[答案] [(3n-1)22n+1+2]
[解析] 由 bn=nan=n· 22n-1 知 Sn=1×2+2×23+3×25+…+n×22n-1①, 则 22 · Sn=1×23+2×25+3×27+…+n×22n+1②,
1 9
①-②得
(1-22)· Sn=2+23+25+…+22n-1-n×22n+1,即 Sn= [(3n-1)22n+1+2].
1 ������ ;(2)由(1) 2
(1)求数列{bn}的通项公式; (2)若数列{cn}满足 cn=anbn,求数列{cn}的前 n 项和 Sn.
可求得 an=3n-1(n∈N*),代入 an+1+3log2bn=0,可得 bn=
1 2
可知 cn=anbn=(3n-1)× ������ ,所以由错位 相减法可求得数列{cn}的前 n 项和 Sn.
=
na1+
������ (������ -1) d 2
. (其中 a1 为首项,d 为公差)
②等比数列{an}的前 n 项和公式:
当 q=1 时,Sn= na1 (2)分组求和法 ;
������ 当 q≠1 时,Sn= ������1 (1-������ )
1-������
������1 -������������ ������ = 1-������
.
课堂考点探究
探究点一 分组转化法求和
例 1[2018· 湖南益阳 4 月调研] 已知 等差数列{an}的公差为 d,且方程 a1x -dx-3=0 的两个根分别为-1,3.