色谱分析-毛细管电泳
- 格式:ppt
- 大小:1.47 MB
- 文档页数:40
毛细管电泳分离蛋白质研究蛋白质是生命体中重要的组成部分之一,对维持生命机能和完成生命过程具有重要作用。
因此,对蛋白质的研究一直是生命科学领域的热点问题。
而毛细管电泳作为一种高效、高灵敏、高分辨的方法,已成为蛋白质分离和分析的常用手段之一。
什么是毛细管电泳?毛细管电泳是一种基于蛋白质电荷和大小的分离方法。
它利用毛细管内充满缓冲液,通过在毛细管中施加电场,将不同电荷和大小的蛋白质分离开来。
毛细管电泳和传统的凝胶电泳相比,具有更高的分辨率和灵敏度,样品需求量也更小。
毛细管电泳的优势毛细管电泳的优势主要有以下几点:1. 高分辨率:毛细管电泳可以分离出大小相差1-3%的蛋白质,而传统的凝胶电泳只能分离出10%以上的蛋白质。
2. 高灵敏度:毛细管电泳可以检测到微量蛋白质,而凝胶电泳的灵敏度较低。
3. 快速:毛细管电泳的分离速度快,比手性高效液相色谱要快10倍以上。
4. 自动化:毛细管电泳可以与多种检测方法结合使用,实现自动化检测。
毛细管电泳分离蛋白质的原理毛细管电泳分离蛋白质的原理是基于电荷和大小的差异。
蛋白质在毛细管中的运动速度与电场强度、离子缓冲液等多个因素有关。
在电场作用下,带有正电荷的蛋白质会向负电极移动,带有负电荷的蛋白质则向正电极移动。
而整体电荷为中性或近中性的蛋白质则不运动或运动极慢。
此外,蛋白质的大小也会影响其在毛细管中的运动速度。
较小的蛋白质分子可以通过毛细管的孔径,运动速度相对较快;而较大的蛋白质分子则相对较慢。
毛细管电泳分析的步骤毛细管电泳分析一般分为以下步骤:1. 样品预处理:将样品通过离心、过滤、去除盐等方法处理干净,以获得高质量的分离结果。
2. 毛细管填充:将毛细管填充缓冲液,以避免产生电荷扰动和样品游离。
3. 样品注入:将样品加载到毛细管中,一般通过注射器或电动势力注射等方法。
4. 施加电场:毛细管内施加电场,使电荷带正的蛋白质向负电极移动,电荷带负的蛋白质向正电极移动,而中性或近中性的蛋白质分子则不运动或运动极慢。
氨基酸的分析方法
氨基酸的分析方法主要包括色谱分析、电泳分析和光谱分析。
1. 色谱分析:氨基酸的色谱分析主要包括气相色谱(GC)和高效液相色谱(HPLC)。
气相色谱通常使用气相色谱质谱联用技术(GC-MS)来鉴定和定量氨基酸。
高效液相色谱可以应用于复杂样品的分离和定量分析。
2. 电泳分析:氨基酸的电泳分析包括毛细管电泳(CE)和聚丙烯酰胺凝胶电泳(PAGE)。
毛细管电泳是一种高效、快速的氨基酸分析方法,常用于药物、食品等领域的检测。
聚丙烯酰胺凝胶电泳可用于分析氨基酸的线性序列。
3. 光谱分析:氨基酸的光谱分析主要包括紫外-可见光谱(UV-Vis)、红外光谱(IR)和核磁共振光谱(NMR)。
紫外-可见光谱用于测定氨基酸的吸收特性,红外光谱可用于检测氨基酸的官能团,核磁共振光谱可提供氨基酸的结构信息。
这些方法可以单独应用或联合使用,以提供对氨基酸的定性和定量分析。
毛细管电泳的基本原理及应用摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。
该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。
可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。
关键词:毛细管电泳原理分离模式应用1概述毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。
CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。
但他没有完全克服传统电泳的弊端[1]。
现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。
