通过初始化种群,将初始解随机分布在搜索空间中。
然后,选择算子用于选择适应度较高的个体,进入下一代种群。
接着,通过交叉算子和变异算子,对父代个体进行交叉和变异操作,产生新的个体。
最后,通过上述步骤不断迭代,直到满足终止条件或达到最大迭代次数为止。
二、多目标优化问题多目标优化问题(Multi-objective Optimization Problem, MOOP)是指在满足一定约束条件的情况下,最大或最小化多个目标函数的问题。
MOOP的求解问题可以转化为寻找一组不同的解集,这些解集称为 Pareto 前沿面或 Pareto 集合。
Pareto 前沿面是一个极端解,其没有其他任何解所在的位置比它要优,而 Pareto 集合则包含了所有可能达到 Pareto 前沿面的解。
多目标优化问题在现实生活中有着广泛的应用,如工程设计、金融投资、环境管理等。
三、基于遗传算法的多目标优化问题求解方法在传统的单目标优化问题中,遗传算法已经得到了广泛的应用。
而在多目标优化问题中,由于涉及到多个决策变量和目标函数,因此需要改进传统的遗传算法来解决这个问题。
下面我们将介绍一些基于遗传算法的多目标优化问题求解方法。
1. 多目标优化问题求解框架许多基于遗传算法的多目标优化问题求解方法都包括两个步骤:Pareto 集合的生成和 Pareto 前沿面的近似。
第四章遗传算法在经济活动中,很多实际优化问题涉及到大量参数的优化,或者寻找问题的全局最优解。
这些问题不仅仅涉及大量计算,而且往往难以给出精确的数学模型,或者有了数学模型,也难以求出解析解来。
有的搜索问题还面临着组合爆炸,常规算法无法应付。
这些困难使得一些学者们寻求一种适于大规模并行且具有某些智能特征如自组织、自适应、自学习等的算法。
遗传算法(Genetic Algorithm, GA)就是一种伴随解决此类复杂的、非线性问题而发展起来的广为应用的、高效的随机全局搜索与优化的自适应智能算法。
第一节引言一、遗传算法的生物学意义遗传算法的生物学基础是达尔文进化论和孟德尔遗传变异理论。
根据达尔文进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。
生物种群从低级、简单的类型逐渐发展成为高级、复杂的类型。
各种生物要生存下去就必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。
具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少,直至消亡。
达尔文把这一过程和现象叫做“自然选择、适者生存”。
按照孟德尔遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。
不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。
经过优胜劣汰的自然选择,适应值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的基本规律。
现代遗传学则对基因的本质、功能、结构、突变和调控进行了深入探讨,开辟了遗传工程研究的新领域。
在一定的环境影响下,生物物种通过自然选择、基因交换和变异等过程进行繁殖生长,构成了生物的整个进化过程。
生物进化过程的发生需要四个基本条件:(1)存在由多个生物个体组成的种群;(2)生物个体之间存在着差异,或群体具有多样性;(3)生物能够自我繁殖;(4)不同个体具有不同的环境生存能力,具有优良基因结构的个体繁殖能力强,反之则弱。
数理基础科学中的随机优化与遗传算法在当今科技飞速发展的时代,数理基础科学扮演着至关重要的角色。
其中,随机优化和遗传算法作为两个关键的研究领域,为解决复杂的实际问题提供了强大的工具和方法。
让我们先来谈谈随机优化。
简单来说,随机优化就是在充满不确定性和随机性的环境中,寻找最优的解决方案。
想象一下,你在一个迷宫里,每次选择前进的方向都带有一定的随机性,但你又希望能最快地找到出口。
这就类似于随机优化所面临的情境。
在现实生活中,许多问题都具有随机性。
比如金融市场中的股票价格波动,我们无法准确预测明天的股价,但可以通过随机优化的方法来制定投资策略,以最小化风险并最大化收益。
再比如物流配送中的路线规划,由于路况的不确定性,每次选择的路径可能会受到随机因素的影响,而随机优化能够帮助我们找到最优的配送路线,降低成本和提高效率。
那么,随机优化是如何工作的呢?它通常基于概率和统计的原理。
通过不断地进行试验和改进,逐渐逼近最优解。
就像在黑暗中摸索,每次尝试都能让我们对光明的方向多一分了解。
接下来,我们聊聊遗传算法。
这是一种受到生物进化启发的算法。
大家都知道,生物在漫长的进化过程中,通过遗传和变异,逐渐适应环境,变得越来越优秀。
遗传算法就是模仿了这个过程。
假设我们要解决一个复杂的数学问题,比如找到一个函数的最大值。
