单片机定时计数器及其应用
- 格式:ppt
- 大小:898.50 KB
- 文档页数:67
单片机定时器的原理及应用概述单片机定时器是单片机的一种重要功能模块,它能够实现精确的时间计量和控制,广泛应用于各种自动化设备和工业控制系统中。
本文将详细介绍单片机定时器的原理和应用。
单片机定时器的原理单片机定时器的原理主要基于计数器的工作原理。
计数器是一种能够按照一定规律自动加(或减)1的电子装置。
单片机定时器通常使用定时/计数器模块来实现。
在单片机中,定时器模块通常由一个或多个8位或16位的寄存器组成,用于保存计数值。
定时器模块还包含一组控制寄存器,用于配置定时器的工作模式、计数方式等。
单片机的定时器工作过程如下: 1. 初始化定时器:配置定时器的工作模式、计数方式等参数。
2. 启动定时器:将定时器的计数值清零,并开始计数。
3. 定时器计数:根据设定的计数方式和工作模式,定时器将自动进行计数,并根据计数规则更新计数值。
4. 定时器溢出:当定时器的计数值达到设定的最大值时,定时器将溢出并触发相应的中断或事件。
5. 定时器复位:定时器溢出后,可以选择自动清零计数值或保持当前计数值不变,然后重新开始计数。
单片机定时器通常支持多种工作模式,如定时模式、计数模式、PWM模式等。
具体的工作模式和计数方式根据不同的单片机型号而有所差异。
单片机定时器的应用单片机定时器的应用非常广泛,以下是一些常见的应用场景:实时时钟单片机定时器可以用于实现实时时钟功能。
通过定时器的计数功能,可以精确地测量经过的时间,并能够提供秒、分、时、日期等各种时间单位的计量。
实时时钟广泛应用于各种计时、计量和时间戳等场景。
脉冲产生定时器可以用来产生各种脉冲信号,例如方波、矩形波、脉冲串等。
通过定时器的计数规则和工作模式设置,可以控制脉冲的频率、占空比等参数,实现精确的波形生成。
周期性任务调度单片机定时器可以用于周期性任务的调度。
通过设置定时器的计数值和溢出中断,可以实现定时触发中断,从而执行一些周期性的任务,例如数据采集、数据上传、状态刷新等。
单片机实验五_定时计数器应用实验五定时计数器应用一、实验目的:1、单片机系统中,可以用软件或硬件定时,当定时时间较长,定时准确率要求较高时,应采用硬件定时。
MCS—51系列单片机中有2个16位的可编程定时/计数器T0和T1,通过本实验要求掌握T0、T1的初始化编程和应用。
2、学会应用烧录软件XLISP和keil-uvision2集成调试软件进行实验。
掌握实验的步骤并能得到正确的实验结果。
二、实验内容1、定时计数器应用:8只LED呈流水灯显示,用定时计数器定时,使流水灯的间隔时间为1S。
用定时计数器0实现定时1S,采用软硬件结合方式:T0方式0,定时50ms,循环程序20次。
2、数码管显示:要求数码管显示0-9,间隔时间0.5S,采用定时计数器T1实现。
3、思考题:用定时计数器T0和T1级联定时3S。
三、实验步骤1、硬件连接(1)使用USB线(电源)和串口线(通信),将XL2000综合仿真仪与微型计算机连接起来; CPU选用AT89S51,采用程序直接写入方式;将JP17的开关(编程仿真模式)置为弹起状态,选择编程模式;(2)定时计数器应用:使用8P的连接线将CPU的P0口与JP32(8个发光二极管)相连。
(3)数码管显示:P1口接数码管(JP19)。
2、软件设计(1) Kiel软件操作同实验一:建立工程并存储、选择芯片89C51、新建文件输入程序并保存,将文件加入到工程中。
(2)修改属性:如右图,点击工程下拉菜单中的”目标’目标1’属性”; 单击”目标”,输入仿真器的频率12(MHz);选择“输出”菜单中的”生成HEX文件”,以便汇编后产生HEX代码,供编程器使用;3、将程序写入AT89C51:双击桌面XLISP启动程序,出现下面界面。
(1)选择操作/检测编程器点击。
在上图7窗口中出现编程器检测OK!说明系统已经连接完好,可以下一步实验,否则需要检查出错的原因并改正;(2)点击擦除图标,将CPU中的原有程序擦除;(3)点击打开图标,找到Kiel编译后需要执行的程序(HEX文件),点击;在XLISP的文件程序区可见到要执行的程序;(4)点击写入框,在程序写入结束后即可观察运行的结果。
单片机定时器计数器工作原理一、引言单片机作为嵌入式系统的核心部件,在工业控制、智能家居、汽车电子等领域中发挥着重要作用。
在单片机中,定时器和计数器是常用的功能模块,它们可以实现精确的定时控制和计数功能。
本文将详细介绍单片机定时器计数器的工作原理,以及其在实际应用中的作用。
二、单片机定时器和计数器概述单片机定时器和计数器是单片机内部的特殊功能模块,用于生成精确的时间延时和进行事件计数。
在单片机的内部结构中,定时器和计数器通常由定时/计数器模块和控制逻辑组成,通过寄存器配置和控制信号来实现各种定时和计数功能。
定时器和计数器通常包括以下几个重要的功能部分:1. 控制寄存器:用于配置定时器/计数器工作模式、计数模式、计数方向等参数。
2. 定时/计数寄存器:用于存储定时器/计数器的计数值,根据计数模式进行累加或递减。
3. 比较寄存器:用于存储比较值,用于与定时/计数器的计数值进行比较,从而触发相应的中断或输出信号。
定时器通常用于产生精确的时间延时,常用于生成精确的脉冲信号、PWM信号等。
而计数器则用于进行精确的事件计数,通常用于测量脉冲个数、计时等应用。
三、定时器和计数器的工作原理1. 定时器的工作原理定时器的工作原理主要分为定时/计数模式的选择、定时器计数器的递增和中断触发等几个方面。
在配置定时器工作模式时,可以选择不同的计数模式,包括定时器/计数器模式、分频器模式等。
通过配置控制寄存器和定时/计数寄存器,可以设置定时器的计数值和计数方向。
在定时器计数器的递增过程中,定时器会根据设定的计数模式和计数值进行递增,当达到比较寄存器中的比较值时,会触发相应的中断或输出信号。
这样就实现了定时器的定时操作。
2. 计数器的工作原理计数器的工作原理与定时器类似,同样涉及到计数模式的选择、计数器的递增和中断触发等几个方面。
在配置计数器工作模式时,同样可以选择不同的计数模式,通过配置控制寄存器和计数寄存器来设置计数器的计数值和计数方向。