1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。
1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。
同年,Cohen 发表了毛细管凝胶电泳的工作。
近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。
毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。
C E只需高压直流电源、进样装置、毛细管和检测器。
毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。
分离的原因:电泳迁移,电渗迁移电泳迁移:在高压电场下,带电离子向相反的方向移动。
电渗迁移:当毛细管内充满缓冲溶液时,毛细管壁上的硅羟基发生解离,生成氢离子溶解在溶液中,这样就使毛细管壁带上负电荷与溶液形成双电层,在毛细管的两端加上直流电场后,带正电的溶液就会整体的向负极端移动,这就形成了电渗流。
在操作缓冲溶液中,带电粒子的运动速度等于电泳速度和电渗速度的矢量和,电渗速度一般大于电泳速度,因此即使是阴离子也会从阳极端流向阴极端。
加大缓冲溶液的酸度、在缓冲溶液中加入有机试剂都会减少硅羟基的解离,减小电渗流。
分离模式毛细管电泳的分离模式有以下几种。
(1)毛细管区带电泳(CZE)将待分析溶液引入毛细管进样一端,施加直流电压后,各组分按各自的电泳流和电渗流的矢量和流向毛细管出口端,按阳离子、中性粒子和阴离子及其电荷大小的顺序通过检测器。
中性组分彼此不能分离。
出峰时间称为迁移时间(tm),相当于高效液相色谱和气相色谱中的保留时间。
(2)毛细管凝胶电泳(CGE)在毛细管中装入单体和引发剂引发聚合反应生成凝胶,这种方法主要用于分析蛋白质、DNA等生物大分子。
另外还可以利用聚合物溶液,如葡聚糖等的筛分作用进行分析,称为毛细管无胶筛分。
有时将它们统称为毛细管筛分电泳,下分为凝胶电泳和无胶筛分两类。
(3)毛细管等速电泳(CITP)采用前导电解质和尾随电解质,在毛细管中充入前导电解质后,进样,电极槽中换用尾随电解质进行电泳分析,带不同电荷的组分迁移至各个狭窄的区带,然后依次通过检测器。
(4)毛细管等电聚焦电泳(CIEF)将毛细管内壁涂覆聚合物减小电渗流,再将样品和两性电解质混合进样,两个电极槽中分别加入酸液和碱液,施加电压后毛细管中的操作电解质溶液逐渐形成pH梯度,各溶质在毛细管中迁移至各自等电点(pI)时变为中性形成聚焦的区带,而后用压力或改变检测器末端电极槽储液的pH值的办法使溶质通过检测器。
(5)胶束电动毛细管色谱(MEKC或MECC)当操作缓冲液中加入大于其临界胶束浓度的离子型表面活性剂时表面活性剂就聚集形成胶束,其亲水端朝外憎水非极性核朝内,溶质则在水和胶束两相间分配,各溶质因分配系数存在差别而被分离。
毛细管电泳的基来源根基理及利用之杨若古兰创作摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,根据样品中各组分之间淌度和分配行为上的差别而实现分离的电泳分离分析方法.该技术可分析的成分小至无机离子、大至生物大分子如蛋白质、核酸等.可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC分析高效、快速、微量.关键词:毛细管电泳道理分离模式利用1概述毛细管电泳 (Caillary Electrophoresis)简称 CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术.CE 的历史可以追溯到1967年瑞典Hjerten最早提出在直径为3mm 的毛细管中做自在溶液的区带电泳(Capillary Zone Electro-phoresis,CZE).但他没有完整克服传统电泳的弊病[1].