我们可以把可能的解看作是一个个“个体”,每个个体都有自己的“基因”,也就是一组特定的数值。
然后,通过类似于生物繁殖的方式,让这些个体相互组合、变异,产生新的“后代”。
在这个过程中,我们会根据某个“适应度函数”来评估每个个体的优劣。
适应度高的个体有更大的机会被保留和繁殖,适应度低的个体则逐渐被淘汰。
经过多次的迭代和进化,最终我们就能得到一个比较优秀的解。
遗传算法具有很强的全局搜索能力。
它不像一些传统的算法容易陷入局部最优解,而是能够在整个解空间中广泛探索,找到更接近全局最优的解。
比如说,在设计飞机机翼的形状时,有无数种可能的形状组合。
编号:审定成绩:重庆邮电大学毕业设计(论文)设计(论文)题目:基于遗传算法的BP神经网络的优化问题研究学院名称:学生姓名:专业:班级:学号:指导教师:答辩组负责人:填表时间:2010年06月重庆邮电大学教务处制摘要本文的主要研究工作如下:1、介绍了遗传算法的起源、发展和应用,阐述了遗传算法的基本操作,基本原理和遗传算法的特点。
2、介绍了人工神经网络的发展,基本原理,BP神经网络的结构以及BP算法。
3、利用遗传算法全局搜索能力强的特点与人工神经网络模型学习能力强的特点,把遗传算法用于神经网络初始权重的优化,设计出混合GA-BP算法,可以在一定程度上克服神经网络模型训练中普遍存在的局部极小点问题。
4、对某型导弹测试设备故障诊断建立神经网络,用GA直接训练BP神经网络权值,然后与纯BP算法相比较。
再用改进的GA-BP算法进行神经网络训练和检验,运用Matlab软件进行仿真,结果表明,用改进的GA-BP算法优化神经网络无论从收敛速度、误差及精度都明显高于未进行优化的BP神经网络,将两者结合从而得到比现有学习算法更好的学习效果。
【关键词】神经网络BP算法遗传算法ABSTRACTThe main research work is as follows:1. Describing the origin of the genetic algorithm, development and application, explain the basic operations of genetic algorithm, the basic principles and characteristics of genetic algorithms.2. Describing the development of artificial neural network, the basic principle, BP neural network structure and BP.3. Using the genetic algorithm global search capability of the characteristics and learning ability of artificial neural network model with strong features, the genetic algorithm for neural network initial weights of the optimization, design hybrid GA-BP algorithm, to a certain extent, overcome nerves ubiquitous network model training local minimum problem.4. A missile test on the fault diagnosis of neural network, trained with the GA directly to BP neural network weights, and then compared with the pure BP algorithm. Then the improved GA-BP algorithm neural network training and testing, use of Matlab software simulation results show that the improved GA-BP algorithm to optimize neural network in terms of convergence rate, error and accuracy were significantly higher than optimized BP neural network, a combination of both to be better than existing learning algorithm learning.Key words:neural network back-propagation algorithms genetic algorithms目录第一章绪论 (1)1.1 遗传算法的起源 (1)1.2 遗传算法的发展和应用 (1)1.2.1 遗传算法的发展过程 (1)1.2.2 遗传算法的应用领域 (2)1.3 基于遗传算法的BP神经网络 (3)1.4 本章小结 (4)第二章遗传算法 (5)2.1 遗传算法基本操作 (5)2.1.1 选择(Selection) (5)2.1.2 交叉(Crossover) (6)2.1.3 变异(Mutation) (7)2.2 遗传算法基本思想 (8)2.3 遗传算法的特点 (9)2.3.1 常规的寻优算法 (9)2.3.2 遗传算法与常规寻优算法的比较 (10)2.4 本章小结 (11)第三章神经网络 (12)3.1 人工神经网络发展 (12)3.2 神经网络基本原理 (12)3.2.1 神经元模型 (12)3.2.2 神经网络结构及工作方式 (14)3.2.3 神经网络原理概要 (15)3.3 BP神经网络 (15)3.4 本章小结 (21)第四章遗传算法优化BP神经网络 (22)4.1 遗传算法优化神经网络概述 (22)4.1.1 用遗传算法优化神经网络结构 (22)4.1.2 用遗传算法优化神经网络连接权值 (22)4.2 GA-BP优化方案及算法实现 (23)4.3 GA-BP仿真实现 (24)4.3.1 用GA直接训练BP网络的权值算法 (25)4.3.2 纯BP算法 (26)4.3.3 GA训练BP网络的权值与纯BP算法的比较 (28)4.3.4 混合GA-BP算法 (28)4.4 本章小结 (31)结论 (32)致谢 (33)参考文献 (34)附录 (35)1 英文原文 (35)2 英文翻译 (42)3 源程序 (47)第一章绪论1.1 遗传算法的起源从生物学上看,生物个体是由细胞组成的,而细胞则主要由细胞膜、细胞质、和细胞核构成。
随机优化算法的原理及应用随机算法是现代计算机科学中非常重要的一类算法,它通过随机性的引入与运用,来解决某些计算复杂度较高或解法不是很显然的问题。
其中,随机优化算法是一种非常经典的随机算法,它通过对搜索空间进行随机搜索和优化,来寻找问题的最优解或次优解。
这种算法因为效率高、便于实现、适用范围广泛,而在众多领域中被广泛应用。
随机优化算法的基本原理随机优化算法是一种基于概率模型的搜索算法,它不依靠具体的解析式或算法,而是通过随机修改问题的解,不断在解空间中“寻找”最优解。
因此,随机优化算法也被称为基于搜索的全局优化算法。
这种算法的具体实现方式主要有以下几种:随机重启优化算法随机重启算法是一种基于多重随机搜索的算法,它通过无数次随机重启,来搜索解的“临界区域”,更容易发现最优解,尤其是对于凸问题。
此算法的基本思路是在一定规定的时间内,多次随机生成解并计算其质量值,最后选出其中的最优解。
而随后,它又可以在新的一个搜索空间内,进行一开始相同的操作,直到找到最优解或时间用完为止。
模拟退火算法模拟退火算法是另外一种基于随机搜索的算法。
它通过模拟实际温度的变化,模拟系统的状态变量,来寻找全局最优解。
此算法的核心思路在于通过温度指数的不断变化,来跳出算法陷入的局部最小值,尤其是对于非凸问题。
此算法常用于最优化问题的求解,尤其是当问题的解空间比较大或需要多目标优化时。
遗传算法遗传算法是一种基于自然界遗传数据的随机优化算法,它能够模拟生物进化过程中的基因变异,交叉和选择等过程,来优化问题的解。
此算法的基本思路是依靠个体的变异和“交配配对”,来产生更有利的基因群体,在群体的不断迭代中最终得到一个最优解。
此算法适用于一些复杂的、多维度优化的问题,例如参数调节、图像处理等。
应用案例1. 电子商务推荐系统推荐系统是如今电子商务网站中的重要组成部分,它可以提高购物效率,为用户提供更符合其需求的商品和优惠信息,产生更多交易额。
随机优化算法在推荐系统中的应用,主要用于个性化推荐,即针对用户的个人喜好和购买记录,提供更具针对性的推荐。
基于遗传算法的多目标优化问题求解随着现代科技的飞速发展和生产制造业与服务业的日益繁荣,多目标优化问题已成为了一个重要的研究方向。
多目标优化问题指的是需要在同时优化多个目标指标的情况下进行决策的问题,例如在生产制造业中需要同时考虑成本和质量等多个指标。
解决这种问题的有效手段便是遗传算法,本文将介绍基于遗传算法的多目标优化问题求解。
一、遗传算法的核心思想遗传算法是一种模拟遗传学和自然选择过程的优化方法,其核心思想是通过模拟“基因”的遗传变异和自然选择过程来寻找问题的最优解。
遗传算法的具体实现过程主要包括以下几个步骤:1. 初始化种群:遗传算法需要初始化一个种群来表示问题的解集合,一般采用随机生成的方式进行初始化。
2. 选择操作:通过“适者生存”的原则,在种群中选择若干个较为适应的个体,作为下一代种群的父母。
3. 变异操作:对父母进行个体基因的随机变异,以增加种群的遗传多样性。
4. 交叉操作:采用不同的交叉方式将父母基因进行组合,生成新的下一代个体。
5. 筛选操作:从父母和子代中选择较优的个体,更新种群,并进行下一次迭代。
通过上述过程,遗传算法能够搜索到问题的最优解,其中适应度函数的设定是非常重要的一步,它用来评估个体的适应度程度。