此刻所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离.1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的次要分支: 胶束电动毛细管色谱(MEKC).1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行.同年,Cohen 发表了毛细管凝胶电泳的工作.近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的利用范围.毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,是以在很大程度上HPCE与HPLC可以互为弥补,但是不管从效力、速度、样品用量和成本来说,毛细管电泳都显示了必定的上风毛细管电泳(C E)除了比其它色谱分离分析方法具无效力更高、速度更快、样品和试剂耗量更少、利用面同样广泛等长处外,其仪器结构也比高效液相色谱(HPLC)简单.C E只需高压直流电源、进样安装、毛细管和检测器.毛细管电泳具有分析速度快、分离效力高、试验成本低、耗费少、操纵简便等特点,是以广泛利用于分子生物学、医学、药学、材料学和与化学有关的化工、环保、食品、饮料等各个领域[2].2毛细管电泳的设备和基来源根基理毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,根据样品中各组分之间淌度和分配行为上的差别而实现分离的电泳分离分析方法[3].毛细管电泳仪的基本构成如图1、1 所示 .熔融石英毛细管的两端分别浸在含有电解缓冲液的贮液瓶中,毛细管内也充满同样的电解缓冲液.在毛细管接收端之前安装在线检测零碎.被分析样品可以从进样零碎采取重力法、电迁移法、抽真空法等多种进样方式引入到毛细管的进样端.当样品被引入后,便开始在毛细管两端施加电压 .样品溶液中溶质的带电组分在电场的感化下根据各自的荷质比向检测零碎方向定向迁移.CE中的毛细管目前大多是石英材料.当石英毛细管中充入pH值大于 3的电解质溶液时 ,管壁的硅羟基(- SiOH)便部分解离成硅羟基负离子(- SiO-) ,使管壁带负电荷.在静电引力下 ,- SiO-会把电解质溶液中的阳离子吸引到管壁附近,并在必定距离内构成阳离子绝对过剩的扩散双电层 (见图 2[4]).在外电场感化下 ,上述阳离子会向阴极挪动.因为这些阳离籽实际上是溶剂化的(水化的),它们将带着毛细管中的液体一路向阴极挪动,这就是 CE中的电渗流(EOF).电渗流的强度很高,乃至于所有进入毛细管中的样品,不管是阴离子、阳离子或中性分子,都会随着液体向阴极挪动.因待测样品中正离子的电泳方向与电渗流方向分歧,故最早到达毛细管的阴极端;中性粒子的电泳速度为零 ,迁移速度与电渗流速度相当;而负离子的电泳方向则与电渗流方向相反,但因电渗流速度约等于普通离子电泳速度的 5~7倍[5],故负离子也将在中性粒子以后到达毛细管的阴极端.因为各种粒子在毛细管内的迁移速度纷歧致,因此使各种粒子在毛细管内能够达到很好的分离.3 毛细管电泳的分离模式根据分离道理分歧,CE分离基本模式有6种,如表 1 所示.表 1 毛细管电泳的分离模式和利用Tab. 1 Separation modes and application of CE以上各模式以毛细管区带电泳、毛细管凝胶电泳、胶束电动毛细管色谱这3种利用较多.4 毛细管电泳的利用4.1 CE在药物成分分析中的利用目前,CE在天然中草药分析领域中的利用次要集中在生物碱和黄酮及其甙类方面、蒽醌类分析也有报导.生物碱有类似于碱的性质,在pH < 7的缓冲液中利用 CZE 分离.纪秀红等[6]拔取马钱子碱为内标物,在磷酸/甲醇缓冲溶液中 ,测定了小檗碱、巴马亭、药根碱的含量.黄酮类化合物大多是中性分子,次要采取 MECC 模式分离.LiYM[7]以SDS(十六烷基磺酸钠)为阴离子概况活性剂将黄芩中的 6 种次要的黄酮类化合物分离.李伟等[8]以磷酸盐为缓冲体系 ,利用 CZE模式分离、测定了大黄提取液中离蒽醌化合物的含量.4. 2 CE在手性拆分中的利用CE因其高效、快速、选择性强的特点而成为目前最无效的手性拆分方法.各种CE分离模式皆可用于对映异构体分离,是以手性拆分成为 CE利用最活跃、最独特的领域.其中,添加剂法只需向电泳缓冲液中加入合适的手性试剂,经过必定的分离条件优化即能实现手性分离.又因为可选择的添加剂品种很多,此法是 CE进行手性拆分的次要方式.目前 ,次要的手性添加剂有环糊精类(CDs)、冠醚类、大环抗生素、蛋白质等.仅环糊精一类就有α-CD,β-CD,γ-CD,HP-α-CD, CM-β-CD 等多种添加物资 ,其利用十分广泛.此外,其他品种添加剂的利用结合MECC和 NACE 模式基本上能实现各种手性药物的拆分[9~11]. 4.3 CE用于肽和蛋白分析CE在蛋白质分离分析中的利用次要包含肽和蛋白的鉴别分析、结构分析、微量制备,蛋白的定量测定、纯度检测、非均一性检测、定性和动力学研讨.CE在肽和蛋白质的别分析中利用最多的是CZE测定肽谱, SDS-CGE测蛋白分子量及CE-MS 直接测定分子量.用CZE还可测定蛋白的物理参数,如蛋白的无效尺寸、电荷和扩散系数.用CIEF测定蛋白等电点比平板凝胶电泳测等电点的方法简单,可直接监测.蛋白被酶解或化学裂解成肽片断,利用CZE的高分辨率分离后所得的电泳图称CE肽图.肽图是进行蛋白序列分析的第一步,随后可用CE进行微量制备,再测定各片断的氨基酸序列,即可得出全部蛋白的一级结构.CE的制备总量比高效液相色谱低,只适用于微量制备.对扩散系数小的生物大分子而言,CE比HPLC的分辨率高得多,是以CE被用来作为收集非常纯的单一馏份的微量制备的手段.在有些情况下,CE定量线性范围可达(3个数量级).4.4 CE用于糖类的分析近年来,毛细管电泳已成为分析单糖、寡糖、糖肽、糖蛋白等糖类化合物的无力兵器,在糖型分析.方面也取得了较大的成功单糖的pKa6值普通大于11,故需选用强碱性的缓冲液(pH>11),使糖基上的羟基去质子而带负电荷,直接进行电泳分离,用紫外(195nm)检测.也能够选用硼酸盐缓冲液,硼酸盐与糖基络合构成带负电荷的络合物以进行电泳分离,用紫外检测.简单单糖的分析方法也适于简单寡糖的分析[12].多糖普通利用酸解或酶解的方法将其转化为寡糖后进行分析.糖蛋白经蛋白酶酶解后生成糖肽,糖肽的图谱被认为是糖蛋白的指纹图谱.糖肽的分离主如果基于其pKa值的分歧而进行CE分离,其实不是基于糖链结构的分歧,是以所选用的缓冲液的构成及其pH的选择尤其次要,其检测也是基于蛋白质的检测.糖脂既可以直接用CE分离,也能够用神经酰胺聚糖酶将糖链释放出来后进行分析.糖胺聚糖(GAG)类糖基的聚糖部分有透明质酸、硫酸软骨素、硫酸角质素和肝素等,普通都含有反复的二糖单元,而且可用裂解酶降解成糖醛酸化酸性寡糖,这些寡糖既带电荷又有紫外接收(232nm),是以很适合用CE进行分析.另外,CE在糖型分析方面也取得了较大的成功.在糖的检测方面,紫外分析是最早用于CE进行糖类检测的,但它的灵敏度绝对不高,检出限普通只要10—6mol数量级.利用激光引诱荧光检测对糖类进行柱前高效荧光标识表记标帜,可使检出限达到10-9mol水平.在改进检测零碎的同时,中性糖类的极性标识表记标帜也在不竭改进与完美.其中一种极性标识表记标帜物为8-氨基-萘-1,3,6-三磺酸,利用其可以快速高效地对均一寡糖和复杂多糖进行分离分析,具有很高的分辨率.4.5 CE在临床化学上的利用CE 在临床化学中的利用十分广泛, 所检测样品的来源可分为尿样、血浆血清、脑脊液、红细胞、其它体液或组织和实验动物活体(invivo)试验.被分析的组分则包含肽类、各种蛋白、病毒、酶、糖类、寡核苷酸、DNA、小的生物活性分子、离子、药物及其代谢产品.具体利用可分为: 临床疾病诊断临床蛋白分析、临床药物监测、代谢研讨、病理研讨、同工酶分析、聚合酶链反应(PCR )产品分析、DNA 片断及序列分析等.