二、多目标优化问题的遗传算法求解在多目标优化问题的求解中,适应度函数也需要进行改进,一般将每个目标指标的值单独计算,再考虑其权重关系。
例如在生产制造业中,成本和质量两个指标的权重往往不同,需要根据实际情况进行调整。
另外,遗传算法中的选择操作也需要进行改进,常用的多目标选择方法有以下两种:1. 非支配排序:通过将每个个体与其余个体进行比较,将其分为不同的等级,并选取前面的等级的个体作为父母进行交叉和变异操作。
2. 拥挤度计算:通过计算每个个体在解空间中的拥挤度,选择拥挤度较大的个体作为下一代的父母,以增加解空间的遍历能力。
多目标优化问题的遗传算法求解需要注意以下几个问题:1. 避免陷入局部最优解:在遗传算法中,子代可能比父代更劣,因此需要加入一定的随机因素来跳出局部最优解。
基于遗传算法的最优化问题求解方法随着人工智能技术的不断发展和普及,最优化问题在工程、经济、管理等领域中得到了广泛应用。
最优化问题是指在一定的限制条件下,寻找最佳的决策方案,从而能够获得最优的效果。
为了解决最优化问题,人们在不断探索新的算法和方法。
其中,基于遗传算法的最优化问题求解方法备受关注。
遗传算法是一种基于生物进化思想的计算机算法,具有全局优化、可适应性强、鲁棒性好等特点,因此在最优化问题的求解中扮演着重要的角色。
一、遗传算法的概念和基本原理遗传算法是模拟生物进化过程的计算机算法。
它是从自然界中生物进化的过程中发掘出来的一种求解最优化问题的方法。
遗传算法的基本原理是模拟生物进化过程的三个操作:选择、交叉和变异。
1.选择操作选择操作是指根据个体适应度大小,按照一定的概率选择优秀个体,淘汰劣质个体。
具体实现方法是在种群中随机选择两个个体比较它们的适应度,然后根据某种方法保留优秀个体并淘汰劣质个体,以此来生成新的种群。
选择操作是遗传算法中最重要的操作之一,它直接影响到算法的性能。
2.交叉操作交叉操作是指将已选择的优秀个体进行交叉从而生成新的个体。
具体实现方法是在两个被选择的个体之间随机选取交叉点,并交换两个个体之间的某些基因信息。
目的是为了保留经过选择操作后的优秀个体,并且在新的个体中引入多样性,增加种群的搜索范围,从而增强算法的全局搜索能力。
3.变异操作变异操作是指在某些条件下,对已经生成的新个体进行个别基因的改变。
具体实现方法是选取某个新个体的一个基因进行随机改变操作,例如随机增加、删除或修改某个基因的值。
变异操作是为了增加多样性,避免算法陷入局部最优解,从而提高算法的全局寻优能力。
二、遗传算法的优点和不足遗传算法具有一系列的优点,主要包括以下方面。
1.全局最优性遗传算法具有全局寻优能力,它能够搜索全部解空间,并找到全局最优解。
这是由于它采用了随机寻优方法,能够避免陷入局部最优解。
2.可适应性强遗传算法能够自适应地调整参数,以适应问题的复杂性和难度,在不同的环境下优化效果也不同。
人工智能》教学大纲2.掌握Prolog语言的基本语法和常用操作;3.能够编写简单的Prolog程序,并能够运行和调试;4.了解Prolog语言在人工智能中的应用。
第三章搜索算法基本内容和要求:1.掌握深度优先搜索、广度优先搜索、启发式搜索等搜索算法的基本思想和实现方法;2.能够应用搜索算法解决一些典型问题;3.了解搜索算法在人工智能中的应用。
第四章知识表示与推理基本内容和要求:1.掌握命题逻辑、一阶逻辑等知识表示方法;2.了解基于规则、框架、语义网络等知识表示方法;3.掌握归结方法、前向推理、后向推理等推理方法;4.能够应用知识表示与推理解决一些典型问题。
第五章不确定性推理基本内容和要求:1.了解不确定性推理的基本概念和方法;2.掌握贝叶斯定理及其应用;3.掌握条件概率、独立性、条件独立性等概念;4.能够应用不确定性推理解决一些典型问题,如垃圾邮件过滤等。
五、教材和参考书目1)主教材:Stuart Russell。
Peter Norvig。
Artificial Intelligence: A Modern Approach。
3rd n。
Prentice Hall。
2009.2)参考书目:___。
机器研究。
___。
2016.___。
统计研究方法。
___。
2012.___。
___。
2017.六、教学进度安排第一周人工智能概述第二周逻辑程序设计语言Prolog第三周搜索算法第四周知识表示与推理第五周不确定性推理第六周期中考试第七周至第十周课程实验第十一周至第十三周课程实验第十四周课程总结与复第十五周期末考试一实验(实训)内容产生式系统实验学时分配4目的与要求:熟悉和掌握产生式系统的运行机制,掌握基于规则推理的基本方法。
实验(实训)内容:主要包括产生式系统的正、反向推理、基于逻辑的搜索等10余个相关演示性、验证性和开发性设计实验。
二实验(实训)内容搜索策略实验学时分配4目的与要求:熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。