所利用的CE 模式包含CZE、MECC、CGE、 CITP 和毛细管等电聚焦(CIEF)[13.14].4.6 CE用于检测非均一性(多样性, Heterogeneity)很多纯化蛋白, 甚至在它们的天然形态, 常常都不是单一分子片断, 而是由相干分子构成, 称为非均一性(多样性).发生多样性的缘由有: 氨基酸(AA )的序列分歧, 如突变体的某地位AA 改变或AA 侧链改变; 后转译发生分歧长度的多肽链; 糖蛋白分歧程度的糖基化, 如存在分歧数量的寡糖链, 寡糖链有分歧的单糖构成、序列及单糖之间的异构连接. 采取CZE, MECC, CIEF, CE-MS 可检测这些非均一性.用于心脏病的重组人组织血纤维蛋白溶酶原激活剂(rtPA )含 4 个可能糖基.Yim [15]用 CZE 和CIEF 研讨了制备过程中 rtPA 分歧糖基化程度惹起的非均一性, 结果标明, CIEF方法要比CZE的好.还有效CZE 对人促红细胞生成素( rHuEPO )[16]、用MECC对重组人C2干扰素(IFN2C)[17]及CE-MS[18]研讨蛋白的多样性.有关蛋白的非均一性在临床中的一些利用, 如人铁传递蛋白、血清蛋白的变异、异构酶的分析等.4. 7 CE用于农药残留量的分析对农药残留物的测定国外研讨的较多.Lazer等[19]将飞行时间质谱和毛细管电泳仪联用,采取样品堆积技术进样对 Paraquat 和 Diquat 两种除草剂进行了分离,检测限低至 10- 17mol/L.Farran 等[20]采取φ(乙腈) = 50 %的磷酸-硼砂缓冲液分离出两种苯氧羧酸类除草剂.Hinsmann 等[21]通过主动在线浓缩样品,采取固相微柱以十二烷基硫酸钠(SDS)作胶束 ,添加少量乙腈 ,在13min内分离测定了水中的7种分歧品种的农药.磺酰脲类化合物是一类绝对较新的除草剂,是以这一类化合物在水和食品中的残留量的测定十分次要.Lipez Avila等[22]采取3μmODS硅胶填充柱来分离这一类化合物 ,线性范围为1~100mg/L.Mayer等报导了农药Cinosulfuron 及其副产品的毛细管电色谱的分离分析.游静等[23]对毛细管电泳在农药手性拆分的进展做了综述.4.8 CE用于纯度检测CE在国外分子生物学实验室及生物工程药厂里已广泛用作最无效的纯度检测手段.当蛋白的疏水性附近时, 它们在HPLC 柱中常常同时流出, 是以在对蛋白进行结构研讨(包含N 端序列和肽谱)之前, 必须监测从HPLC 所得肽片断的纯度.快速CE 纯度检测可节约样品和节省序列测定所需时间.因CE 和RP2 HPLC 分离机理分歧, 所以当用CE 检查由RP2HPLC 纯化制得的某一合成肽(一个峰, 纯度为 99.12% )时, 发现分出 6 个组分, 主峰纯度仅为50%.或许这就是部分基因工程产品用HPLC 检测纯度很高而实际生物活性却各批差别很大的一个缘由.至于用CE 对药厂生产及QC 作纯度检测的利用实例触目皆是, 如对胰岛素、白细胞介素、人生长激素、粒性巨噬细胞菌落刺激因子(用CIEF )等的检测.纯度检测时用CE 可检测出多肽链上单个氨基酸的差别.CE 用于纯度检测可用CZE,MECC, SDS2 CGE, CIEF 多种模式.还有文献讨论了用分歧方法(包含RP2 HPLC, IEC2 HPLC, SDS2PA GE 及CE)进行纯度检测的最无效的计谋[24].5 结论作为一种蛋白质、多肽、核酸及其他生物分子分离和分析的次要技术,近20年来,毛细管电泳的机理探索和利用研讨都取得了长足的进展,对毛细管电泳的研讨,使其分离效力和分析精度不竭提高,也使其利用领域不竭扩大,推动了生物技术的不竭发展.毛细管电泳今后发展方向仍是继续提高分辨率、速度和检测器的选择性.同时,添加主动进样安装和使之微机化、商品化.另外,将它与质谱仪更好地结合,可对生物分子特性作出更快、更精确的分析,以进一步拓宽毛细管电泳在生物领域的利用范围.。